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Learning and development in real brains typically happens over long timescales, making

long-term exploration of these features a significant research challenge. One way to

address this problem is to use computational models to explore the brain, with Spiking

Neural Networks a popular choice to capture neuron and synapse dynamics. However,

researchers require simulation tools and platforms to execute simulations in real- or

sub-realtime, to enable exploration of features such as long-term learning and neural

pathologies over meaningful periods. This article presents novel multicore processing

strategies on the SpiNNaker Neuromorphic hardware, addressing parallelization of

Spiking Neural Network operations through allocation of dedicated computational units

to specific tasks (such as neural and synaptic processing) to optimize performance.

The work advances previous real-time simulations of a cortical microcircuit model,

parameterizing load balancing between computational units in order to explore trade-offs

between computational complexity and speed, to provide the best fit for a given

application. By exploiting the flexibility of the SpiNNaker Neuromorphic platform, up to 9×

throughput of neural operations is demonstrated when running biologically representative

Spiking Neural Networks.

Keywords: neuromorphic computing, SpiNNaker, real-time, parallel programming, event-driven simulation,

spiking neural networks

1. INTRODUCTION

The human brain is capable of operating using less energy than a light bulb (Levy and Calvert,
2020). However, simulation of biologically representative Spiking Neural Networks (SNN) is a
challenging task on conventional computer hardware. Models from the literature can produce
millions of spikes per second, which need to be delivered to hundreds of thousands of neurons
(Potjans and Diesmann, 2012; Schmidt et al., 2018; Casali et al., 2019) with very tight timing
constraints. A common way to simulate these network dynamics is through CPU-based HPC
platforms, using dedicated software such as NEST (Gewaltig and Diesmann, 2007). However,
because of the timing constraints and the intrinsic high parallelism of these tasks, they fail to
keep energy consumption low when attempting to run these applications, and performance gain is
limited by the latency of MPI-based (Ippen et al., 2017) communications. An alternative approach,
namely Neuromorphic engineering, inspired by the structure of the brain (Mead, 1990), has proven
effective when dealing with this type of simulation (Rhodes et al., 2019), efficiently addressing the
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sparsity of signals typical of these applications and keeping
energy consumption low. This approach is characterized by
simple computational units with close access to distributed
memory (Mead, 1990; Indiveri et al., 2011). To date, several
Neuromorphic platforms have been developed, both in the
digital, analog and mixed signal domains (Furber et al., 2014;
Akopyan et al., 2015; Schemmel et al., 2017; Davies et al., 2018;
Moradi et al., 2018). From a digital perspective, neurons (or
neural compartments) are implemented by processors, which
usually simulate both the neural dynamics and the synaptic
receptors. Analog platforms on the other hand, employ a circuit
implementation of models from literature. The efficiency of
such systems is usually measured in terms of synaptic events
(namely one spike targetting one synapse) per second and
neurons they can simulate, with these two measures limited by
the on-core memory capacity and computational power in digital
neuromorphic platforms and by the physical implementation for
analog architectures.

High synaptic fan-in represents one of the biggest challenges
in biologically representative SNNs and it usually prevents
real-time execution, requiring to slow down the simulations
(i.e., resulting in a simulated time longer than the biological
time) to process all network activity. Another strong limitation
is given by long-range connections between different brain
areas (Schmidt et al., 2018), which are typically represented by
extremely sparse connectivity patterns. Recent work (Rhodes
et al., 2019) demonstrated that, by performing more efficient
task-partitioning and by acting on the placement of networks on
Neuromorphic hardware, it is possible to improve significantly
the throughput of these systems, enabling real-time execution of
models that were not possible before.

Real-time simulations of biologically-representative SNNs are
a common target in the field. Several solutions have been
proposed to address the presented issues, including a procedural
generation of the synaptic weights whenever a spike is received,
instead of storing these, to reduce the memory footprint and
improve performance (Knight and Nowotny, 2021). Some digital
simulation platforms managed to achieve remarkable results
in terms of real-time simulations, even reaching sub real-time
performance for established benchmarks in the field (Knight
et al., 2021; Kurth et al., 2021; Heittmann et al., 2022).

This work offers an improved parallelization strategy, namely
the Multi-target partitioning, on how to efficiently deploy
Spiking Neural Networks on Neuromorphic hardware. This
strategy aims at addressing the major bottlenecks of SNN
simulations and informing the design of the next generation of
Neuromorphic platforms. The use-case platform chosen for this
work is SpiNNaker, a many-core digital Neuromorphic platform
designed at The University of Manchester (Furber et al., 2014).

Following this introduction, Section 2 provides a background
on SNNs simulations in general, together with the critical
aspects of real-time simulations and their challenges. Section 3
gives details about the SpiNNaker Neuromorphic platform
and how SNNs are mapped on it through the available
partitioning strategies. The Multi-target partitioning approach
is then presented in Section 3.4. Section 4 demonstrates the
advantages of this new strategy through benchmarking on

SpiNNaker. Finally, Section 5 contains a discussion about the
potentialities of this approach and possible future applications.

2. BACKGROUND

2.1. Neural Processing
SNN simulations are typically performed starting from a high
level description of the network characteristics, through high
level specification languages such as PyNN (Davison et al., 2009).
Groups of neurons sharing the same properties are grouped into
ensembles called Populations, and the connections between them
are called Projections. Starting from these high level descriptions,
Populations and Projections are typically fragmented (or
partitioned) such that they can fit the requirements set by
the underlying hardware platform. Digital platforms commonly
employ a discrete time resolution, using fixed length timesteps,
within which all spikes are considered to happen at the same
time. Each computational unit involved in the simulation is in
charge of handling a subset of a Population, meaning that it needs
to update the state of a predefined number of neurons, generate
output spikes for those neurons and receive input spikes.

A representation of a neural simulation is shown in
Figure 1. Two Populations are shown (left), called Pre and Post,
respectively, and the neurons are connected with a probability
P, meaning that each presynaptic neuron has a probability
P to connect to each postsynaptic neuron. An interaction of
simulation events is shown on the right, where 3 simulation
timesteps are presented for both Populations. In this case
each Population is simulated by a separate computational unit.
Timesteps are indicated by 1t, and are synchronized among the
involved computational units. Both computational units update
the neural state for their implemented neurons according to the
neuron model equations (light and dark green, respectively, in
Figure 1). After the state update, neurons will fire, generating
spikes that will be delivered to the Post neurons. The remaining
fraction of the timestep (tP in Figure 1) is commonly used to
process the incoming spikes (light blue).

During a simulation, the length of the green bar (tupd) is
constant. Increasing the number of neurons per computational
unit extends the green bar. When the input firing activity is
high (commonly when the number of input connections is
high), or P is increased, the blue bar grows. The length of the
blue bar therefore varies according to the amount of synaptic
inputs received during the timestep. In order to maintain real-
time processing, both the bars need to complete the execution
before the beginning of the subsequent timestep (therefore
before the next green bar is due to start). Figure 1 shows an
example of a non real-time simulation, where the first timestep
for the Post computational unit completes in time, however,
during the second timestep the synaptic processing overflows
on the third timestep, causing it to start delayed for the Post
computational unit. Some platforms allow this case to happen,
performing soft real-time simulations, and therefore allowing
to overrun timesteps and then recover for the lost time in
future timer periods, where the load is reduced. This however
violates the hard real-time requirements, which mandate to
simulate each individual timestep in the corresponding amount
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FIGURE 1 | Representation of neural processing. The schematic of a SNN composed of 2 Populations (Pre and Post) with connectivity P is shown on the left. On the

right the interaction of simulation events for 3 simulation timesteps, with real-time requirements violation is presented. The green bars show the neural state update,

the blue bars the synaptic input processing.

of wall-clock time: i.e., each 0.1ms of biological time is completed
in 0.1 ms.

A reduction of the size of the green bar (neural state
update) can be achieved by reducing the number of neurons
per computational unit. However, this operation has the effect
of requiring additional hardware, since the network becomes
more distributed and adds burdens to the communication
fabric, increasing the number of destinations for the generated
spikes. The time taken to process spikes, as indicated by
the length of the blue bar in Figure 1, is a function of the
number of postsynaptic neurons simulated per unit. When
the number of neurons simulated per unit increases, each
spike can potentially target more postsynaptic neurons, hence
requiring more processing time. While the fan-in to each
postsynaptic neuron is independent of the number of neurons
simulated, the fan-out of each arriving spike is proportional
to the number of available target neurons (defined by the
number of neurons simulated per core). Therefore, when this
number is reduced, the total available target neurons are reduced,
meaning the cost of processing a spike is amortized over
fewer individual connections. This reduction in efficiency is
a significant problem, as spike processing tends to dominate
computation in biologically-representative SNN simulations
(Schmidt et al., 2018; Casali et al., 2019).

A more efficient partitioning strategy (Knight and Furber,
2016; Rhodes et al., 2019), demonstrated that it is possible
to separate the two phases (neural state update and spike
processing) onto separate computational units. This enables
simulations with higher numbers of neurons per unit, together
with higher efficiency for the synaptic input processing. This

approach however still shows some limitations in dealing with
very sparse connectivity patterns, as the number of target
synapses per spike is still limited by the amount of neurons
that can be simulated on a single computational unit. Section 3
presents a novel parallelization approach which overcomes this
limitation, maximizing the number of postsynaptic receptors and
improving spike processing performance.

3. MATERIALS AND METHODS

3.1. The SpiNNaker System
SpiNNaker is a Globally Asynchronous Locally Synchronous
(GALS) many-core digital Neuromorphic platform, specifically
designed to simulate SNNs in real time (Plana et al., 2011;
Furber et al., 2014). From a hardware perspective, its main
building block is the SpiNNaker chip, which contains 18 ARM968
cores (ARM, 2006), each having two separate Tightly Coupled
Memories (TCMs), to store local data and simulation code,
respectively. Additionally the chip includes a 32 KB shared
memory (SysRAM), a 128MB off-chip sharedmemory (SDRAM)
and a tree-based routing infrastructure which allows direct
packet-based communication with 6 other neighboring chips.
Each on-chip router can be used as an intermediate hop to
forward packets to other chips (Furber et al., 2013; Painkras et al.,
2013; Mavaridas et al., 2015). For fault tolerance purposes, the
available cores per chip are 17. Access to the sharedmemories can
be performed through bridge or Direct Memory Access (DMA).
Bridge access is slow (> 100 ns/word), while a DMA controller
provides more efficient bulk transfers (≈ 10 ns/word) up to 64
KB per request, with DMA requests broken down into bursts 128
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B wide. Access to the memory controller is however limited to a
single channel. Simultaneous attempts to access shared memory
give rise to a phenomenon called contention, where a single
requesting processor is given access to thememory controller and
the others are queued (Painkras et al., 2013; Sharp and Furber,
2013; Rhodes et al., 2018).

SNNs models are simulated through dedicated software
(Rhodes et al., 2018; Rowley et al., 2019), with each processor
simulating a predefined number of neurons, each implemented
through mathematical models governing their neural dynamics.
All the available processors (excluding two service cores Rowley
et al., 2019, used for system purposes) perform the simulation.
This consists in updating the neural state of the implemented
neurons in sequential fashion, generating postsynaptic action
potentials where necessary, receiving incoming spikes and
extracting the synaptic events from incoming packets. SNN
simulations on SpiNNaker follow an event-driven approach
(Sharp et al., 2011), where cores remain in a low-power state,
until an event triggers a processing callback. Periodic timer events
are used to advance the simulation time through discrete fixed-
length timesteps, while asynchronous events signal the reception
of a spike and trigger synaptic processing (Rhodes et al., 2018).
Timesteps allow for discretization of continuous time models
and, provided the timestep resolution is high enough (commonly
0.1 or 1 ms), allow modeling of neuron state updates via
exponential integration (Rotter and Diesmann, 1999), calculating
the dynamics timestep by timestep.

The spike processing activity spans through most of the
simulation timestep and, in case of large networks (Potjans and
Diesmann, 2012; Schmidt et al., 2018; Casali et al., 2019), the
number of received spike events can cause the neural state
update to be preempted and delayed beyond the boundaries
of the simulation timesteps (van Albada et al., 2018; Bogdan
et al., 2021), resulting in non real-time performance. Real-
time performance means that the simulation time of a network
matches the modeling time of the network itself, therefore 1
s of activity needs to be simulated in 1 s for it to be in
biological real-time.

On SpiNNaker, spikes are delivered through multicast packets
in the Address Event Representation (AER) format (Mead, 1989),
therefore only containing information about the sender. All
synaptic information for a given presynaptic spike (i.e., number
of postsynaptic connections, weights and delays) is stored on
the postsynaptic side in the SDRAM shared memory. This
reduces the amount of information that is transmitted over
the communication network, by only specifying the sender.
Therefore, upon the reception of a spike packet, each core
performs a DMA request to retrieve the associated synaptic data
(Rhodes et al., 2018). This information is stored as a sparse
synaptic matrix using the compressed-row format, row-indexed
by the presynaptic neuron ID. Postsynaptic cores therefore, upon
the reception of a spike have a unique identifier of the sender
available (given by AER spike packets), and use this as an index
to locate the correct synaptic row inside the matrix. By storing
the synaptic matrices in the SDRAM memory it is possible
to simulate SNNs where neurons have much larger individual
fan-ins (a common aspect of biologically-representative SNNs).

This overcomes the limitations set by reduced local memory
typical of Neuromorphic platforms. This solution also allows
simulations of plastic networks, as opposed to the procedural
approach (Knight and Nowotny, 2021), and it is more suited
to platforms where the memory access is faster than generating
pseudo-random values, such as Neuromorphic hardware. This
however comes with the penalty of retrieving synaptic rows
every time a spike is received, and, in case of plastic networks,
a write-back operation for the updated weights is required.

3.2. Homogeneous Parallelization
SNNs on SpiNNaker are commonly partitioned following a
Homogeneous parallelization approach (Rhodes et al., 2018;
Rowley et al., 2019), where each core simulates a subset of a
Population, as described in Section 1. An example of the synaptic
matrix representation under the Homogeneous parallelization
approach is shown in Figure 2. Here, we show a network
composed of 2 populations having 12 neurons each, connected
with 20% probability (represented on the left). The full synaptic
matrix is displayed (top right), where each row corresponds to a
presynaptic neuron and each column to a postsynaptic neuron.
Where a connection is formed a weight is added to the respective
cell. Figure 2 shows how synaptic matrices are partitioned and
mapped to SpiNNaker cores. The right bottom representation
shows 3 cores each with its own sparse representation of
the synaptic matrix, assuming a limit of 4 neurons per core.
This representation reduces the size of the stored matrix, only
including the relevant information.

Despite reducing the required memory to store synaptic
matrices, this partitioning approach is inefficient; indeed, for
sparse connectivity patterns it generates several empty rows, as
seen in Figure 2. Each core has access to all the presynaptic
rows pertaining to the implemented neurons. This limits the
number of neurons that can be simulated per core, resulting in
an inefficient allocation. Furthermore, for large networks, simply
limiting the number of neurons per core is not sufficient, as
the amount of incoming synaptic events requires a processing
time larger than the timestep itself (van Albada et al., 2018;
Bogdan et al., 2021). Also, by reducing the number of neurons
per core, the length of the synaptic rows shrinks (as shown
in Figure 2). This happens because SNNs typically have low
connectivity probabilities, especially for long-range connections,
therefore having a small number of postsynaptic neurons per core
increases the chance of no connections being made, resulting in
empty rows in the synaptic matrix. Empty rows are problematic
because they cannot be detected until the core has completed the
DMA transfer, resulting in wasted processing cycles retrieving
meaningless information from SDRAM.

The cost of retrieving a synaptic row from shared memory
is however amortized by the number of postsynaptic neurons
implemented on each core, as a single transfer per packet is
performed. This means that, by simulating more neurons per
core it is possible to reduce the number of accesses to memory. A
higher number of neurons per core however requires to process
additional information, which might not be possible within the
boundaries of the timestep.
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FIGURE 2 | Synaptic matrix partitioning under the homogeneous partitioning. The presented matrix comes from an example network composed of 2 populations

having 12 neurons each with 20% connectivity (schematic on the left). The full synaptic matrix is shown on top right. The sparse representation partitioned into 3

different cores is shown on bottom right (with colors matching the full synaptic matrix). The partitioning assumes a limit of 4 neurons per core, therefore 3 cores are

required.

Synaptic processing throughput is defined as the maximum
number of synaptic events that can be processed per timestep,
while maintaining real-time performance (Rhodes et al., 2018).

E =

(

tP − t1st − tlast

tspike
+ 2

)

Pn (1)

tP = 1t − tupd (2)

tspike = msPn+ cs (3)

This can be evaluated according to Equations (1)–(3), where
E represents the number of synaptic events per timestep, tP
indicates the fraction of the timestep available to process synaptic
information, and is obtained by subtracting from the timestep
duration (1t) the time required to update the neural state (tupd)
of all the neurons simulated on core. The time required to process
a single spike is defined by tspike. This value is expressed by
Equation (3) and can be broken in a fixed contribution (cs), which
is paid once per spike packet, corresponding to context switches,
synaptic row location in the shared memory and transfer time,

and a variable contribution (ms) which corresponds to the
cost of processing a single synaptic event. Spike processing on
SpiNNaker is handled through a pipelined approach, therefore
the cost of processing the first and the last spike in the pipeline
are different due to different API calls (Rhodes et al., 2018). These
values are indicated by t1st and tlast , respectively, and follow the
same rule as tspike, but have different values for fixed and variable
costs (Rhodes et al., 2018).

The processing time (tP − t1st − tlast) is divided by tspike
to obtain the processed spikes per timestep. This number is
then incremented by 2, to account for t1st and tlast previously
subtracted. The number of synaptic events that can be processed
in a single timestep is, therefore, given bymultiplying the number
of spikes by the connectivity probability (P), which indicates the
number of postsynaptic connections per spike and then by the
number of postsynaptic neurons on core (n).

3.3. Heterogeneous Parallelization
The Heterogeneous Programming Model (Rhodes et al., 2019) is
a simulation approach which evolved from a previous study on
the partitioning of synaptic matrices on SpiNNaker (Knight and
Furber, 2016). This approach aimed at improving the placement
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FIGURE 3 | Synaptic matrix partitioning under the Heterogeneous Programming Model. The same matrix presented in Figure 2 is used. Synapse cores allow to

partition the matrix by presynaptic index, and to relieve Neuron cores from processing spikes, enabling the possibility of simulating more neurons per core, which in

turn allows to increase the length of synaptic rows. A schematic of the ensembles generated by this partitioning is shown on the right, where each Neuron core

receives inputs from two Synapse cores.

of SNNs on SpiNNaker to achieve real-time simulations of
complex SNNs (Rhodes et al., 2019). By partitioning the
synaptic matrices horizontally (see Figure 3), as opposed to
the vertical approach (see Figure 2), it is possible to maintain
longer postsynaptic rows and parallelize processing of incoming
spikes. This is achieved by introducing separate cores, called
Synapse cores, dedicated to the spike processing phase only,
each implementing a subset of the synaptic receptors for
each postsynaptic neuron (see Figure 3). The postsynaptic
neurons are simulated on dedicated Neuron cores, having
the role of advancing the neural state and generating action
potentials only. These cores combine the inputs coming from
the connected Synapse cores, through shared memory. This
partitioning strategy allows simulations of higher numbers
of neurons per core, therefore increasing the length of the
synaptic rows maintained by the connected Synapse cores. This
enables simulations of sparser connectivity patterns. Through

this approach it is furthermore possible to connect multiple
Synapse cores to each Neuron core, increasing the synaptic event
throughput of the overall system (Knight and Furber, 2016;
Rhodes et al., 2019). The communication between connected
Synapse and Neuron cores happens via the chip-local SDRAM
shared memory. Each Synapse core writes at the end of each
timestep the synaptic contributions (representing partial input
currents) coming from the receptors simulated by the core. The
Neuron core reads all the contributions in a single memory block
read and computes the total input currents by adding together
the values from different Synapse cores.

An example of the partitioning of synaptic matrices under
this approach is shown in Figure 3. In this example the same
synaptic matrix addressed in Figure 2 is used, however it is
now split horizontally by presynaptic neurons. Therefore, one
Synapse core (S11) receives inputs from the lower 6 presynaptic
neurons (dark green in Figure 2) and the other Synapse core (S21)
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from the higher 6 (light green in Figure 2). This increases the
number of neurons per core, as the Neuron core’s sole task is
to update the neural state. In this simple example, each Neuron
core can therefore now simulate 8 neurons, allowing to double
the length of the synaptic rows associated to each Synapse core.
The remaining 4 neurons are simulated by a separate Neuron
core which replicates the structure of the other ensemble. The
two ensembles are shown in Figure 3 right. N1 simulates the
lower 8 postsynaptic neurons, N2 the remaining 4 neurons.
Each Neuron core receives its inputs from 2 Synapse cores.
The synaptic labels correspond to the cores depicted on the
left.

The number of synaptic events that can be processed in a
timestep under this approach per Synapse core is expressed by
Equations (4)–(7), adapted from Equation (1). For this model,
tp represents the spike processing window, which is obtained
by subtracting from the duration of the timestep (1t) the time
required by the Synapse cores to write the synaptic contributions
to shared memory (tw), minus the time taken by the postsynaptic
Neuron core to read the contributions from shared memory
(tr). These last two components represent a fraction of the
timestep which is wasted, as during tw no additional spikes can
be processed, and during tr the Neuron core has to wait, as it
is retrieving the information necessary to update neuron state.
The number of neurons is indicated by n. These are simulated
by the Neuron core of the ensemble. The spike processing
times tspike, t1st and tlast follow the same rule presented in
Equation (3).

E = [
tp − t1st − tlast

tspike
+ 2]Pn (4)

tp = 1t − tw − tr (5)

tw = aSc + b (6)

tr = cSc + d (7)

A description of the read and write times is given by Equations
(6) and (7) and they depend on the number of involved Synapse
cores (Sc). This dependency can be easily explained by the
increase in size of the memory block containing the synaptic
contributions (which size is directly proportional to the number
of connected Synapse cores) to be read by the Neuron core
every timestep, and by memory access contention, arising when
multiple Synapse cores try to write to memory at the end
of each timestep simultaneously. The lower case coefficients
(a, b, c, and d) are hardware specific values. Previously measured
quantities, obtained from experimental analysis on SpiNNaker,
are shown in Table 1. The value described in Equation (4)
represents the number of synaptic events per Synapse core. The
total number of synaptic events per ensemble is calculated by
adding together the values for each Synapse core belonging
to the ensemble. Compared to the Homogeneous partitioning
case, with the same number of postsynaptic neurons, this
represents a pseudo-linear increase in the processed events per

TABLE 1 | Reading and writing time coefficients for the Heterogeneous and

Multi-target partitioning measured on SpiNNaker.

SpiNNaker reading and writing time coefficients

Coefficient Heterogeneous

partitioning value

Multi-target partitioning

value

a 0.4 0.9

b 4 0.1

c 0.3 0.6

d 3.9 1.3

e - 1.2

f - 0.4

g - 0.2

Column 2 refers to Equations (6) and (7). Column 3 to Equations (10) and (11).

timestep. A demonstration of this can be seen in Figure 4,
which shows the number of synaptic events processed by
SpiNNaker for a 10% connectivity network, with increasing
numbers of Synapse cores. Here, the blue line shows the 1
ms case and the green line 0.1 ms. For the latter it is not
possible to include more than 8 Synapse cores per ensemble,
as the synaptic contribution reading time from the Neuron
core’s perspective becomes predominant, therefore preventing
real-time execution.

The Heterogeneous Programming model can achieve
impressive performance improvements, however it also presents
limitations, as seen in the example shown in Figure 3. The
length of the synaptic rows is still not optimal, requiring two
additional (or more, according to the presynaptic partitioning)
Synapse cores (S12 and S22), to simulate the last four columns,
resulting in additional resources being allocated and a sub-
optimal partitioning of the matrices. Furthermore the number
of synaptic events that can be processed for 0.1 ms timestep
simulations is limited to the throughput of 8 Synapse cores,
which does not allow to fully exploit the available parallelism.

3.4. Multi-Target Synapse Cores
Here, we present a novel parallelization approach enabling
more efficient use of the available system resources, to address
peak synaptic throughput performance and increased sparsity in
synaptic connections.

This new approach, termed Multi-target Partitioning, extends
the concept of Synapse cores introduced in Section 3.3, by
assigning multiple Neuron core targets. Therefore, each neural
ensemble will have multiple Synapse cores implementing the
postsynaptic receptors of multiple Neuron cores, instead of
matching the neurons of a single Neuron core. This technique
improves partitioning of the synaptic matrices, by allowing
longer rows. This therefore reduces the chance of empty rows for
very sparse networks, and, at the same time, allows to amortize
the fixed cost of processing a spike (i.e., preprocessing, context
switches, and DMA cost) over a larger number of synapses.

An example of the Multi-target partitioning of synaptic
matrices is shown in Figure 5. The Synapse cores now span
over a much larger synaptic matrix, covering the entire rows
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FIGURE 4 | Processed synaptic events per timestep at 10% connectivity with increasing Synapse cores per ensemble. The blue line shows the 1 ms case (values

reported on the left axis), the green line the 0.1 ms case (values reported on the right axis). The number of Synapse cores is limited to 8 for the latter, because of timing

constraints due to the synaptic contributions reads.

in the example. The partitioning is performed presynaptically
(horizontally), similarly to the Heterogeneous Model. However
for the Multi-target partitioning, each Synapse core can target
multiple postsynaptic Neuron cores, implementing all receptors
for all target Neuron cores (effectively reducing the vertical
partitioning). This approach allows to save resources (2 Synapse
cores in the case of the example in Figure 5) and further reduces
the chance of having empty rows for a given probability of
connection. The number of synaptic events that can be processed
per timestep is now modeled by Equations (8)–(13).

E = [
tP − t1st − tlast

tspike
+ 2]PN (8)

tp = 1t − tw − tr (9)

tw = aSc − bNc + cNcSc + d (10)

tr = eSc + fNc − g (11)

N = nNc (12)

tspike = msPN + cs (13)

The components are similar to the Heterogeneous model case,
however N depends now on the number of Neuron cores
connected to each Synapse core, and is obtained by multiplying
the number of neurons per core (n) by the number of connected

Neuron cores (Nc). This reflects also on the spike processing
times, as shown in Equation (13), where the variable cost
is now multiplied by the total number of neurons targeted
by the spike, therefore by the Synapse core. The reading (tr)
and writing (tw) times now depend on the structure of the
ensemble, as both contention and size of the transfer play a key
role. The lower case coefficients (a to g) are hardware specific
values, which therefore change according to the chosen platform.
Table 1 reports values for the SpiNNaker platform obtained by
profiling execution.

3.4.1. Neuromorphic Implementation
A schematic of the core interactions and memory structures
for the Multi-target partitioning implementation is shown in
Figure 6. The ensemble demonstrates 2 Synapse cores each
targeting 3 Neuron cores.

In the Multi-target approach the synaptic matrices are
partitioned according to the synaptic view of the ensemble,
meaning that the postsynaptic neurons simulated by multiple
Neuron cores can now be included in a single matrix. Therefore,
Synapse cores allocate the shared memory region for the current
timestep synaptic contributions (blue and green blocks in
SysRAM and SDRAM memories in Figure 6). This is opposed
to the Heterogeneous Model, where the Neuron core of the
ensemble sets the shared regions. This allows to perform a single
block write per Synapse core per timestep, instead of fragmenting
into multiple regions. This choice is motivated by architectural
features, as the read throughput is higher than the write for the
SpiNNaker chip (Painkras et al., 2013), therefore it is preferred to
have fewer writes per timestep. Neuron cores retrieve the address
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FIGURE 5 | Synaptic matrix partitioning for the Multi-target approach. The used network is the same shown in Figures 2, 3. Here, Synapse cores have much longer

synaptic rows, further reducing the risk of empty rows, therefore fewer resources are required. The generated ensemble is shown on the right.

of each memory block of each connected Synapse core, and
compute the offset according to the indices of the implemented
neurons (blue and green sub-blocks in Figure 6). This results in
one write per Synapse core and multiple reads per Neuron core,
according to the number of afferent Synapse cores.

During simulation initialization, Synapse core 1 allocates the
blue region in SDRAM in Figure 6, which is large enough to
store the contributions to postsynaptic neurons of all 3 Neuron
cores. Synapse core 2 allocates the green region, having the same
characteristics. The Neuron cores then retrieve the addresses
of both memory regions and compute the starting address of
their sub-regions according to the implemented postsynaptic
neurons. Therefore, Neuron core 1 has the N1 sub-region from
both the green and blue region, Neuron core 2 has the N2
sub-region and Neuron core 3 has N3. During a simulation
timestep, when a spike is received, Synapse cores act the same
way as the Heterogeneous Model (Rhodes et al., 2019). They
extract the synaptic row address for the received spike, retrieve
the correct row from the synaptic matrix and then add the

connection weight to the synaptic input buffer (shown as circles
in Figure 6 in blue for Synapse core 1 and in green for Synapse
core 2), according to delay and postsynaptic index. Synaptic
input buffers (Morrison et al., 2005; Rhodes et al., 2018) are
structures employed to handle synaptic delays, and store the
input currents for postsynaptic neurons. These are typically two-
dimensional data structures, indexed by postsynaptic neuron
ID and delay. When a spike is received on a postsynaptic
core, for each postsynaptic neuron, the correct buffer slot is
located, according to the delay and destination of the spike.
Then, the weight of the connection is added to that buffer
slot.At the end of the timestep, the slots of the synaptic input
buffers representing the next timestep’s synaptic input are written
to shared memory (these include all the slots having delay 1
timestep). Therefore, Synapse core 1 writes N1, N2 and N3
sub-regions of the blue region, which will contain one slot per
postsynaptic neuron having 1 timestep delay, and Synapse core 2
does the same for the green region. Different Synapse cores write
to different memories (either SDRAM or SysRAM), to reduce
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FIGURE 6 | Synapse and Neuron cores memory interaction for the Multi-target partitioning. 2 Synapse cores targeting 3 Neuron cores are shown with all the steps

from spike reception to neural state update. Communication between cores belonging to the same ensemble happens via the two shared memories (SDRAM and

SysRAM), through the represented data structures.

contention on the SDRAM memory controller. The destination
is decided according to the physical core ID,evenly spreading
the contributions between the two memories. Both memories are
part of the system memory map, therefore the allocation can be
performed simply by specifying the correct memory heap, and
the address retrieval is transparent to this operation.

At the beginning of the subsequent timestep, all Neuron cores
perform reads of the sub-regions. Upon completion, the input
currents for each postsynaptic neuron are calculated by adding
together all contributions from the Synapse cores for the specific
neuron. The synaptic currents are then used to update the neuron
state, according to the implemented neuron model and, if the
model mandates it, a spike is generated.

The time required to read the memory regions is a crucial
design parameter, because it sets a boundary on when theNeuron
core can generate the first spike. In fact until all the contributions
are read, theNeuron cores cannot start processing the neural state
updates. This reflects on when postsynaptic Synapse cores can
start receiving spikes, effectively reducing the spike processing
window. It is therefore of paramount importance to reduce this
reading interval as much as possible. In order to address this
issue, Neuron cores are instructed to perform out-of-order read
operations of the sub-regions. This means that, based on the
Neuron core ID, the first read region will be either from SysRAM

or SDRAM. This effectively halves the Neuron cores accessing
the same memory at the same time, by explicitly instructing
half of them to first read from SDRAM and half of them from
SysRAM. After each read is completed, each Neuron core sends
the subsequent request to the other memory.

3.5. Plasticity
The Heterogeneous model and the Multi-target partitioning can
be extended to include simulations of plastic SNNs. For plastic
networks, the time required to process synaptic events is higher
compared to the static case, as a weight update phase is needed.
Therefore, simulations of plastic SNNs would also benefit from
reduced processing time per synaptic event. Here, we present
the steps to extend the plasticity framework, in order to include
the Multi-target partitioning. This framework is independent
from the implemented plasticity rule, and the synaptic update
is fully handled by Synapse cores, which implement the chosen
rule for a simulation. Figure 6 also shows the memory structures
necessary for the implementation of STDP, as well as the weight
update framework.

The plasticity framework adopted by the SpiNNaker toolchain
performs synaptic weight updates upon receiving a spike
(Galluppi et al., 2015). This minimizes the accesses to shared
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memory, as synaptic rows are commonly retrieved whenever a
spike is received. After a row is stored in local memory, before
adding the weight contribution to the correct synaptic input
buffer, each weight is updated according to the implemented
plasticity rule. STDP rules commonly require information
about postsynaptic firing activity (Morrison et al., 2008).
This information is stored into a postsynaptic buffer, locally
maintained by the Neuron cores, which contains one slot per
postsynaptic neuron, and is updated every time a neuron fires.
The introduction of plasticity into theMulti-target approach adds
complexity, since theNeuron cores need to communicate back to
the Synapse cores which neurons have spiked during the timestep,
to correctly update the synaptic weights. This operation is again
performed through shared memory. All Synapse cores share the
same postsynaptic region (red region in Figure 6), therefore this
area is allocated into SDRAMby the Synapse core of the ensemble
having the lowest index, and the address is retrieved by all the
other Synapse cores. TheNeuron cores get the address in the same
way as the synaptic contributions, and will use the same offset to
get access to their specific sub-regions.

During each timestep, after all the neurons on core have been
updated, the postsynaptic buffer (red sub-blocks in the Neuron
cores), which contains information on whether each neuron has
spiked or not, is written to SDRAM by each Neuron core. The
Synapse cores can read this region and update the postsynaptic
history (purple buffers in Figure 6) for each receptor. In order
to keep the memory operations short, the postsynaptic buffers
are saved as binary flags, indicating whether each neuron has
spiked or not. The update of the postsynaptic history depends
on the simulated plasticity rule, which is implemented on the
Synapse cores (as only these have visibility of the timing of
incoming spikes). Only after this read operation is completed is
it possible to update the weights and to process the incoming
spikes. Therefore, the received spikes before this operation are
buffered and ready to be processed when the read is completed.
The Synapse core read is scheduled to happen after a fixed
amount of time (for a given configuration), as the Neuron cores
require a fixed amount of time to update the neural state and
write back the postsynaptic buffers.

4. RESULTS

The performance of the Multi-target partitioning approach
presented in Section 3.4 is now evaluated from the perspectives
of: systemmemory (Section 4.1), peak synaptic event throughput
(Section 4.2) and the effect of connection sparsity (Section 4.3).

4.1. Memory Access
4.1.1. Experiment Description
This first experiment measures the impact of writing and reading
the synaptic contributions between Synapse and Neuron cores
under the new ensembles scheme, showing timings for each
possible combination of Neuron and Synapse cores on a chip.
Each Neuron core is set to simulate 64 Leaky Integrate-and-
Fire (Gerstner and Kistler, 2002) neurons, and afferent Synapse
cores handle their synaptic receptors. In order to isolate the
transfer times, the values are sampled in the context of a

neural simulation in absence of spike packets. Therefore, the
standard neural state is updated, but the spike processing
pipeline and the spike generation phases are turned off. This
prevents neural processing from increasing contention, while
maintaining the characteristics required by SNN simulations.
Each test simulates 100 timesteps, and is repeated 10 times
to ensure consistency. For each arrangement timings are
presented for both the SysRAM + SDRAM case, and the
SDRAM only case. The results are presented in form of
heatmaps, where the horizontal axis shows the number of
employed Synapse cores, while the vertical axis the Neuron
cores. All the Synapse cores for each case are connected to
all the Neuron cores of the same case. The reported values
are the worst case transfer times obtained by this test. These
values are fundamental to estimate the impact of memory
access time on the approach. Through these measurements
it is possible to correctly allocate timings which allow the
processors to initiate DMA transfers in time to maintain real-
time performance.

4.1.2. Reading Times
Reading time measurements are shown in Figure 7 (all times
measured in µs). The plot on the left presents values using
both the shared memories available to the SpiNNaker chips
(SysRAM and SDRAM), while the plot on the right contains
timings relative to the SDRAM use only. All the purple boxes
without a number are combinations of cores not allowed by the
machine. The case with a single Synapse core has been omitted,
since the transfer was completed quickly enough not to impact
performance. The timings have been extracted in the context
of a neural application simulating 64 neurons per core. Each
synaptic weight is stored on a 16 bit (2 B) integer, meaning
the contributions of a Synapse core targeting a single Neuron
core amount to 64 × 2 B = 128 B (each DMA read has this
fixed length).

By increasing the number of Synapse cores (moving from
left to right on the horizontal axis), the number of reads per
timestep per Neuron core increases. Reads are scheduled by the
Neuron cores at the beginning of the timestep and performed
sequentially, since there is a single DMA engine. As expected,
for both the plots, the case with a single Neuron core (first
line), shows linearly increasing reading times. The use of two
separate memories does not influence this aspect, as one read
at a time is performed. However it is observed that times in the
dual memories plot are slightly lower. This is due to half of the
Synapse cores contributions being stored into SysRAM which
has a lower access time than SDRAM, therefore providing faster
access. By increasing the number of Neuron cores (from top to
bottom on the vertical axis), the contention increases, as multiple
Neuron cores try to access shared memory to retrieve their
synaptic contributions simultaneously. This case demonstrates
the benefits of having two different memories in use with separate
access. The SysRAM + SDRAM case indeed performs generally
better than the single memory case allowing a gain up to 4 µs.
There are, however, some isolated allocations where the single
memory case performs better. This is probably due to a bad
allocation of the cores on the chip, which results in a slower access
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FIGURE 7 | Memory heatmaps showing worst case DMA reading timings for increasing Synapse and Neuron cores. Synapse cores are represented on the horizontal

axis, target Neuron cores on the vertical. All the measured times are in µs. The two plots represent the dual memory (left) and the SDRAM only case (right). Purple

blocks represent configurations not allowed by the machine.

to memory. Core allocation affects the memory access time, as
to grant fairness, access to memory is regulated by a binary tree
with arbiters at every junction point. The cores are on the leaves
of the tree. A situation where the allocation of Synapse cores
is unbalanced can cause higher contention between memory
requests, as requests coming from more populated branches of
the tree need to be filtered by multiple arbitration steps. This
results in additional delays, which increase the total memory
transfer time from the cores’ perspective. Cores are assigned
by the SpiNNaker toolchain during the placement phase. The
values reported here represent the measured worst case reading
times, therefore they are likely to represent the worst allocation
of cores.

The worst case for both the experiments happens with 14
Synapse cores, which represents the placement with the highest
number of sequential reads, performed by a single Neuron
core. Furthermore, by keeping the number of Synapse cores
constant, and increasing the Neuron cores, the transfer time
becomes higher, as the reading contention increases. This reduces
the portion of the timestep available for neural processing.
It is therefore of paramount importance to understand the
requirement of the SNN to be simulated, in order to determine
the appropriate number of Synapse cores to allocate per Neuron
core. It is noted that the values shown here represent the worst
case scenario, thus presenting the highest recorded reading times.
A more detailed analysis including best and average cases, is
provided in the Supplementary Material.

The worst case analysis is important from a reading
perspective to understand when the Neuron cores will start to
fire, as the read phase must precede the neural state update and
therefore Neuron cores must wait until this phase is completed
before processing the neuron state update.

4.1.3. Writing Times
The measurements for the writing times are shown in Figure 8:
the left plot shows the dual-memory case, while the right plot
contains the SDRAM only case. Times are measured in µs, and
each square represents a single write. Increasing Synapse cores
are displayed horizontally, while increasing Neuron cores on the
vertical axis. By increasing the number of Synapse cores, the
contention grows, as multiple cores attempt to write to shared
memory simultaneously. By increasing the number of Neuron
cores however, the size of each write becomes larger. This is
because each Synapse core performs one single write per timestep.
Therefore, by increasing the number of postsynaptic receptors
(connected Neuron cores), the number of synaptic contributions
to be written grows as well. The size of each write is expressed
by Equation (14), where n is the number of neurons per Neuron
core (64 in this case), w is the size of a contribution (2 B for
standard SNNs) and T is the number of target Neuron cores for
each Synapse core. Therefore, in Figure 8, T increases vertically
from top to bottom.

C = nwT (14)

Similarly to the read case, the reported times are the worst
case measured writing times, and, for some cases, the access
time is worse for the dual memory case. This can be due
to several factors, as Synapse core contributions are partially
located in SysRAM and partially in SDRAM. Although SysRAM
provides a faster access, it has a slower transfer rate, therefore,
for larger transfers, it can result in similar or worse performance
compared to SDRAM. This, combined with a bad cores
placement, can result in losing the advantages of using SysRAM,
negating the faster memory access, due to contention on
the memory controller. Average and best case measurements
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FIGURE 8 | Memory heatmaps showing worst case DMA writing Timings for increasing Synapse and Neuron cores. Synapse cores are represented on the horizontal

axis, target Neuron cores on the vertical. All the measured times are in µs. The two plots represent the dual memory (left) and the SDRAM only case (right). Purple

blocks represent configurations not allowed by the machine.

however highlight that this is an isolated case, and show that the
dual memory approach is more effective for the arrangements
of interest. For more details and analysis, please refer to the
Supplementary Material.

From a writing perspective, the worst case scenario is useful
to instruct Synapse cores on when to stop processing incoming
spikes and start writing the synaptic contributions to shared
memory (in order to meet real-time requirements). The highest
recorded writing time is when using SDRAM only with 6 Synapse
cores targeting 7 Neuron cores. This time amounts to 26.98 µs.
This does not represent an issue in 1 ms timesteps simulations,
but amounts to more than a quarter of the timestep for real-time
simulations with 0.1 ms timesteps.

The worst case writing and reading measurements therefore
allow to Taylor synaptic contribution writing and reading times
to the required number of Synapse and Neuron cores per
ensemble. This avoids overestimations which would further
reduce the processing time shown in Equation (9). This analysis
shows the importance of balancing the number of Synapse and
Neuron cores according to the application requirements, in order
to incur minimal memory access penalties. Network sparsity and
firing activity also play a key role in the choice of core allocations,
therefore the next sections focus on these aspects.

4.2. Peak Processing Profiling
4.2.1. Experiment Description
Themost usefulmetric when evaluating throughput performance
of the Multi-target partitioning is the maximum number
of processed synaptic events per timestep. This experiment
therefore compares the peak throughput performance for the
Multi-target partitioning to previous works. To perform a fair
comparison, the same SNN is profiled using the different

approaches: Multi-target and Heterogeneous models. The same
number of cores is allocated for both configurations, but
with different internal connections between Synapse cores and
target Neuron cores. A third configuration is also presented,
referred to as single target expanded. This consists of a standard
Heterogeneous partitioning which maintains the same number
of Neuron cores as the previous two cases, but allocates the
same input Synapse cores capacity per Neuron core as the
Multi-target approach. This last configuration provides a useful
comparison, as the number of cores required for the single
target Heterogeneous partitioning is adjusted to match the input
capability of the Multi-target partitioning. The aim of including
these cases is, therefore, twofold: first to compare theMulti-target
partitioning to its Heterogeneous counterpart employing the
same hardware resources, evaluating the performance difference;
second, to show that, to achieve the input processing capability
of the Multi-target approach, while using the Heterogeneous
partitioning, is necessary to employ a larger number of hardware
resources. This is represented by the single target expanded case.

A schematic of core allocations for the three approaches is
shown in Figure 9. The experiments run to evaluate this metric
are structured in test cases defined by 2 numbers in the form
[Sc,Nc], where Sc is the number of Synapse cores and Nc the
number of Neuron cores – the case shown in Figure 9 is [3, 3].
The Multi-target partitioning is shown on the left, where all
the Synapse cores are connected to all the Neuron cores. The
Heterogeneous partitioning is shown on the right, including
the two different mappings explored: single target and single
target expanded. The single target Heterogeneous partitioning
presents 3 Neuron cores receiving input from a single Synapse
core each, showing an input capacity reduced by a third compare
to the Multi-target case. The single target expanded in the
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FIGURE 9 | Arrangement of Synapse and Neuron cores under the explored configurations: Multi-target partitioning (left); Heterogeneous partitioning (right). The

example shown demonstrates the [3, 3] test case, with 3 Synapse cores and 3 Neuron cores. For the Multi-target partitioning configuration, each Synapse core

targets all Neuron cores. Comparison to the Heterogeneous approach is provided by: the Single-target partitioning, where the same overall number of cores are used,

but connected one Synapse core to each Neuron core; and the Single-target expanded partitioning, where the same number of Neuron cores is maintained, but each

with the same number of Synapse cores as implemented in the Multi-target approach.

experiment is therefore comparable with the [3, 3] cases for
the two other configurations, however the number of cores
allocated is [9, 3]. This single-target expanded configuration
matches the input capacity per Neuron core of the Multi-target
partitioning, keeping the same number of neurons and Neuron
cores (therefore in the presented example each Neuron core
receives inputs from 3 Synapse cores similarly to the Multi-target
case, but each Synapse core is single target). The intent here
is to show that the Multi-target partitioning can reach similar
performance compared to this extended configuration, requiring
only a fraction of the allocated resources.

The SNN model used for this experiment consists of 2
populations of neurons, configurable with a range of sizes and
connectivity (similar to that shown in Figure 1 left). All the
presynaptic neurons are Leaky Integrate-and-Fire (Gerstner and
Kistler, 2002) spiking neurons, with current-based exponentially-
decaying synapses. Neurons are initialized with the internal
voltage above firing threshold to produce spikes in a controlled
manner. This approach is adopted to send spikes, instead of
using spike sources, as it better represents the interaction between
cores when simulating biologically-representative SNNs. This is
because spike sources on SpiNNaker generate and send all spike
packets together, causing a high firing activity concentrated at the

beginning of the timestep, and then they remain silent. Cores
implementing Populations (Neuron cores in this case) on the
other hand, generate spike packets every time a neuron is updated
and themodel equations require it to spike, therefore distributing
the spike packet generation over the timestep.

The size of the presynaptic Population changes according
to the number of incoming partitions (number of Synapse
cores per ensemble) of the postsynaptic Population. These
Population sizes have been obtained experimentally, such that
the postsynaptic Population receives more spike packets than
it can process. This allows saturation of the receivers in order
to determine their limits. The number of generated spike
packets however needs to be limited, due to limitations set
by the SpiNNaker communication infrastructure (Mavaridas
et al., 2015). An excessive firing activity would cause higher
congestion at the routing level, causing spike packets to be
delivered late. This would result in lower processed synaptic
events, compared to the real peak throughput, due to late
arrivals. More details about Population sizes can be found in the
Supplementary Material. The postsynaptic Population employs
the same type of neurons as the presynaptic Population, and has
variable size between 64 to 896 neurons (corresponding to 1–14
Neuron cores, respectively). Different connectivity patterns have
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been tested to demonstrate the robustness of the approach. Here,
the 1% connectivity case is shown, as it is commonly found in
biologically-representative SNNs (Potjans and Diesmann, 2012;
Schmidt et al., 2018). For 0.1, 5, and 10% connectivities, please
refer to the Supplementary Material.

The same experiment was run both with 1 and 0.1
ms timesteps. The importance of showing results with both
timestep resolutions is given by the requirement of biologically-
representative SNNs to be modeled using tighter timing
resolutions, to better capture their dynamics. Real-time 0.1 ms
timestep simulations, indeed, present additional challenges due
to tighter timing constraints and a reduced spike processing
window (as demonstrated in Section 4.1), which is not amortized
by a smaller number of neurons or synaptic receptors.

The simulated network in this experiment was the same for
both 1 and 0.1 ms timestep cases, with the exception of the
presynaptic Population size, which was scaled down of a factor
≈ 10× (see Supplementary Material for exact values). The same
experiment was run both for plastic and static networks and
the results are presented separately. In order to provide a fair
comparison the number of neurons per core is kept fixed at 64.
For additional cases, please refer to the Supplementary Material.

4.2.2. Static Networks
Figure 10 shows peak synaptic event throughput in the form of
barcharts for the experiment with static connections, for both 0.1
ms (left) and 1 ms (right) timesteps. The connectivity between
the two Populations is randomly generated with a probability of
a connection between a pre- and postsynaptic neuron set to 1%.
The Multi-target case is represented by the blue bars, while the
single target with the same amount of cores by the green bars.
The purple bars represent the single target expanded case. Finally,
the yellow bars show the processed synaptic events using the
Homogeneous partitioning with the same network and neurons
per core.

Both the single target cases (green and purple) make use of
the Heterogeneous model. The number of employed cores for
each test case is indicated on the horizontal axes. The lower axis
refers to theMulti-target (blue) and the single target (green). The
upper axis shows values for the single target expanded (purple).
The chosen configurations of cores allow direct comparison of
the approaches. The left number in each tuple represents the
Synapse cores of that test case, the right number the Neuron
cores (as shown by the example presented in Figure 9). In the
case of the Multi-target partitioning, all the Synapse cores of
the ensemble target all the Neuron cores. For the single target
cases the number of Synapse cores per Neuron core is obtained
dividing the first number by the second. The blue and green bars
are on the same axis because they employ the same number of
cores, the difference between these two cases is in the connections
between cores. This demonstrates that it is possible to improve
the peak processing by rearranging the available units. The purple
cases use the same number of Synapse cores per ensemble of the
green tests, however, in this case each Synapse core has one single
target (therefore there is a singleNeuron core per ensemble). This
replicates the input capabilities of the Multi-target partitioning
per ensemble, but requires a considerably higher amounts of

cores compared to the Multi-target case, resulting in the worst
case of 56 total cores compared to 14 (8th test case).

In all the cases the Multi-target approach (blue) performs
better compared to the single target model (green). This
is because the Multi-target partitioning performs a more
efficient use of the available system resources compared to the
Heterogeneous partitioning, allocating a higher input processing
capacity to each Neuron core.

For the 1 ms timestep experiment the highest synaptic
event throughput is given by the [7,7] configuration, where
the Multi-target partitioning processes ≈ 9× more synaptic
events than the heterogeneous partitioning. The reason why
this happens is due to a full exploitation of the source-
based partitioning offered by the approach. Each Synapse
core in the Multi-target case receives inputs from one
seventh of the presynaptic neurons and targets all the 448
postsynaptic neurons. The single target partitioning on the
other hand, has each Synapse core receiving inputs from all
the presynaptic neurons, but targets only 64 neurons. Because
the connectivity is very sparse, a reduced input traffic achieves
better results.

TheMulti-target approach performs well also compared to the
single target expanded (purple), which represents a remarkable
result, since the amount of resources in use is much lower,
especially in the [7, 7] case. The single target expanded approach
employs the same number of Synapse cores per ensemble
as the Multi-target partitioning, but has a single target per
ensemble. Therefore, in the [7, 7] case ([49, 7] for the single
target expanded), each Synapse core receives input from one
seventh of the presynaptic neurons and targets 64 postsynaptic
neurons only.

The trend is similar for 0.1 ms timesteps, with the
Multi-target partitioning performing better than the single
target case. However, with higher numbers of Synapse cores
targeting higher numbers of Neuron cores, performance
compared to the single target expanded case tends to be
lower. This is due to the tight constraints set by the timestep
resolution and the fact that memory read and write times
for the synaptic contributions do not scale down with the
timestep resolution.

This experiment shows that, by efficiently using the Multi-
target partitioning, it is possible to achieve comparable results
to the single target expanded case, but with a fraction of the
hardware resources (a quarter in the [7, 7] case). Furthermore,
with the same amount of resources it is possible to achieve
considerably higher synaptic event throughput.

The general trend for the three approaches, together with the
Homogeneous partitioning baseline is compared in Figure 11,
where the horizontal axis shows the total number of allocated
cores, and the vertical axis the processed synaptic events
per timestep. The simulations are analogous to those shown
in Figure 10. Each point in Figure 11 matches one of the
bars (refer to the Supplementary Material for a case by case
labeled representation of this plot). The Multi-target approach
shows the best gain, having the steepest increase compared
to the other three approaches, performing the best use of the
available resources. Additional analysis is performed in the
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FIGURE 10 | Peak processed synaptic events per timestep. The presented configuration represents a 1% connectivity static network. Both 0.1 ms (left) and 1 ms

(right) cases are shown. Each plot contains the results for the Single target expanded (purple), multi-target (blue), single target (green) and baseline homogeneous

partitioning (yellow) cases. The horizontal axes show the number of cores per ensemble in the form of [Sc,Nc], as indicated in Section 4.2.1 and Figure 9. The top

axis refers to the single target expanded case (purple), the bottom to the other cases.

FIGURE 11 | Resource allocation vs. peak performance for the different partitioning strategies (single target expanded, multi-target, single target, and baseline

homogeneous). The network is the same used for Figure 10, with 1% connectivity and static connections. The color scheme matches that used in Figure 10. For a

case by case labeled version of this plot, please refer to the Supplementary Material.

Supplementary Material including 0.1, 5, and 10% connectivity
patterns for both the 0.1 and 1 ms timestep resolutions.

4.2.3. Plastic Networks
Figure 12 shows the results of the experiment with the addition
of synaptic plasticity. The color scheme for the bar chart is
analogous to the static case and the network is run with 1 ms
timestep. Connectivity probability is set at 1%, additional analysis
(including 0.1%, 5% and 10% connectivities) can be found in
the Supplementary Material. The same type of experiment was
run for the plastic case, with the exception of the connections
being defined through STDP with Spike-Pair rule for timing
dependence and additive weight dependence (Morrison et al.,
2008). The number of firing neurons has been reduced compared
to the static case, as synaptic processing for plastic synapses
requires additional steps (as highlighted in Section 3.5). For
details regarding population sizes and the employed plasticity
rule, please refer to the Supplementary Material.

Similarly to the static case, the Multi-target approach shows
better performance than the single target case for all simulated

configurations, demonstrating again that the approach makes
better use of the available resources. For very sparse networks,
with plastic synapses, the Multi-target approach achieves peak
synaptic event throughput very close to the single target expanded
simulations. This is due to the differences in processing plastic
synapses compared to static synapses. Plasticity, requires the
updated weights to be written back to shared memory, therefore
doubling the accesses to SDRAM compared to the static case.
This operation becomes extremely costly when the number of
receptors per row are limited. Therefore, having longer synaptic
rows, as in the case of theMulti-target approach, allows to further
increase the number of synaptic events that can be processed per
timestep. Figure 13 contains a comparison of the general trend
for the three approaches (refer to the Supplementary Material

for a case by case labeled representation of this plot). Similarly
to the static case, the Multi-target partitioning shows the steepest
increase of processed synaptic events per timestep (vertical axis)
with increasing allocated resources (horizontal axis). This further
demonstrates that the Multi-target partitioning achieves better
performance than previous approaches when the same hardware
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FIGURE 12 | Peak processed synaptic events per timestep. The presented

configuration represents a 1% connectivity network with plastic connections.

Timestep resolution is set to 1 ms. The plot shows results for the single target

expanded (purple), multi-target (blue) and single target (green) cases. The

horizontal axes show the number of cores per ensemble in the form of

[[Sc,Nc]], as indicated in Section 4.2.1 and Figure 9. The top axis refers to the

single target expanded case (purple), the bottom to the other cases.

FIGURE 13 | Resource allocation vs. peak performance for the three different

approaches (single target expanded, multi-target, and single target). The

network is the same used for Figure 12, with 1% connectivity and plastic

connections. The color scheme matches that used in Figure 12. For a case by

case labeled version of this plot, please refer to the Supplementary Material.

resources are available and comparable results with reduced
hardware requirements, also for SNN simulations involving
synaptic plasticity.

4.3. Sparsity Profiling
4.3.1. Experiment Description
Profiling of peak synaptic event throughput with a range of
connection sparsity levels is now explored. This experiment
shows the variation of the processed synaptic events per timestep
with increasing numbers of target Neuron cores. The number
of Synapse cores is kept fixed and the target Neuron cores are
gradually increased. In order to provide a good balance (and
according to the peak performance shown in Section 4.2), the
chosen number of Synapse cores is 7 and the target Neuron cores
range from 1 to 7, guaranteeing to fit on a single chip. This
allocation also allows equal comparison between simulations
with 1 ms timestep resolution and 0.1 ms, having set the number

of neurons per Neuron core in both cases to 64. The connectivity
probabilities investigated are: 0.1, 1, 10, and 50%. Connectivity
patterns above 50% are beyond the scope of this study, as they are
extremely rare in biology (Hagmann et al., 2008), and are handled
sufficiently well by traditional hardware (GPUs, CPUs, etc.). The
network employed for this experiment has a structure analogous
to that described in Section 4.2.1. For this case various sparsity
patterns are shown, together with different cores allocations per
chip. This experiment is useful to demonstrate the flexibility of
the approach in handling multiple sparsity levels, a common
feature in biologically-representative SNNs (Schmidt et al., 2018).

4.3.2. Sparsity Results
The results for this experiment are shown in Figure 14 left for
0.1 ms timestep resolution and in Figure 14 right for 1 ms
timestep resolution. The horizontal axis shows the connectivity
probabilities, the vertical axis the processed synaptic events
per timestep. Each line represents a different configuration of
Synapse cores to Neuron cores, where each Synapse core is
connected to all the targets of that configuration. The number of
postsynaptic receptors per Synapse core therefore can be obtained
by multiplying the number of Neuron cores by 64 (number of
neurons per Neuron core).

For the 1 ms case (Figure 14 right), as expected, simulations
with higher number of targets process the highest number of
synaptic events per timestep. The most evident jump happens
between the configurations with 1 and 2 targets, respectively,
where the synaptic rows double in size. This shows that having
larger synaptic rows impacts processing times, especially for very
sparse networks, by improving the processed synaptic events of
≈ 1 order of magnitude for 0.1% connectivity between worst and
best case. This gain reduces when the connectivity probability
increases, because of multiple synaptic events are carried per
spike. Therefore, the time processing per spike increases as well.

The 0.1 ms case (Figure 14 left) follows a similar trend to the
1 ms case, however the examples with 6 and 7 targets do not give
any improvements. The reason for this is due to the time required
to perform the transfers between shared and local memories for
the synaptic contributions, which have a higher impact on the
timestep relative to the 1 ms case. For the sparse simulations
(0.1% and 1% connectivity), having multiple target Neuron cores
gives advantage similarly to the 1 ms case, however, when the
network becomes denser the trend starts to invert, as the cost
of processing a single incoming spike dominates over the gain
introduced by this approach.

5. DISCUSSION

This work presents a novel parallelization approach for neural
processing on Neuromorphic hardware, which improves the
performance of SNN simulations by acting on the way
synaptic matrices are partitioned and processed. The Multi-
target partitioning approach provides additional freedom when
designing SNN simulations, by allowing to target applications
more specifically, according to their requirements. By allowing
parameterization of synaptic and neural processing units, it is
possible to allocate the appropriate amount of resources for a
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FIGURE 14 | Processed synaptic events for different connectivity configurations. Both the 0.1 ms timestep (left) and 1 ms timestep (right) cases are shown. The

vertical axis shows the total processed synaptic events per timestep, the horizontal axis different connectivity probabilities. Each line represents a different neural

ensemble with constant Synapse cores, but increasing target Neuron cores.

given requirement, prioritizing the number ofNeuron processing
units for sparser applications and increasing the number of
Synapse processing units when the fan-in dominates. Thanks to
these improvements it is possible to maximize the performance,
while using minimal hardware resources and therefore reducing
power consumption.

Through a SpiNNaker implementation of the Multi-target
partitioning approach, it is possible to improve the peak synaptic
processing throughput up to 9× compared to previous results
for the same hardware resources. Furthermore, it is possible to
obtain comparable processed synaptic events per ms, by reducing
the hardware resources to a quarter, resulting in a much smaller
machine (and energy consumption) dedicated to the simulation
(as detailed in Section 4.2).

The Multi-target partitioning approach additionally enables
optimal processing of incoming spike packets, providing a
larger pool of target neurons for each spike, hence increasing
the length of processed synaptic rows for a given connection
density. This greatly reduces the required number of accesses
to shared memory per timestep, therefore allowing more
efficient processing of sparsely connected networks (detailed in
Section 4.3). This is shown by Equations (8) and (13), where the
number of target neurons of each spike grows according to the
number of target Neuron cores, expanding the limit beyond a
single postsynaptic Neuron core. This has the effect of reducing,
by a factor Nc the number of destination processors per spike
packet, facilitating the routing of spike packets and so reducing
the pressure on the communication fabric. Furthermore, this
increased number of targets per spike packet allows to amortize
the dominating fixed cost of processing a spike (cs) (Rhodes
et al., 2018) over a higher number of postsynaptic receptors,
which can now be larger than that of a single Neuron core,
overcoming this limitation which is still observed for the
Heterogeneous partitioning.

The Multi-target partitioning approach is optimal as it comes
with minimal additional costs compared to previous approaches.
However, the SpiNNaker implementation is limited by the
different access patterns to shared memory. The shared memory
access time plays a key role in the fraction of the timestep

available for spike processing, as shown by Equation (9) and by
the recorded values presented in Sections 4.1.2 and 4.1.3. The
relatively old technology employed by SpiNNaker represents a
bottleneck in this context, resulting in both memory contention
and transfer size limiting the total system throughput. This
causes the synaptic contributions writing (tw) and reading (tr)
times (Equations 9–11) to increase with the number of cores
in the ensemble, consuming approximately half the timestep
duration for high timestep resolution simulations such as 0.1
ms. For this reason the need for faster access to shared memory
is proven, by showing that there is a large potential gain in
having access to multiple separate shared memories, compared
to a single shared memory. This consideration opens up to
the possibility of using more advanced memory architectures
for Neuromorphic hardware, such as multiport memories, since
structures like synaptic matrices and synaptic contributions are
non-overlapping and therefore would benefit from the capability
of separate independent accesses.

The flexibility of the approach also makes it portable and
extendable for the next generation of digital Neuromorphic
platforms. SpiNNaker 2, by exploiting its chip organization of
cores in quartets, namely QPEs (Höppner et al., 2021; Yan et al.,
2021), could map a cluster-based implementation of multiple
neural ensembles per chip, where each processor (PE) represents
either a Neuron core or a Synapse core. Since each PE has
the capability to efficiently access the local memory of other
PEs on the same QPE, it is possible to efficiently share the
synaptic contributions within a QPE, overcoming the contention
issue. A step further would include a tree-like structure, where
QPEs could implement a group of 4 Synapse cores, which
generate the synaptic contributions as a single block for the
4 cores. Then, a single PE per QPE accesses the chip shared
memory to communicate with other QPEs implementing blocks
of Neuron cores. Following the same strategy, a single Neuron
core per Neuron QPE accesses the shared memory to retrieve the
contributions. This would expand the ensemble capabilities to a
full chip (up to 160 cores), limiting the memory contention to a
quarter of the cores in use, which combined with themuch higher
memory throughput (6 vs. 1 GB/s for the SpiNNaker SDRAM)
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would have a large impact on the synaptic contributions reading
and writing times.

The Multi-target partitioning approach also has potential
benefits in Neuromorphic systems where all synaptic information
is stored locally to the computational units. For these systems
the approach would allow synaptic compartments to target
multiple neural compartments, improving the handling of sparse
connections, and overcoming the limitations set by the fixed
coupling between synaptic and neural units. Furthermore the
added benefits seen when processing plastic connections offers
advantages for online learning applications, particularly in
sparsely-connected biologically-representative SNNs.
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