
Journal of

Personalized 

Medicine

Article

Robust and Accurate Mandible Segmentation on Dental CBCT
Scans Affected by Metal Artifacts Using a Prior Shape Model

Bingjiang Qiu 1,2,3,†, Hylke van der Wel 1,4,†, Joep Kraeima 1,4,*, Haye Hendrik Glas 1,4, Jiapan Guo 2,3,
Ronald J. H. Borra 5, Max Johannes Hendrikus Witjes 1,4 and Peter M. A. van Ooijen 2,3

����������
�������

Citation: Qiu, B.; van der Wel, H.;

Kraeima, J.; Hendrik Glas, H.; Guo, J.;

Borra, R.J.H.; Witjes, M.J.H. ; van

Ooijen, P.M.A. Robust and Accurate

Mandible Segmentation on Dental

CBCT Scans Affected by Metal

Artifacts Using a Prior Shape Model.

J. Pers. Med. 2021, 11, 364. https://

doi.org/10.3390/jpm11050364

Academic Editor: Peter Polverini

Received: 6 April 2021

Accepted: 27 April 2021

Published: 1 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 3D Lab, University Medical Center Groningen, University of Groningen, Hanzeplein 1,
9713 GZ Groningen, The Netherlands; b.qiu@umcg.nl (B.Q.); h.van.der.wel@umcg.nl (H.v.d.W.);
h.h.glas@umcg.nl (H.H.G.); m.j.h.witjes@umcg.nl (M.J.H.W.)

2 Department of Radiation Oncology, University Medical Center Groningen, University of Groningen,
Hanzeplein 1, 9713 GZ Groningen, The Netherlands; j.guo@umcg.nl (J.G.);
p.m.a.van.ooijen@umcg.nl (P.M.A.v.O.)

3 Data Science Center in Health (DASH), University Medical Center Groningen, University of Groningen,
Hanzeplein 1, 9713 GZ Groningen, The Netherlands

4 Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of
Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands

5 Medical Imaging Center (MIC), University Medical Center Groningen, University of Groningen,
Hanzeplein 1, 9713 GZ Groningen, The Netherlands; r.j.h.borra@umcg.nl

* Correspondence: j.kraeima@umcg.nl
† These authors contributed equally to this work.

Abstract: Accurate mandible segmentation is significant in the field of maxillofacial surgery to guide
clinical diagnosis and treatment and develop appropriate surgical plans. In particular, cone-beam
computed tomography (CBCT) images with metal parts, such as those used in oral and maxillofacial
surgery (OMFS), often have susceptibilities when metal artifacts are present such as weak and blurred
boundaries caused by a high-attenuation material and a low radiation dose in image acquisition.
To overcome this problem, this paper proposes a novel deep learning-based approach (SASeg) for
automated mandible segmentation that perceives overall mandible anatomical knowledge. SASeg
utilizes a prior shape feature extractor (PSFE) module based on a mean mandible shape, and recurrent
connections maintain the continuity structure of the mandible. The effectiveness of the proposed
network is substantiated on a dental CBCT dataset from orthodontic treatment containing 59 patients.
The experiments show that the proposed SASeg can be easily used to improve the prediction accuracy
in a dental CBCT dataset corrupted by metal artifacts. In addition, the experimental results on the
PDDCA dataset demonstrate that, compared with the state-of-the-art mandible segmentation models,
our proposed SASeg can achieve better segmentation performance.

Keywords: accurate mandible segmentation; oral and maxillofacial surgery; 3D virtual surgical
planning (3D VSP); convolutional neural network

1. Introduction

Currently, the three-dimensional (3D) virtual surgical planning (VSP) technique is
commonly used for oral and maxillofacial surgery (OMFS), and planning since it allows for
pre- or postoperative simulation of surgical options [1]. 3D surface models of the mandible
in 3D VSP are created and superimposed to visually and quantitatively demonstrate the
orthodontic/orthognathic changes and provide postoperative follow-up of patients with
cranio-maxillofacial deformities [1]. Cone-beam computed tomography (CBCT) is widely
applied in 3D VSP because of its lower radiation dose and faster scanning time than
conventional CT [2]. In orthodontic or orthognathic treatment, the dentist or maxillofacial
surgeon needs visual information about the location and movement of their patient’s teeth
and mandible. A requirement for this process is to accurately segment the mandible from
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the dental CBCT scans and then to generate 3D surface mandible model. Therefore, accurate
mandible segmentation plays an important role in 3D VSP for OMFS. Dental CBCT scans
are noisier and have more metal artifacts than conventional CTs because dental CBCTs
use a low-radiation technique and teeth, dental braces in orthodontic treatment and metal
implants in orthognathic treatment are higher attenuation materials, easily leading to high
noise and strong metal artifacts in the visual impression of the scans [3]. The boundaries
of mandibles are difficult to be identified since dental braces and metal implants badly
affect the image quality in CBCT [4], as shown in Figure 1. Additionally, low contrast in
the condylar process very often leads to ambiguous and blurred boundaries in CBCT scans
because of its low radiation dose, as illustrated in Figure 1. Consequently, the main difficulty
in orthodontics or orthognathic visualization is precise mandible segmentation in CBCT
scans. Currently, manual segmentation for 3D modeling of the mandible is widely adopted
in clinical practice, but this is a time-consuming and labor-intensive approach so that it
is impractical to perform on a large number of subjects. Moreover, manual segmentation
often suffers from large interoperator variability (Dice score of 94.09% between two clinical
experts) [5], which directly influences the quality of treatment planning. To date, there are
still no reliable automatic segmentation approaches that can adapt to badly affected CBCT
scans. Accordingly, it is meaningful to develop an accurate and automatic technique to
segment the mandible for orthodontic or orthognathic treatment from CBCT images.

(a) Original CBCT image (b) Manual annotation

Figure 1. Example illustrations that challenge mandible segmentation in CBCT images. (a) Original
CBCT image. The mandible and teeth appear with almost invisible boundaries. (b) Example of
manual annotation. Low contrast often appears in condyles. The purple region indicates the manual
annotation of the mandible.

To reduce the workload of mandible segmentation, a number of (semi)automatic seg-
mentation methods on CBCT have been developed. Wand et al. [6] proposed an automated
segmentation method from dental CBCT images using patch-based sparse representation and
convex optimization. They used the B-spline registration algorithm provided by the Elastix
toolbox for the deformable registration. Furthermore, the average computational time was
approximately 5 h for segmentation of a scan of size 400× 400× 400 [6]. Fan et al. [7] used a
marker-based watershed transform method for fully automatic mandible segmentation
from CBCT images. This approach used a Gaussian filter and manually selected an ade-
quate threshold for preprocessing initialization. Gollmer et al. [8] employed a statistical
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shape model (SSM) with optimized correspondence, which can help to improve the seg-
mentation accuracy of the mandible. This method needs to manually and intentionally
choose the proper mandible prior as initialization and a suitable window width of the
segmentation object. Oscar et al. [9] proposed an interactive segmentation method to aid
specialists in segmenting CBCT via applying supervoxels and graph clustering techniques.
Wang et al. [10] presented a majority voting method and combined it with a random
forest for mandible segmentation in dental CBCT. These approaches have been proven
to be useful in utilizing prior knowledge in the segmentation tasks [11]. However, these
methods suffer from the problem of hyperparameter selection and the manual positioning
of landmarks in the initialization steps [12]. The performance of the methods is often
affected by high noise or metal artifacts caused by dental braces or implants [13,14]. In
other words, the application of these traditional techniques requires expert analysis and
adjustment in every specific patient, which makes it difficult to handle the massive amount
of medical data encountered in practice.

With the development of deep learning technology, deep learning methods have been
proven to show powerful capabilities in detailed image feature extraction in automatic
segmentation tasks [15–17]. The deep learning approach provides much more flexibility
than the traditional methods [6–10], which require less expert analysis and fine-tuning and
can easily exploit the other objects [18]. However, these studies [15–17] are still not robust
in segmenting organs because the medical image usually has a 3D volume form, but 2D
slices are usually fed as the input. For instance, Minnema et al. [13] employed a mixed-
scale dense convolutional neural network to segment the mandible in CBCT. However,
the other bone-structured organs are also segmented in this network, as shown in the
figures of [13], due to the fact that the spatial information was not considered in their 2D
network. To use 3D spatial information from the volume data, researchers first proposed to
use a 3D network instead of the original 2D network. Çiçek et al. [19], Milletari et al. [20],
Zhu et al. [21], and Wang et al. [22] explored a 3D convolution kernel in their network
instead of the original 2D kernel in the medical image segmentation task. However, fully
implementing the 3D network for image segmentation requires cropping the input volume
into a small patch in training, which limits the maximum receptive field of the network
and leads to the loss of global information. It is difficult for the 3D network to learn
the overall structure information of the target. Thus, researchers started to investigate
learning 3D spatial information and voxel connectivity of the upper and lower context
of the object via a 2D network. Mortazi et al. [23] proposed the multiplanar training
strategy, which utilized the images’ three perpendicular planes (axial, coronal, and sagittal)
as input. Novikov et al. [24] used a sequence of slices as input in the network. Qiu et al. [12]
adopted a 2.5D volume as input in their network and then combined the resulting 2D
segmentations from three orthogonal planes into a 3D segmentation. Ghavami et al. [25]
incorporated different numbers of neighboring slices as input for prostate segmentation
from ultrasound images. Qiu et al. [26] developed a novel technique that combined a
regular segmentation network with a recurrent module in their network for mandible
segmentation in conventional CT scans. In general, these works [12,23–26] have shown
that using adjacent slices can help the network obtain more accurate and reliable results in
terms of anatomy. Nevertheless, these works [12,23–26] have also shown that obtaining 3D
spatial information from a 2D network still leaves room for improvement. As illustrated
in Figure 2, an example shows the comparison between SegUnet [27], recurrent SegUnet
(RSegUnet) [26] and the proposed method in mandible segmentation. These methods are
not suitable for CBCT images that are strongly corrupted by the metal braces and low
contract due to the inherent characteristic of CBCT.
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GT                                   SegUnet RSegUnet SASeg(a) GT (b) SegUnet (c) RSegUnet (d) SASeg

Figure 2. An example illustration that shows the comparison with SegUnet and RSegUnet. The
existing state-of-the-art convolutional neural network (CNN) approaches for segmentation tasks
perform poorly when the input data are strongly degenerated by noise. (a) the ground truth seg-
mentation; (b–d) the automatic segmentation results obtained from SegUnet [27], RSegUnet [26] and
the proposed SASeg. The purple region indicates the manual annotation, while the green regions
indicate automatic segmentations.

With the development of conventional approaches and the deep segmentation neural
network, introducing prior information to the network has become a popular topic in
research. Chen et al. [28] tried to use a shape prior in their segmentation model. They
first used the deep Boltzmann machine to extract the prior shape hierarchy, which can
capture global and local structures of the prior shapes. Then, the learned structure is
introduced in an energetic form to regularize the target shape for image segmentation [28].
Duan et al. [29] proposed a context-aware 3D fully convolutional network (FCN) for vessel
enhancement and segmentation in coronary computed tomography angiography volume,
which used 3D vessel-like structures as spatial prior knowledge to feed the 3D FCN.
Tong et al. [30] developed a novel automated segmentation approach incorporating shape
priors as a constraint term, where they combined an FCN with a shape representation model.
However, how to define an appropriate prior shape model to guide object segmentation is
still an open problem.

Motivated by the above analysis, we propose a novel convolutional neural network
(CNN) framework based on shape-aware segmentation for mandible segmentation (SASeg),
which follows the classical encoder–decoder structure. We first adopt a prior shape feature
extractor (PSFE) to capture the shape information from the mean mandible shape model,
in which the mean model is implemented in the average mandible shapes in the training
set. In this way, the network can be aware of the general mandible shape information. To
avoid the large computation and memory demand in the 3D network and utilize spatial
information from the 3D volume, we feed the mean mandible shape feature from PSFE
into a recurrent FCN for mandible segmentation at the pixel level.

In particular, our main contributions are as follows: (1) We present a novel end-to-end
method for dental CBCT mandible segmentation based on prior shape information. (2)
We propose a PSFE module to extract the spatial mandible information from the mean
mandible shape model. (3) The proposed method provides the potential capability of
removing the need for post-processing steps, even in cases where the images are corrupted
by metal artifacts or noise due to the limitations in their image acquisition.

2. Methodology

In this section, we elaborate on the construction of the proposed SASeg and its core
modules (i.e., PSFE, recurrent SegUnet). Figure 3 demonstrates the proposed SASeg, which
builds recurrent SegUnet (RSegUnet) connections between adjacent units to retain the
connectivity of mandible anatomy and utilizes the common mandible shape feature by
extracting the mean mandible model from PSFE. Each unit in the RSegUnet is implemented
as a classic end-to-end segmentation architecture for 2D slice segmentation. Moreover,
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every unit consists of an encoder and a decoder, as indicated by the blue and yellow ladder
blocks in Figure 3. The PSFE module is inserted at the last layer of the encoder to capture
mandible prior information, as indicated by the green ladder block in Figure 3.

Specifically, we first use the preprocessing technique of the statistical shape model
(SSM) [31,32] to generate a mean mandible shape structure in the training set based on
manual expert segmentations. In this way, every mandible shape is represented in the
average mandible shape. The average mandible shape is then introduced into the proposed
framework as a shape prior input in the network. To obtain more abundant structure
knowledge, we employ a prior shape feature extractor (PSFE) as an auxiliary path to
encode the average mandible shape so that the common features of the mandibles can be
obtained. PSFE makes use of the mandible shape information from the mean model to
help supervise the modeling of the target area, which is helpful to refine the segmentation
performance. Furthermore, we employ the recurrent SegUnet in the framework, which has
been proven helpful to segment 3D objects in 2D networks [26]. The proposed network
that extracts prior knowledge from the mean shape model is able to constrain the mandible
shape consistency in the segmentation task. Details of PSFE and the recurrent SegUnet in
the proposed method are introduced as follows.
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Figure 3. Overview of the proposed SASeg and its corresponding unfolded computational graph. The PSFE module is
leveraged to extract general shape features from a mean mandible shape, and recurrent SegUnet connections are used to
conduct the slice-by-slice segmentation.

2.1. Building a Mean Mandible Shape Model

We present a brief overview of the mean mandible shape model generation process,
as illustrated in Figure 4. For generating a mean mandible shape model, we use a similar
method for the preprocessing of SSM [31]. A dataset of mandible shapes is needed for
generating a mean mandible shape model. The required mandible shapes are obtained
via manual segmentation by an experienced technical physician and surface processing
methods in the training set. The mandible shapes vary widely in terms of rotation, scale,
and position of the object [33]. Therefore, all n mandibles need to be aligned into a common
coordinate frame. This can be achieved by applying a generalized Procrustes alignment
to remove all information that is unrelated to shape (i.e., rotation, position and scaling
information) [34]. The mean mandible shape model is built from the set of n rigidly-aligned
input shapes, which have been remeshed so the mandible shape is described by l landmark
points which are forming a triangulation mesh over the contour of the mandible with edge
lengths of ±1 mm. Using a surface registration method based on elastic deformation [35],
correspondence between the landmark points on the input shapes was established. Due to
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the registration steps, the variation in position of the corresponding landmarks on the input
mandibles now represents the shape variation for each landmark. Based on this, the mean
mandible shape was calculated. To adapt the mean mandible model to the network, we
voxelize the mean 3D mandible geometry into the same image coordinate system. The data
processing pipeline for generation of the mean mandible shape model fed to the network is
presented in Figure 4. The main stages of the method are illustrated as follows: preparation
of training data, manual segmentation, surface processing (i.e., Procrustes alignment),
building a mean mandible model, and voxelization back to the image coordinate system.
For convenience, we still use the mean mandible shape model to represent the voxelized
mean mandible shape model.

is the mean mandible shape model representation 
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Figure 4. The procedure of generation of the mean mandible shape model. The generation consists of preparing the
mandible model, generating the mesh surfaces, creating the mean mandible shape model, and calculating the corresponding
mask stack.

2.2. Prior Shape Feature Extractor (PSFE)

Using a mean shape model as the global contextual prior has proven to be a promising
approach and is commonly used in conventional image segmentation tasks [36,37]. These
works motivated our development of the prior shape feature extractor (PSFE) using the
mean mandible shape model as a shape prior in the segmentation network. The PSFE
architecture consists of one convolution block (a 3 × 3 convolution with a stride of 2, batch
normalization (BN), ReLU) and two residual blocks (two depthwise separable convolutions
(DSConv) [38], BN, ReLU, Maxpooling), as shown in Figure 5. To capture sufficiently large
amount of contextual information, the feature maps are gradually downsampled in PSFE
architectures. The mean mandible shape model is fed into the PSFE to learn mandible
prior information to improve the performance of mandible segmentation with regard to
complex situations such as blurred dental CBCTs, as illustrated in PSFE of Figure 5. The
PSFE module is connected to the last bottom layer of the encoder, which is introduced in
Section 2.3. The PSFE module learns θPSFE from the prior mandible information obtained
from the mean mandible shape model. It can reduce oversegmentation (i.e., false positive
prediction) in the segmentation task.

DSConv [38] in PSFE is improved from the Inception v3 structure [39]. DSConv
makes the network processing simpler and more effective [38], especially in regard to
increasing the computational efficiency. DSConv consists of depthwise convolutions and
pointwise convolutions (i.e., 1× 1 convolutions). Depthwise convolution first performs a
3× 3 convolution operation for each input channel. Then, pointwise convolution performs
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1× 1 convolution to fuse the feature maps after the depthwise convolution. Assume that
the number of channels in the i-th layer is Ci. The channels are independent of each other,
so the number of parameters of the convolution kernel is 3× 3× Ci, which is much less
than 3× 3× Ci × Ci−1 of standard convolution. After channel-by-channel convolution,
a 1× 1 convolution kernel is used for feature fusion between channels. Therefore, the
number of parameters of the second half of the convolution kernel is 1× 1× Ci−1 × Ci.
Furthermore, the calculation amount of the DSConv is 3× 3× Ci−1 × H ×W + 1× 1×
Ci−1 × Ci × H ×W, where H and W present the weight and height of the feature maps,
respectively. The calculation amount of using DSConv is 1

Ci
+ 1

9 of the standard convolution,
which is 3× 3×Ci−1×Ci×H×W. Therefore, the amount of calculation is greatly reduced.
Moreover, PSFE does not require the training of multiple models and a large number of
extra model parameters. Here, the number of trainable parameters of PSFE in SASeg is
149,440. Furthermore, using PSFE as an auxiliary path to extract the mean mandible shape
information can be easily applied in a segmentation network with a small increase in the
amount of memory and computational resources.
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𝐷𝐷𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐵𝐵𝐵𝐵,𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿

1 × 1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠 = 2)

𝐵𝐵𝐵𝐵

PSFE

𝐵𝐵𝐵𝐵

64

64

64

64

128

Slice (t+1) Mask (t)
Mask (t+1)

Mean mandible
shape model

Slice (t+1) Mask t

Figure 5. Details of each unit of SASeg. Each unit of SASeg consists of the PSFE, an encoder and a decoder. The number of
channels is indicated in the left of each convolution. The PSFE module is inserted at the last layer of the encoder to capture
the mandible prior information.
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2.3. Recurrent Convolutional Neural Networks for Segmentation

We start from SegUnet [27] as the node in the recurrent architecture. Similar to U-
Net [15], the basis network we use in SASeg consists of an encoder and a decoder path,
each with four resolution steps. In the encoder path, each layer has two 3× 3 convolutions,
each followed by a batch normalization (BN) [40], a rectified linear unit (ReLU) [41] and a
2× 2 max pooling with strides of two in each dimension. In the decoder path, each layer has
an upsampling layer of 2× 2 followed by two convolutions with a kernel size of 2× 2, each
followed by a BN and an ReLU as well. The resulting feature maps from each resolution
in the encoder are concatenated to those of the same resolution in the decoder. In the last
layer, a 1× 1 convolution is used to reduce the number of output channels to the number
of labels, which is 1 in a binary classification problem. The SegUnet network architecture is
shown in the encoder and decoder in Figure 5. A recurrent convolutional neural network
(CNN) algorithm is introduced to segment the mandible iteratively. At each iteration, the
original input slice and previous probability map are fed into the network. This kind of
network was robust for segmentation of the mandible from CT images due to learning
the 3D spatial information and voxel connectivity of the upper and lower context of the
object [26]. Different from the original encoding and decoding structure, we concatenate
the feature maps including prior information in the bottom layer, which is obtained from
a PSFE.

2.4. Combo Loss Function

Motivated by a combo loss used in [42], a combination of Dice and binary cross-
entropy (BCE) loss have been applied to train the proposed SASeg. These loss functions
are selected due to their potential to contend with imbalanced data [42].

L = ω1 ×LBCE + ω2 ×LDice, (1)

where ω1 and ω2 are the trade-offs between the BCE term and Dice term contribution in
the loss L, which are set as ω1 = 1 and ω2 = 1 to obtain the gradient update. LBCE and
LDice are defined as follows:

LBCE(ŷ, y) = − 1
N

N

∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi), (2)

LDice(ŷ, y) = 1− 2 ∑N
i=1 yi ŷi

∑N
i=1 yi + ŷi

. (3)

Here, yi and ŷi represent the ground truth and the predicted probability of pixel i,
respectively, and N is the number of pixels.

2.5. Dataset

A total of 59 dental CBCT scans that had been heavily affected by metal artifacts were
used in this study. All the CBCT scans are obtained on a Vatech PaXZenith3D or Planmeca
promax. Each scan consists of 431 to 944 slices with a size of 992× 992 to 495× 495 pixels.
The pixel spacing varies from 0.2 to 0.4 mm, and the slice thickness varies from 0.2 to
0.4 mm. Of these CBCT scans, 38 are used for training, 1 is used for validation, and
20 are used for testing. To train a CNN for bone segmentation in these CBCT scans, gold
standard segmentation labels were required. These gold standard labels were created
by manually segmenting all CBCT scans using Mimics software (Mimics Medical 23.0,
Materialise, Leuven, Belgium) by one experienced technical physician. Gold standard
segmentations are actually segmentations augmented with a dentition model. This task
took approximately 30–60 min per scan.

To investigate the generalization ability of our model, we also compare our proposed
method with several state-of-the-art methods on a public CT dataset, which is the Public
Domain Database for Computational Anatomy (PDDCA) version 1.4.1 used for the “Head
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and Neck Auto Segmentation MICCAI Challenge (2015)” [43]. There are 48 patient CT
scans from the Radiation Therapy Oncology Group (RTOG) 0522 study in the PDDCA
dataset, in which 40 out of the 48 patients in PDDCA with manual mandible annotations
were used in previous studies [43,44]. According to the protocol setting in the PDDCA
challenge description, 40 cases are separated into 25 cases (0522c0001-0522c0328) as a
training subset and 15 cases (0522c0555-0522c0878) as a testing subset [43]. Each scan
consists of 76 to 360 slices with a size of 512× 512 pixels. The pixel spacing varies from
0.76 to 1.27 mm, and the slice thickness varies from 1.25 to 3.0 mm [43].

2.6. Evaluation Metrics

For quantitative analysis of the experimental results, four performance metrics are
used, including the Dice coefficient (Dice), the average symmetric surface distance (ASD),
and the 95% Hausdorff distance (95HD).

The Dice coefficient is widely used to assess the performance of image segmentation
algorithms [45]. It is defined as:

Dice =
2 ∑N

i=1 yi ŷi

∑N
i=1 yi + ŷi

, (4)

where yi, ŷi represents the ground truth and the predicted probability of pixel i, respectively,
and N is the number of pixels.

The average symmetric surface distance (ASD) is a measure of computing the average
distance between the boundaries of two object regions [30]. It is defined as:

ASD(A, B) =
d(A, B) + d(B, A)

2
, (5)

d(A, B) =
1
N ∑

a∈A
min
b∈B
‖a− b‖, (6)

where ‖.‖ represents the L2 norm. a and b are corresponding points on the boundary of A
and B.

The Hausdorff distance (HD) measures the maximum distance of a point in a set A to
the nearest point in the other set B [46]. It is defined as:

HD(A, B) = max(h(A, B), h(B, A)) (7)

h(A, B) = max
a∈A

min
b∈B
‖a− b‖ (8)

where h(A, B) means the directed HD. The maximum HD is sensitive to contours. When
the image is contaminated by noise or occluded, the original Hausdorff distance is prone to
mismatch [43,47]. Thus, Huttenlocher proposed the concept of partial Hausdorff distance
in 1933 [46]. The 95HD metric is similar to the maximum HD. In brief, 95HD selects 95% of
the closest points in set B to the point in set A in Equation (8) to calculate h(A, B):

95HD = max(h95%(A, B), h95%(B, A)) (9)

h95%(A, B) = max
a∈A

min
b∈B95%

‖a− b‖ (10)

The purpose of using 95HD is to reduce the impact of a small subset of inaccurate
prediction outliers on the overall assessment of segmentation quality.

2.7. Implementation Details

The proposed CNN model is implemented on an NVIDIA GeForce Tesla V100 or
Quadro P6000 by using PyTorch 1.4.0 [48]. In this study, the batch size, epochs, and
learning rate are set to 3, 50, and 0.0001, respectively. Furthermore, the Adam optimizer
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is used to minimize the combo loss. Finally, an early stopping strategy is applied if no
improvement in the loss of the validation set for five epochs occurs to avoid overfitting.
We apply n = 39/25 mandible shapes in the training set to build mean mandible shape
model for the CBCT/PDDCA dataset.

3. Results
3.1. Method Comparison

We compared the proposed SASeg with recent fashionable methods, such as U-
Net [15], SegNet [16], SegUnet [27], and AttUnet [17], which are widely used in medical
image segmentation. In order for fair comparison, the same parameter settings are applied
in those methods. In Table 1, we list the quantitative results as well as the number of
parameters of the corresponding approaches. As shown in Table 1, the proposed SASeg
gets the best performance and achieves approximately 0.55% to 4%, 0.76 mm to 3 mm
and 13.4 mm to 37 mm gains in terms of Dice, DASD and D95HD, respectively. Further-
more, the results in Table 1 show that our proposed SASeg is more effective in segmenting
the mandible, though there is a small increase of approximately 0.45 million parameters
compared with SegUnet.

Table 1. Quantitative comparison of segmentation performance in the CBCT dataset between the
proposed SASeg and the state-of-the-art methods.

Methods Dice (%) DASD (mm) D95HD (mm) #Params (M)

U-Net 94.79 (±1.77) 2.0698 (±0.6137) 32.6401 (±22.0779) 3.35
SegNet 94.93 (±1.74 ) 1.7762 (±1.5937) 15.9851 (±26.5286) 2.96
SegUnet 91.27 (±5.13) 3.1436 (±3.6049) 26.3569 (±34.9539) 3.35
AttUnet 93.34 (±3.79) 3.9705 (±4.6460) 35.1859 (±42.3474) 8.73
SASeg 95.35 (±1.54) 0.9908 (±0.4128) 2.5723 (±4.1192) 3.80

We also illustrate the 3D view of three examples taken from the dataset in Figure 6.
Comparing the ground truth in Figure 6a, the 3D-based segmentation approaches shown
in Figure 6 failed to segment the mandible detailed structures, such as the coronoids and
parts of the mandible body indicated by the red rectangle. More concretely, the U-Net,
SegNet, and SegUnet methods have a weaker ability to handle the mandible body that is
close to the teeth and are affected by strong metal artifacts, and the segmentation results
appear undersegmented, as shown in Figure 6b–d. Additionally, the SegUnet misclassifies
the maxilla bone as the mandible, while the proposed SASeg can accurately segment the
mandible. The AttUnet approach can address the mandible body but cannot correctly
recognize the mandible angle, as illustrated in Figure 6e. As shown in Figure 6, these
above-mentioned fashionable methods have problems with oversegmentation or under-
segmentation while addressing the dental CBCT scans, while our method can precisely
segment the entire mandible structure even if metal artifacts appear. Moreover, only a
low number of voxels is misclassified by SASeg as the mandible. This can be explained
by the fact that the proposed SASeg method aggregates pixelwise contextual information,
resulting in better segmentation predictions and being able to learn spatial discrepancies
between real mandible areas and other structures with high intensity in dental CBCT scans.



J. Pers. Med. 2021, 11, 364 11 of 18

(a) GT (b) U-Net (c) SegNet (d) SegUnet (e) AttUnet (f) SASeg

Figure 6. Results with the fashionable segmentation approaches. The ground truth is shown in the column (a). Columns (b–f) show
the mandible predictions generated by the U-Net, SegNet, SegUnet, AttUnet, and the proposed SASeg, respectively. The red rectangle
indicates the zoom-in views of bad predictions.

3.2. Ablation Experiments

Ablation tests are performed to analyze the influence of the components, i.e., the
recurrent module and the PSFE module, and the loss function of the proposed SASeg
approach. The final comparison of the experiments is also evaluated by calculating Dice,
DASD and D95HD between the ground truth and the automated segmentation.

3.2.1. Ablation Analysis of the PSFE Module

To validate the effectiveness of our prior shape extractor module, we conduct a set
of ablation experiments on the CBCT dataset. The experimental results are summarized
in Table 2. From Table 2, we can see the use of PSFE and RNN modules brings the most
gains in Dice, DASD, and D95HD. When the network utilizes RNN modules, the continuous
relationship between current slices is utilized and mined. In addition, the PSFE module
is employed for further integrating refined contextual information after RNN modules
from cross slices. From Table 2, by fully extracting the features of the mean mandible
shape prior and integrating the information of different adjacent slices, our model achieves
promising results.
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Table 2. Ablation analysis on different modules of the RNN and PSFE.

RNN PSFE Dice (%) DASD (mm) D95HD (mm)

93.78 (±2.50) 1.5851 (±1.0680) 17.2517 (±24.2681)
X 92.26 (±5.66) 1.3133 (±0.7276) 7.2442 (±8.9275)

X 95.09 (±1.47) 1.2083 (±0.3354) 4.7629 (±8.1762)
X X 95.35 (±1.54) 0.9908 (±0.4128) 2.5723 (±4.1192)

We also show the effectiveness of the RNN and PSFE modules based on a mean
shape model as a prior input by showing visualized results, as shown in Figure 7. We can
obviously see that the method without the RNN and PSFE cannot address the mandible
body affected by metal artifacts and condyles, as illustrated in Figure 7b. The method
without PSFE easily causes oversegmentation in the angle of the mandible and is still not
sensitive enough in the thick part such as condyles, as shown in Figure 7c. The method
without the RNN in Figure 7d has a slightly stronger ability to handle the mandible body
compared with the method without the RNN and PSFE. Incorporation of prior knowledge
and spatial information into the mandible segmentation task could provide more accurate
and reliable results in terms of the mandible anatomy.

(a) GT (b) w/o RNN and PSFE (c) w/o PSFE (d) w/o RNN (e) SASeg

Figure 7. Results with different ablations of our method. The ground truth is shown in column (a). Columns (b–e) illustrate
the segmentation results derived from the model without RNN and PSFE modules, without the PSFE module, and without
the RNN module and the proposed SASeg, respectively. The red rectangle indicates the zoom-in views of bad predictions.
(w/o RNN and PSFE: without RNN and PSFE modules, w/o PSFE: without the PSFE module, and w/o RNN: without the
RNN module.)

3.2.2. Ablation Analysis of the Loss Functions

In a similar way, we also perform a set of experiments on different loss settings based
on the proposed method. The experimental results are listed in Table 3. As illustrated in
Table 3, only BCE loss has a slightly higher performance than the combined loss of BCE and
Dice in the Dice score, while the combined loss of BCE and Dice has higher performance
in DASD and D95HD. It is worth noting that the number of predicted background pixels
using BCE and Dice is more than the number of only using BCE, and the model using
BCE and Dice is able to predict the fine appearance features of the mandible, as shown in



J. Pers. Med. 2021, 11, 364 13 of 18

Figure 8. In brief, the network with BCE and Dice as loss functions easily generates fewer
false positives in mandible segmentation and is more focused on the structure of the object,
as illustrated in Table 3 and Figure 8.

Table 3. Ablation analysis on different loss function settings.

BCE Dice Dice (%) DASD (mm) D95HD (mm)

X 95.45 (±1.39) 1.3934 (±0.6228) 10.6093 (±20.8654)
X 83.75 (±15.59) 3.2537 (±3.4075) 16.7939 (±23.4980)

X X 95.35 (±1.54) 0.9908 (±0.4128) 2.5723 (±4.1192)

(a) GT (b) w/o Dice (c) w/o BCE (d) SASeg

Figure 8. Results with different ablations of loss functions. The ground truth is shown in column (a). Columns (b–d)
illustrate the segmentation results derived from the model without Dice loss, BCE loss and the proposed SASeg, respectively.
The red rectangle indicates the zoom-in views of bad predictions. (w/o Dice: without Dice loss, w/o BCE: without BCE loss.)

3.3. Reliability Analysis

To investigate the reliability of mandible segmentation, five randomly selected scans
are used to evaluate the intraobserver variability and interobserver variability. For the
intraobserver variability study, the second annotations are done six months after the first
annotation, and for evaluating interobserver variability, we also employ another technical
physician to annotate the mandible.

Intraobserver variability is the variability between the first and the second annotations of
the first observer. The interobserver variability is the average variability between the second
observer’s annotation and the first observer’s two annotations. Intra- and interobserver
reliability tests for the mandible were computed using Dice, ASD, and 95HD. The intra- and
interobserver agreements for manual segmentation are given in Table 4. For intraobserver
variability, 98.76%, 0.0690 mm, and 0.6347 mm are found for mean Dice, DASD and D95HD,
respectively. For interobserver variability, 91.56%, 0.3555 mm, and 2.0780 mm are obtained
for mean Dice, DASD and D95HD, respectively, as shown in Table 4. It is worth noting that
the Dice score for SASeg is higher than the interobserver reliability (95.35% > 91.56%),
and the D95HD value is slightly larger than interobserver reliability (2.5723 > 2.0780),
demonstrating the reliability and robustness of the automatic segmentation with SASeg.
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Table 4. Intra- and interobserver reliabilities and agreement of manual segmentation by the first expert.

Dice (%) DASD (mm) D95HD (mm)

Intraobserver 98.76 (±0.96) 0.0690 (±0.534) 0.6347 (±0.6176)
Interobserver 91.56 (±4.45) 0.3555 (±0.1701) 2.0780 (±1.1699)

SASeg 95.35 (±1.54) 0.9908 (±0.4128) 2.5723 (±4.1192)

3.4. Experiments on the PDDCA Dataset

We evaluate the performance of the models on the test subset of PDDCA. As shown
in Table 5, the proposed SASeg method achieves the best performance compared with
the state-of-the-art methods, with the highest Dice score of 95.29%, the lowest DASD of
0.1353mm and the second lowest D95HD of 1.3054 mm.

Table 5. Quantitative comparison of the segmentation performance on the PDDCA dataset between
the proposed method and the state-of-the-art methods.

Methods Dice (%) DASD (mm) D95HD (mm)

Multiatlas [49] 91.7 (±2.34) - 2.4887 (±0.7610)
AAM [50] 92.67 (±1) - 1.9767 (±0.5945)
ASM [51] 88.13 (±5.55) - 2.832 (±1.1772)
CNN [52] 89.5 (±3.6) - -
NLGM [53] 93.08 (±2.36) - -
AnatomyNet [21] 92.51 (±2) - 6.28 (±2.21)
FCNN [30] 92.07 (±1.15) 0.51 (±0.12) 2.01 (±0.83)
FCNN+SRM [30] 93.6 (±1.21) 0.371 (±0.11) 1. 5 (±0.32)
CNN+BD [54] 94.6 (±0.7) 0.29 (±0.03) -
HVR [55] 94.4 (± 1.3) 0.43 (± 0.12) -
Cascade 3D U-Net [56] 93 (±1.9) - 1.26 (±0.5)
Multiplanar [12] 93.28 (±1.44) - 1.4333 (±0.5564)
Multiview [57] 94.1 (±0.7) 0.28 (±0.14) -
RSegUnet [26] 95.10 (±1.21) 0.1367 (±0.0382) 1.3560 (±0.4487)

SASeg 95.29 (±1.16) 0.1353 (±0.0481) 1.3054 (±0.3195)

4. Discussion

In this work, we developed and validated a novel deep learning-based approach
(SASeg) for automated mandible segmentation that utilizes the PSFE module based on a
mean mandible shape as a prior and a recurrent network to train the neural network model.
In this way, the network makes segmentation predictions that are in agreement with the
learned shape model of the underlying anatomy, which is referred to as a shape prior. Most
importantly, the proposed approach allows us to perform fully 3D mandible segmentation
via slice-by-slice 2D segmentation even in the presence of strong metal artifacts.

We first demonstrate the applicability of the proposed approach SASeg for a dental
CBCT dataset of orthodontic treatment that is composed of 59 patient scans. Automated
segmentation correlates well with manual segmentations, and the promising segmentation
results are shown in Tables 1–3 and Figures 6–8. As can be seen in the results, the existing
state-of-the-art convolutional neural network (CNN) approaches for segmentation tasks
perform poorly when the input data are strongly noisy and blurred by metal artifacts.
The experiments described in Figure 6 and Table 1 show that the proposed segmentation
models become more robust against CBCT imaging metal artifacts that are shown in
Figure 1. The experimental results show that the classical network can benefit from the
learned prior in cases where the images are corrupted by metal artifacts. Compared with
the state-of-the-art methods that directly segment a single slice without considering the
prior information and the continuity of neighborhood slices, the SASeg network provided
better DASD and D95HD scores. Figure 7 and Table 2 demonstrate that the mandible shape
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prior learned by the proposed shape extractor module (PSFE) is useful for mandible
segmentation on dental CBCTs in orthodontics. As discussed in the above analysis, the
added PSFE module that extracts the prior information from the mean mandible model
plays an important role in the segmentation operation in that it can provide more focus on a
certain region containing the mandible and avoid the influence of metal artifacts and other
bone-structure organs. Figure 8 and Table 3 show that the combo loss function of Dice
and BCE facilitate the network to focus more on the mandible and accordingly generate
fewer false positives. Furthermore, we also investigate the intraobserver variability and
interobserver variability for manual segmentation. Table 4 shows that a higher accuracy
is achieved on mandible segmentation using the proposed SASeg when compared to
interobserver variability. Furthermore, the PDDCA dataset, consisting of 40 patients
scans, is employed for testing the proposed method. The quantitative results shown in
Table 5 demonstrate that the proposed SASeg method has a good generalization ability
in a conventional CT dataset. Overall, SASeg enables the algorithm to not only solve the
challenge of mandible segmentation in a dental CBCT dataset with strong metal artifacts
but also to provide a good approach to segment the mandible in a CT dataset.

There are a few limitations to the study. First, the CBCT dataset belonged to only a
select patient group that required orthodontic treatment. The metal implants in orthog-
nathic surgery should be included in the future. Second, the CBCT and PDDCA datasets
are limited and cannot fully represent the general patient population in the clinical setting.
Third, a mean mandible model is required before training the model. Fourth, we only use
CBCT data from local institutes to train the SASeg model, and the PDDCA dataset in the
external validation is a CT dataset and not a CBCT dataset.

To summarize, the proposed SASeg can anatomically and sequentially learn the 3D
underlying anatomy through the auxiliary path and the recurrent module, respectively,
which is able to enforce that network predictions follow the learned mean shape of the
mandible structure and consider the continuity of neighborhood slices for the input scans.
More importantly, it is easy to combine with any of the state-of-the-art medical image
segmentation networks and can potentially improve their prediction accuracy and ro-
bustness with a slight increase in computational resources and memory. Last but not
the least, training with the proposed mandible shape prior almost removes the need for
postprocessing steps, which provides the capability of simplifying the postprocessing in
segmentation tasks, especially in cases where the images are corrupted by metal artifacts
or are noisy due to the limitations in their image acquisition. The accurate automated
mandible segmentation offers an improved and faster procedure than clinical assessment in
3D VSP, thus providing more practical and faster therapy planning for surgeons or medical
technician. The proposed SASeg model can be regarded as an application-specific training
target. The presented SASeg framework is not limited to only the mandible segmentation
task but can also be extended to other segmentation tasks in which prior knowledge can
provide model guidance and robustness. In that regard, future research will focus on the
application of SASeg to problems such as other anatomical organ segmentation even on
low-quality scans.

5. Conclusions

In this paper, we propose an end-to-end approach (SASeg) for accurate mandible
segmentation from CBCT scans that are badly influenced by metal artifacts. First, we
adopt a PSFE module that encodes the shape’s prior information from a mean mandible
model, and then we add it as an auxiliary path to assist the recurrent segmentation network
to further learn the structure of the mandible. In this way, the proposed SASeg can
automatically aggregate contextual information of the mandible at pixel level and capture
the blurry mandible area without any interaction. The quantitative and qualitative results
demonstrate that the proposed SASeg can yield better segmentation results compared to
the other state-of-the-art algorithms.
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