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Background

B cell chronic lymphocytic leukemia (B-CLL) is the most com-
mon adult leukemia in the Western world [1], and it targets 
mainly elderly adults [2]. CLL is a monoclonal expansion of 
small mature B lymphocytes accumulating in the peripheral 
blood, bone marrow, and secondary lymphoid organs. Although 
recent therapeutic advances have notably improved the out-
come for many patients, B-CLL remains an incurable disease [3].

Genetics and molecular genetics have contributed to illuminat-
ing the biological bases of the clinical heterogeneity of CLL [4]. 
In recent years, advances in massively parallel sequencing 
technologies have dramatically enhanced our understanding 
of the CLL genome and epigenome [5]. In 1990 Juliusson et al. 
reported that more than half of CLL patients had clonal chro-
mosomal changes, despite its technological limitations [6]. In 
2000, chromosomal abnormalities were detected in over 80% 
of patients by using interphase fluorescence in situ hybridiza-
tion [7]. With the development of next-generation sequenc-
ing technologies, new genes implicated in CLL were revealed. 
In 2009, a study showed that the constitutive NOTCH signal-
ing activation is implicated in CLL cell survival and apoptosis 
resistance [8]. SF3B1 is almost always found to cause muta-
tions in CLL, with missense substitutions affecting the HEAT 
domains [9]. In addition, ATM, TP53, and BIRC3 were identi-
fied to be closely related to CLL. Novel small-molecule inhibi-
tors that target BCR signaling, including the Bruton’s tyrosine 
kinase inhibitor ibrutinib and the phosphoinositide-3-kinase 
delta inhibitor idelalisib, have become the most successful 
new therapeutics in CLL [10].

Our knowledge of the molecular genetics of chronic lympho-
cytic leukemia has significantly broadened, which may offer 
new clinical implications.

Previous studies have proved that many critical genes and 
pathways are dysregulated during cancer initiation and pro-
gression [11]. Gene-based pathway analysis in a tumor is be-
coming an important method for understanding disease mech-
anisms. Pathways that are commonly deregulated across all 
cancer patients may be useful in identifying cancer from un-
known samples. The analysis of altered pathways in an indi-
vidual cancer patient may help to understand disease status 
and suggest customized anticancer therapies [12]. It was re-
vealed that therapies targeting the B cell receptor signaling 
pathway are changing the treatment paradigms of many B cell 
lymphoproliferative disorders [13]. Thus, understanding CLL 
altered pathways may help find break-outs of B-CLL therapy.

Although significant progress has been generated based on 
critical genes in the treatment of chronic lymphocytic leuke-
mia [14], B-CLL remains incurable. Immunochemotherapy with 

monoclonal antibodies and, recently, small molecules signifi-
cantly improved survival. The drug used in CLL treatment for 
many years is chlorambucil, which is still recommended for el-
derly patients with numerous comorbidities [14]. Rituximab or 
obinutuzumab is usually combined with chlorambucil and im-
proves overall survival [15]. Bendamustine, rituximab (BR reg-
imen), FCR-Lite, Q-Lite regimens, or reduced doses of purine 
analogs are used for treatment [16–18]. Since CLL patients are 
burdened with numerous comorbidities, the optimum combi-
nation of drugs for therapy highlights the importance of per-
sonalized pathway analysis. The purpose of this study was to 
search for therapeutic drugs according to altered pathways in 
individual patients.

In this study, we introduced individual pathway aberrance 
analysis (iPAS) to analyze altered pathways in individual CLL 
patient. Thousands of drugs underwent drug-set enrichment 
analysis (DSEA) in individuals. We tried to find the correspond-
ing therapeutic drugs by analyzing the relationships between 
drug data and disease.

Material and Methods

Disease-induced pathways analysis

Dataset

Microarray data of E-GEOD-39411 [19] used in this study were 
downloaded from the ArrayExpress database (http://www.ebi.
ac.uk/arrayexpress/experiments/E-GEOD-39411/). Two groups of 
data were included: a normal group (healthy B cell, n=48) and 
a disease group (chronic lymphocytic leukemia B cell, n=104).

According to the annotation files, probes were mapped to gene 
symbols. If more than 1 probe was mapped to a single gene, 
the levels of probes were averaged as the final gene expres-
sion value. In total, 20 389 genes were obtained.

Pathways of Homo sapiens used in this study were download-
ed from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (http://www.kegg.jp/) [20]. In total, 300 pathways in-
cluding 6919 genes were obtained. Genes of expression pro-
filing were mapped to pathways.

Pathway analysis

Pathway analysis has become an important method to cap-
ture clinical information. An individualized pathway aberrance 
score (iPAS) model was introduced to discover pathways in in-
dividuals [12]. The method included the following procedures: 
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Gene-level statistics

The gene expression levels were normalized with quantile nor-
malization in the preprocessCore package [21] and the mean and 
standard deviation of each gene in normal samples were calcu-
lated. Genes in disease samples were normalized with quantile 
normalization function after combining a disease sample with 
all normal samples, generating gene-level statistics of each 
gene in an individual disease sample. The formula used was:
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where Zi represents gene-level statistics of the i-th gene and 
n represents the number of genes belonging to a pathway.

With this procedure, pathway statistics of all pathways in nor-
mal samples and disease samples were obtained.

Statistical analysis

According to the distribution characteristics of pathway sta-
tistics in normal samples, pathway-level statistics of disease 
samples were analyzed for normal distribution. After being 
corrected for false discovery rate [22], the P-value of each 
pathway was calculated in individuals. By ranking pathways 
with P-values in disease group, pathways with P-values <0.05 
were obtained, which were considered significantly dysregu-
lated pathways. The frequency of altered pathways is present-
ed in the heatmap.

Individualized drug analysis

To analyze individual pathway aberrance induced by drugs, we 
introduced drug-set enrichment analysis (DSEA) [23], which 
quantifies the extent to which a set of drugs consistently dys-
regulates pathways.

Dataset

Gene expression data induced by 1309 drugs used in this study 
were obtained from a connectivity map (cMAP) [24] (http://

www.broadinstitute.org/cmap/), including 7056 Affymetrix mi-
croarrays. After probes were mapped to gene symbols, gene 
expression values were normalized with quantile normaliza-
tion [21].

Drug-induced pathways analysis

Gene-level statistics

Drug-induced gene-level statistics were calculated using the 
procedure in Pathway analysis.

Pathway level statistics

Drug-induced pathway-level statistics were calculated using 
DSEA, and the procedure was as follows:

We collected pathways in the KEGG database, removing those 
including no genes in drug-induce genes. A gene × drug matrix 
was converted to a pathway-oriented matrix. For each path-
way i in the database and each matrix j, we computed a signed 
Enrichment Score ESij and a P-value using the Kolmogorov-
Smirnov (KS) test [25]. The association is defined as
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where X and Y are variables and N represents the variable val-
ue number. A score is +1 indicates a positive correlation and 
–1 indicates a negative correlation. A score is 0 indicates no 
correlation.
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where ABS sum indicates the sum of the absolute value of 
Pearson correlation coefficients in all samples.

Results

Individualized disease-induced pathways analysis

Pathway level statistics in individual pathway of all samples 
were obtained using iPAS. Normal distribution analysis was per-
formed in pathway level statistics of disease samples after com-
bining a disease case with all the normal samples. P-values of 
pathways in each disease sample were calculated. The pathways 

with P-values <0.05 were considered to be more prone to alter-
ation. These pathways in an individual sample were recorded 
and presented in a heatmap, as shown in Figure 1, which intui-
tively reflects the frequency of altered pathways in the 104 dis-
ease samples. By ranking pathways with the distribution of path-
ways with P-values <0.05 in 104 samples, the top 20 pathways 
were identified and are listed in Table 1. The top-ranked pathway 
was “HIF-1 signaling pathway”, which was found in 93 samples.

Individualized drug-induced pathways analysis

Each drug was analyzed to search for the induced pathways in 
the 104 samples. The drugs were more related to the disease if 
the induced pathways were the same or similar with disease-
induced pathways. In this study, we presented the top 20 drugs 
most correlated with disease. The distribution of drugs in the 
104 samples was presented in a heatmap, as shown in Figure 2.

Comparative analysis of drug and disease

We analyzed the correlations between drugs-induced path-
ways and disease-induced pathways in 104 samples using 
Pearson correlation analysis. The sum of Pearson correlation 

Figure 1. �A heatmap representing the distribution of the top 20 altered pathways in 104 samples. Red color indicates down-regulation 
and green color indicates up-regulation.

Sample

4066 HIF-1 signaling pathway

4640 Hematopoietic cell lineage

310 Lysine degradation

5230 Central carbon metabolism in cancer

532 Glycosaminoglycan biosynthesis-chondroitin sulfate/ dermatan sulfate

5146 Amoebiasis

4060 Cytokine-cytokine receptor interaction

5012 Parkinson’s disease

512 Mucin type O-glycan biosynthesis

3010 Ribosome

5020 Prion diseases

4064 NF-kappa B signaling pathway

5144 Malaria

5222 Small cell lung cancer

790 Folate biosynthesis

4621 NOD-like receptor signaling pathway

4932 Non-alcoholic fatty liver disease

4713 Circadian entrainment

5202 Transcriptional misregulation in cancers

5016 Huntington’s disease
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coefficients and rank scores of drugs in all samples were ob-
tained. A small value of rank score indicated a closer correla-
tion with disease. By ranking drugs by rank scores, the top 20 
ranked drugs with the lowest rank scores were obtained and 
are presented in Table 2. A positive score indicates that the 
drug induces a similar mechanism with disease. The negative 
score indicates that the drug induces an adverse mechanism 
with disease. In total, there were 9 drugs with positive scores 
and 11 with negative scores. Positive scores indicate that the 
drug induces similar pathways with disease. Negative scores 
indicate that the drug induces adverse mechanisms with dis-
ease and provides possibilities for therapy.

Discussion

B cell chronic lymphocytic leukemia (B-CLL) is the most common 
adult leukemia in the Western world and remains an incurable 
disease. To search for therapeutic drugs, we introduced a new 
method by combining individual pathway analysis and DSEA.

In this study, microarray data of 48 healthy samples and 104 
chronic lymphocytic leukemia B cell samples underwent iPAS 
analysis. Personalized altered pathways were identified. With 
drug data from cMAP, DSEA was introduced to analyze drug 
mode in individual CLL patients. By comparing the heatmaps 
of Figures 1 and 2, we get an intuitive comparison between 
drugs and disease. Pearson correlation analysis was introduced 
to analyze the correlations between drugs-induced pathways 
and disease-induced pathways in 104 samples.

Pathway Mean of statistics SD of statistics Mean of P-value No. p005
No.

p001

HIF-1 signaling pathway –0.3262422 0.1485723 0.0388540 93 0

Hematopoietic cell lineage –0.3847170 0.1781843 0.0453297 93 0

Lysine degradation 0.3462189 0.2994140 0.0669152 81 67

Central carbon metabolism in cancer –0.3766408 0.1985446 0.0753532 80 0

Glycosaminoglycan biosynthesis – 
chondroitin sulfate/dermatan sulfate 

–0.6245317 0.2778061 0.0523940 79 0

Amoebiasis –0.3603284 0.1396767 0.0561224 77 0

Cytokine-cytokine receptor interaction –0.1711602 0.1304610 0.0833987 75 0

Parkinson’s disease –0.4871193 0.3378297 0.0771193 75 0

Mucin type O-glycan biosynthesis –0.3957148 0.2842250 0.0883046 73 1

Ribosome –0.6842832 0.3987781 0.0647567 72 0

Prion diseases –0.3939857 0.2532834 0.0900706 70 1

NF-kappa B signaling pathway –0.1501014 0.3221464 0.0728022 67 9

Malaria –0.4542561 0.2193519 0.0798666 66 0

Small cell lung cancer –0.2128115 0.2209183 0.1153846 62 2

Folate biosynthesis –0.5721935 0.3901549 0.1030220 61 0

NOD-like receptor signaling pathway –0.1747373 0.1945677 0.1456044 60 0

Non-alcoholic fatty liver disease (NAFLD) –0.3779647 0.2511017 0.1077316 60 0

Circadian entrainment –0.1950689 0.1449920 0.1197017 59 0

Transcriptional misregulation in cancers –0.2221240 0.1726676 0.1283359 58 0

Huntington’s disease –0.2635283 0.2501193 0.1342229 57 1

Table 1. Pathways with P-values <0.05 and P-values <0.01.

SD indicates standard deviation. No.p005 indicates the number of samples that the pathways with P-values <0.05 occurred. 
No.p001 indicates the number of samples that the pathways with P-values <0.01 occurred.
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Among the 20 drugs, 9 drugs were in positive correlations with 
disease-induced pathways, indicating that the drugs induced 
similar mechanisms with disease, and 11 drugs showed neg-
ative relations with disease-induced pathways, which could 
be used for therapy.

Benzethonium chloride and its analog, methyl benzethoni-
um chloride, were identified to be selectively toxic to human 
pharyngeal cancer cells but not to normal human or mouse 
cells [27]. They can induce apoptosis and caspase activation in 
tumor cells, delay the growth of xenograft tumors, and display 
in vivo additivity with local radiation therapy. It is proposed 
that benzethonium chloride should be highly effective in al-
most all leukemia [27]. However, Table 2 shows that methyl 

benzethonium chloride and benzethonium chloride are posi-
tively correlated with disease-induced pathways. The reason 
for this aberrance might be that the CLL B lymphocytes have 
been stimulated with an anti-IgM antibody, which influenced 
expression of genes and pathways.

Proxymetacaine showed a negative correlation with disease-in-
duced pathways. Generally, it was used for cycloplegia because 
of the ease of administration and minimal adverse effects [28]. 
Leukemia is known to cause significant retinopathy [29], such 
as retinal lesions and retinal hemorrhages. Proxymetacaine was 
considered to relieve eye discomfort in CLL patients.

Figure 2. �A heatmap representing the distribution of top 20 drugs in 104 samples. Red color indicates down-regulation and green color 
indicates up-regulation.

Sample

Dirithromycin

Guanabenz.1

CP.690334.01.1

Clindamycin

Metoprolol

Chlortetracycline.2

Ampyrone

Glibenclamide

Acridine

Chlorzoxazone

X510511110505.E12.CEL

Latarricoof

X540541112705.E12.CEL

Lisuride.1

Niclosamide

X5.araguarine

X5500024034290101707050.E04.CEL

Ethiaterona.3

X622623112706.E11.CEL

Antimycin.1
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Mebendazole has been demonstrated to have cytotoxic anti-
neoplastic potency in breast cancer [30], adrenocortical carci-
noma [31] and several other cancers [32]. Its effect on cancer 
cells is rooted in the ability to promote suppression of migra-
tion/invasion (in vitro) metastasis (in vivo) and tumor growth 
rate (in vivo) [30]. In this study, we screened for drugs to treat 
CLL, and the clinical effect still needs further research to verify.

Guanabenz is a synthetic drug that can elevate eIF2a-p by in-
hibiting de-phosphorylation of eIF2a-p [33], similar to the ef-
fect of salubrinal. The phosphorylated eIF2a (eIF2a-p) inhibits 
eIF2a activity and translation initiation and was demonstrated 
to promote apoptosis [34]. It was reported that administration 
of salubrinal stimulates apoptosis of leukemic cells [35]. Thus, 
we hypothesized that guanabenz stimulates apoptosis of leu-
kemic cells. However, Table 2 shows it is positively correlat-
ed with disease-induced pathways, similarly to methyl benze-
thonium chloride. The reason of this aberrance might be that 
the CLL B lymphocytes were stimulated with an anti-IgM an-
tibody, which influenced expression of genes and pathways.

Primaquine is a drug for radical cure of Plasmodium vivax ma-
laria, but its use is often hampered by safety concerns since it 
causes dose-dependent hemolysis in individuals who are defi-
cient in glucose-6-phosphate dehydrogenase [36], and hemo-
lysis one of the autoimmune complication that are common 
in CLL [37]. On the other hand, Soo et al. reported that prima-
quine increases imatinib clearance, bioavailability, and distri-
bution pattern, which could improve the treatment of chron-
ic myelogenous leukemia [38]. Therefore, we still need more 
research to verify its effect in CLL.

Naproxen is a potent nonsteroidal anti-inflammatory drug that 
inhibits both COX-1 and COX-2. It exhibits analgesic, anti-pyret-
ic, and anti-inflammatory activities. It was revealed that naprox-
en induces significant apoptosis and inhibits Akt phosphory-
lation [39]. It has reported that Akt is constitutively active in 
various types of leukemia and is responsible for uncontrolled 
proliferation and resistance to apoptosis in leukemia cells, pro-
viding a potential therapeutic target in leukemia [40]. Thus, 
naproxen was suggested as a therapeutic drug for CLL treatment.

Drug Sum ABSsum Rank score

CP.690334.01 19.599944 21.86954 0.1727514

X5500024034290101707050.E04 –19.307528 19.72240 0.2186308

Methylbenzethonium.chloride 15.509400 19.51497 0.2189624

Proxymetacaine –16.994467 17.08981 0.2350641

Dirithromycin –1.653874 22.41674 0.2448278

Guanabenz 14.260195 22.02237 0.2466435

Primaquine –14.400254 18.80216 0.2513455

X5500024034290101707046.E10 –14.732907 17.01374 0.2530762

Mebendazole –12.187068 17.40977 0.2550116

Naproxen 16.178064 16.40269 0.2555140

Lidocaine 14.575151 17.02255 0.2565994

Chlorzoxazone –4.121720 20.56024 0.2567613

Nitrofural –16.958575 19.39794 0.2567736

Chenodeoxycholic.acid 13.938889 16.12181 0.2573696

Promethazine –13.346200 17.62752 0.2585429

Methotrexate –2.564379 17.16506 0.2589465

Clindamycin –1.980943 21.75196 0.2599480

Lisuride 9.982621 20.29997 0.2604600

Benzethonium.chloride 14.071414 17.61407 0.2617151

Ioxaglic.acid 16.121434 16.87698 0.2621227

Table 2. Pearson Correlation analysis of 20 drugs in 104 disease samples.

Sum indicates Pearson Correlation Coefficients in all samples. ABS is absolute value. Rank score indicates the rank of ABSsum.
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Our study has some limitations. In theory, the positively corre-
lated drugs induce similar mechanism with disease, but in this 
study these drugs showed therapeutic effects for CLL. The rea-
son may be that all the CLL B lymphocytes samples involved in 
the study have stimulated in vitro with an anti-IgM antibody, 
which activates the B cell receptor (BCR). Thus, it is better to 
collected samples without any treatment. In addition, the ef-
fects of drugs for CLL B lymphocytes have not been verified 
experimentally. The samples were not large enough. There are 
some other important drugs, such as the CD20 monoclonal an-
tibodies, rituximab, ofatumumab and obinutuzumab, and the 
CD52 monoclonal antibody, alemtuzumab, which are current-
ly being investigated in clinical trials and are not involved in 
the present study.
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