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Our understanding of the scope and clinical relevance of gut microbiota metabolism of drugs is limited to rela-
tively few biotransformations targeting a subset of therapeutics. Translating microbiome research into the clinic
requires, in part, a mechanistic and predictive understanding of microbiome-drug interactions. This review pro-
vides an overview of microbiota chemistry that shapes drug efficacy and toxicity. We discuss experimental and
computational approaches that attempt to bridge the gap between basic and clinical microbiome research. We
highlight the current landscape of preclinical research focused on identifying microbiome-based biomarkers of
patient drug response and we describe clinical trials investigating approaches to modulate the microbiome
with the goal of improving drug efficacy and safety.We discuss approaches to aggregate clinical and experimen-
tal microbiome features into predictivemodels and review open questions and future directions toward utilizing
the gut microbiome to improve drug safety and efficacy.
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1. Introduction

Microbiome research has reinvigorated an ecological and metabolic
view of diseases, including, but not limited to, autoimmune and inflam-
matory diseases, metabolic diseases and cancers. Advances in culture-
independent methodologies for high throughput analysis of microbial
community composition and function, analytical chemistry techniques
and gnotobiotic mouse models have expanded our understanding of
gut microbiota-mediated biotransformations of exogenous compounds
including diet-based chemicals, environmental toxins and therapeutic
drugs [1,2]. In particular, recent studies provide mechanistic insight
into the role of gut microbiota metabolism in drug bioavailability, effi-
cacy and toxicity and suggest that the gut microbiome, in addition to
human genetics and environmental variables, contributes to inter-
personal variation in human drug responses [1,2].

However, we have limited insight into 1) the broader spectrum of
human gastrointestinal tract microbial species and enzymes that can
alter drug bioavailability and toxicity; and 2) the clinical relevance of
microbiome metabolism. These gaps in our understanding of gut
microbiome chemistry at both the community and individual gut strain
level present a challenge to incorporating data frommicrobiome studies
into accurate surrogate endpoints for clinical studies. Here, we describe
human andmicrobial drivers of variability in drug response, and discuss
current barriers and opportunities for translating basic research on mi-
crobial drug metabolism into clinical applications. We specifically focus
on model systems, experimental approaches and computational tech-
niques to characterize the microbiome and its interactions with drugs.
2. Connecting human and microbial drivers of variability in drug
response

2.1. Human metabolism and individual variation in drug response

Advances in high throughput sequencing and analytical chemistry
propel precisionmedicine initiatives that use genomic, gene expression,
proteomic and metabolomic data to inform patient treatment and care
[3]. Yet, using these diverse data types to systematically maximize
drug efficacy and minimize toxicity remains an open challenge. To-
wards addressing this challenge, pharmacology subdisciplines,
pharmacogenomics and pharmacometabolomics, aim to identify the
impact of human genetics and metabolism on patient drug responses
[4]. Among the early successes of pharmacogenomics research was the
identification of genetic polymorphisms in the UDP-
glucuronosyltransferase (UGT) enzyme family which catalyzes the
glucuronidation of drug compounds, promoting their inactivation and
elimination from the human body. Patients with specific UGT1A1 vari-
ants have lower glucuronidation rates, which impacts the detoxification
of a number drugs, including the HIV drug atazanavir, nonsteroidal anti-
inflammatory drugs (NSAIDs) and the chemotherapeutic irinotecan
[5,6]. Clinical laboratories can thus use anUGT1A1 genotype assay to de-
termine personalized patient toxicity risk [7]. Beyond UGT genotyping,
pharmacogenomics tests that target other hepatic enzymes involved
in drugmetabolism, such asmembers of the cytochromeP450 (CYP) su-
perfamily, may guide dosing decisions. For example, in the package in-
sert for warfarin, a commonly prescribed drug with a narrow
therapeutic range, the Food and Drug Administration (FDA) includes a
dosing guide based on a patient's CYP2C9 genotype [8,9].

Early proponents of pharmacogenomics hypothesized that genetic
polymorphism analysis in drug metabolizing enzymes and the human
genome more broadly would substantially improve clinical practice to
reduce poor efficacy and toxicity [10,11]. However, basic research ad-
vances characterizing how genome variants impact drug metabolism
have not been broadly translated into the clinic. In part, this discrepancy
relates to how drug metabolism has been traditionally characterized in
the context of the human liver and intestinal mucosa. The gut microbi-
ota is a third dimension in drug metabolism, providing a nonoverlap-
ping enzymatic capacity that generates distinct metabolites from host
enzymatic products and may also shape drug pharmacokinetics. Re-
search focused on extending pharmacogenomics and
pharmacometabolomics to include the impact of the microbiome on
drugs falls under the umbrella of pharmacomicrobiomics [12].

2.2. Microbiome chemical mechanisms shape drug metabolism

The gut microbiota alters drugs by various mechanisms: degrading
the drug [13,14]; activating the drug [13–15]; and modulating host en-
zymes that metabolize the drug [13,14] (Fig. 1). Known microbial reac-
tions that shape drug metabolism have been reviewed extensively by
Wilson et al., and Spanogiannopoulos et al., and highlight bacterial en-
zymes such as β-glucosidases, β-glucuronidases, aryl sulfatases,
azoreductases and nitroreductases, which have prominent roles in xe-
nobiotic metabolism and vary widely in activity, sequence similarity,
and abundance across individuals [1,2]. Hydrolytic and reductive reac-
tions are the primary chemical mechanisms of gut microbiota drugme-
tabolism. These reactions reflect the physiochemical parameters of the
distal intestine, which has a limited oxygen gradient. The gutmicrobiota
is also the source of numerous other chemical reactions including acet-
ylation, deamination, dehydroxylation, decarboxylation, demethyla-
tion, deconjugation and proteolysis [1,2]. To date, microbial strains
and enzymes have been experimentally demonstrated to directly or in-
directly impact the metabolism and efficacy of over 50 therapeutic
drugs, driving inter-patient variability in drug activation, inactivation
and toxicity [1,2].

2.3. Microbiome modulation of phase I and II drug metabolism enzymes

Microbial metabolism of dietary and endogenous compounds indi-
rectly shapes key host hepatic enzymes that broadly contribute to
drug metabolism. For example, Phase I hepatic enzymes account for
80% of oxidative metabolism of commonly used medications and in-
clude the cytochrome P450s (CYPs) superfamily and flavin-containing
monooxygenases (FMOs) [16]. Phase II hepatic enzymes include gluta-
thione S-transferases (GST), sulfotransferases (SULTs) and uridine
diphosphate-glucuronosyltransferases (UGTs) and play key roles in
drug detoxification and elimination from the body. The expression
and activity of these enzymes is modulated by gut microbiota metabo-
lism of uremic solutes, bile acids and steroid hormones; these
microbiome-drug interactions can have adverse consequences for pa-
tients taking drugs that are substrates for these enzymes [17,18].Micro-
biota produced uremic solute indoxyl sulfate decreases CYP3A4



Fig. 1. Gut microbiota-host liver metabolic interactions drive variability in drug response. a Hepatic and gut microbiome enzymes co-metabolize chemically diverse exogenously derived
substrates including foods, therapeutic drugs and environmental toxins. Key host hepatic enzymes include the cytochrome P450s (CYPs) superfamily and flavin-containing
monooxygenases (FMOs) [16] which are involved in phase I metabolism. Phase II enzymes including glutathione S-transferases (GST), sulfotransferases (SULTs) and uridine
diphosphate-glucuronosyltransferases (UGTs). Hydrophilic therapeutic drug and drug conjugates excreted from the liver into the gastrointestinal tract via the biliary route are
chemically modified primarily by gut microbiota hydrolytic and reductive reactions into hydrophobic products that can be reabsorbed via enterohepatic circulation [72], modified or
extensively degraded by the gut microbiota. Gut microbiota metabolism also indirectly regulates phase I and II hepatic enzymes by producing metabolites, including uremic toxins and
secondary bile acids, that alter hepatic enzyme expression and activity. b Gut microbiota enzyme catalyzed reactions have been linked to variation in patient response phenotypes. For
example, microbial mediated azoreduction transforms the anti-inflammatory drug, sulfasalazine, into bioactive products. 10% of healthy individuals are poor converters of sulfasalazine
[73]. Microbial metabolism also negatively impacts host drug responses. Approximately 10% of patients given the cardiac glycoside, digoxin, excrete high levels of an inactive
metabolite which is generated by microbial enzymes [74]. 25% of patients taking Irinotecan with 5-fluorouracil and leucovorin for the treatment of colorectal cancer experience grade
3–4 diarrhea which is mediated by microbial β-glucuronidase reactivation of a major inactive metabolite of the drug [75].
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expression, reducing CYP3A4 mediated metabolism clearance of a di-
verse range of therapeutics including erythromycin, nimodipine and ve-
rapamil (Fig. 1) [19].

2.4. Therapeutic drug influences on the gut microbiome

Research studies defining how therapeutic drug moderation the gut
microbiome can play a central role in a drug's mechanism of action are
limited. Of note, metformin, an antidiabetic drug, has a poorly defined
mechanism of action and is known to alter gutmicrobiome composition
[20,21]. Recently Sun et al., used a combinedmetabolomics and shotgun
metagenomic approach using human serum and feces to conclude that
metformin decreases the abundance of Bacteroides fragilis, limiting its
bile salt hydrolase activity and promoting an increase in
glycoursodeoxycholic acid concentrations in the gut [20]. Sun et al.,
also used a mouse model to confirm that glycoursodeoxycholic acid
suppresses intestinal farnesoid X receptor signaling and alleviates
obesity-related metabolic disease [20]. Recent work by Maier et al., il-
lustrates the off-target effects of therapeutic drugs on the microbiome.
Maier identified non-antibiotic therapeutic drugs that inhibit the
growth of specific gut relevant bacterial strains [22]. Additional work
by Brochado et al., also highlights inter-species variation in sensitivity
to therapeutic antibiotic and non-antibiotic compounds [23].

3. Ex vivo and animal models for microbiome drug metabolism
research

3.1. Models of the human gastrointestinal tract

Experimental models for the study of human gastrointestinal tract
(GIT) phenotypes reflect different features of the physiological com-
plexity and biogeography of the human GIT. Defined anatomically, the
GIT is a continuous tube, approximately 9 m in length in an adult
human, that includes the pharynx, esophagus, stomach, duodenum, je-
junum, ileum, colon, cecum and rectum [24]. Microbes populate the en-
tire GIT, from the oral cavity to colon [25]. The activity ofmicrobes in the
small (duodenum, jejunum and ileum) intestine and colon, is of partic-
ular interest for human microbiome researchers, as these are the key
sites for microbial activity. Choosing an appropriate study design,
based in part on how anatomical and physiological features of the
colonmay impact its microbial ecology, may help address the challenge
of reproducing findings from model systems to human biology.

3.1.1. Ex vivo colon models
Ex vivo colon models are a powerful approach to replicate the com-

plexity and dynamics human gut microbial communities. Batch or con-
tinuous fermentation systems replicate the anaerobic condition of the
colon and allow specification of physiological parameters such as pH
and dissolved oxygen [26]. A human fecal sample prepared under an-
aerobic conditions serves as the initial inoculum into a multichambered
bioreactor. Takagi and colleagues developed a single-batch fermenta-
tion system to evaluate the effect of prebiotics on the colonicmicrobiota
and found that supplementation with prebiotic oligosaccharides in-
creased the abundance of the genus Bifidobacteria and acetate produc-
tion [27]. Fermentation systems can be manipulated through the
introduction of substrates of interest,monitored and sampled at defined
timepoints. However, there are concerns about how well the fecal mi-
crobiota approximates the activity of colon. Comparative intestinal
and fecal sampling in a limited number of human and primate studies
identified overlapping but distinct microbial communities between
the small intestine, colon and fecal community [28,29].

A second class of ex vivo colon models, enteroids and organoid cul-
tures, replicate key host physiological features. These cultures are gen-
erated from heterogenous cell populations that self-organize into
three-dimensional structures that recapitulate features of the small in-
testinal epithelium [30]. These systems have been employed to gain
insight into host-viral and host-bacteria interactions. For example,
Finkbeiner et al. established an organoidmodel that supported rotavirus
infection after inoculation with rotavirus infected stool [31]. Forbester
et al. used an intestinal organoid model to assess interactions between
the enteric pathogen, Salmonella enterica serovar Typhimurium with
the intestinalmucosa [32]. Enteroids and organoids suffer fromoverlap-
ping disadvantages with fermentation systems in that they can take
months to stabilize for use [30]. It is also challenging to mimic and cul-
ture anaerobes under the conditions necessary to support organoid and
enteroid systems. For example, in an organoid model of Clostridioides
difficile (C. difficile) infection, the pathogen was viable for a maximum
of 12 h [33].

3.2. Model systems in the study of microbiome-drug interactions

3.2.1. Rodent
Mouse models are considered the gold standard in terms of

balancing tractability with approximating the anatomical, physiological
and microbial features of human microbiomes. Both humans and mice
are dominated by the microbial phyla Bacteroidetes and Firmicutes
but vary at the genus level [34,35]. However, humanshave a lower glan-
dular pH stomach, a significantly thicker layer of mucin as a part of the
epithelial barrier in the colon, an appendix and a segmented colon
[34,35]. As highlighted in Section 2.4, mouse models play a powerful
role in confirming mechanisms of microbiome-host-drug interactions
that are identified through human studies.

3.2.2. Other whole organism model systems
Scott et al., used the worm Caenorhabditis elegans to investigate the

role of host-microbe co-metabolism on the efficacy of fluoropyrimidine
cancer drugs and identified several mechanisms by which microbial
metabolic processes shape fluoropyrimidine efficacy. Bacteria convert
the prodrug 5-fluorocytosine to 5-fluorouracil and the bacterial deoxy-
ribonucleotide pool shapes 5-fluorouracil induced autophagy [36]. The
advantages of using C. elegans include its short generation time and
high tractability [37]. The zebrafish (Danio rerio) represents a vertebrate
model for microbiome research. Zebrafish models have been employed
to study the role of microbes in development [38]. Phelps et al., used a
zebrafish model to uncover a role of microbial colonization in normal
neurobehavioral development [39]. These systems,while less expensive
than mice and more readily genetically tractable, recapitulate neither
human physiology nor microbiome composition.

4. Community level analysis of microbiome function

4.1. High throughput sequencing

Our current knowledge of the microbial inhabitants of our gut is
based primarily on community level analyses. Amajor unmet challenge
is to design species level analyses that appropriately contextualize how
individual species function within a larger community and to replicate
the complexity of interactions in the gut environment. Towards ad-
dressing this challenge, the use of 16S ribosomal RNA (rRNA) sequenc-
ing and metagenomic shotgun sequencing of fecal samples can be
employed to characterize the microbial community resolved at the
level of species or strains and functional potential. The 16S rRNA gene
has a region that is widely conserved across bacteria and a hyper-
variable region that allows classification of bacteria into closely related
groups. Sequences that contain similar hyper-variable regions are clus-
tered into Operational Taxonomic Units (OTUs) [40]. Recently, new
methods have been developed to replace OTUs with Amplicon Se-
quence Variants (ASVs) as the “unit of analysis” [41].

4.1.1. Metagenomics and metatranscriptomics
Taxonomic studies are thus far limited in predicting human disease

and health states [42,43]. Shotgun metagenomics, an alternative
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approach, is the untargeted sequencing of the total DNA of a sample,
providing insight into both phylogenetic diversity and the abundance
of functional genes. Metatranscriptomics studies provide insight into
community-level gene expression, a more direct measure of
microbiome functional activity. These approaches are more expensive
than 16S-based profiling and share technical and computational chal-
lenges. Assembling metagenomic and metatranscriptomics data and
downstream statistical analyses to assess differences in microbial fea-
tures are not standardized, contributing to variability in significant func-
tional features between studies [42].

4.2. High throughput protein and metabolite analyses

4.2.1. Metaproteomics and metabolomics
While not yet used as a standard component of human microbiome

research, metaproteomic and metabolomic analyses provide comple-
mentary and more direct insight into active functions of gut microbes
than metatranscriptomic or metagenomic approaches. These analyses
are based on the use of mass spectrometry coupled to a variety of
front-end molecular separation approaches. Using combined and
metagenomic and metaproteomic analysis Erickson et al. found signifi-
cant differences in protein expression in the intestinal barrier between
individuals in good health and those with Crohn's disease [44].
Microbiome studies including metabolomics have found that greater
microbiota mediated p-cresol formation competitively reduced acet-
aminophen sulfonation and excretion in the urine, and is a key source
of inter-personal variation in acetaminophen metabolism [45]. To
date, targeted approaches, quantifying a defined set of metabolites,
and untargeted approaches have been used to follow the fate and inter-
play betweenhost and gutmicrobiota generatedmetabolites. For exam-
ple, we used a combined shotgun metagenomic and targeted
metabolomic approach to quantify inter-individual variability in
microbiome metabolism of a glucuronidated metabolite of a chemo-
therapeutic drug and linked a high turnover phenotype to specific mi-
crobial β-glucuronidases [46]. There are notable bottlenecks that
restrict the use of these approaches inmicrobiome studies including ex-
pense and the tradeoffs between efficient protein or metabolite extrac-
tion from fecal or intestinal samples while maintaining mass
spectrometry sensitivity [47].

5. Computational approaches to pharmacokinetics in microbiome
research

5.1. Computational approaches to pharmacokinetics in microbiome
research

There are several computational approaches to model and predict
drug pharmacokinetics and microbial metabolic processes that support
the quantitative in silico assessment of microbiome-drug interactions.
These approaches, which most notably include physiologically based
pharmacokinetic (PBPK) models and constraint-based reconstruction
and analysis (COBRA) methods, rely on data gathered from high
throughput sequencing and analytical chemistry approaches.

5.1.1. Physiologically based pharmacokinetic (PBPK) models
PBPK models represent whole body drug kinetics with differential

equations [48]. The model system is defined by compartments corre-
sponding to specific tissues of the body such as the liver, kidney, gut,
or lung. System-specific parameters are derived from experimental
data such as enzyme and transporter expression, organ volumes and
blood flow. Drug-specific parameters include drug physiochemical
properties and tissue permeability. Traditionally these models exclu-
sively modelled human metabolism; however, several studies have in-
cluded microbial enzymes among the system-specific parameters. For
example, Boajian Wu developed a PBPK model to evaluate the impact
of GIT glucuronide hydrolysis of SN-38 Glucuronide, a key inactive
metabolite of the chemotherapeutic irinotecan, on the pharmacokinetic
profile of the active compound, SN-38. In this two-compartmentmodel,
encompassing the liver and gut, Wu found GIT microbial β-
glucuronidase activity increased intestinal exposure to SN-38 but not
systemic exposure [49]. Recently, Zimmermann et al., used gnotobiotic
mouse studies involving a specific gut colonist that varied in its
encoding of single enzymes to quantify brivudine metabolism in vivo
and to construct a pharmacokinetic model to quantitatively predict
microbiome contributions to systemic drug and metabolite exposure
and to distinguish host and microbe contributions [50].

5.1.2. Constraint-based reconstruction and analysis (COBRA)
COBRA methods use formalized metabolic models to simulate, ana-

lyze and predict metabolic phenotypes including how microbes utilize
various metabolic processes, host-microbe interactions and microbe-
microbe interactions [51,52]. In the context of drug metabolism,
Swagatika et al., employed COBRAmethods tomodel the effects of com-
monly used drugs, including statins, anti-hypertensives, analgesics and
immunosuppressants, on humanmetabolism [53]. They found that diet
shapes human metabolism and elimination of acetaminophen and
statins [53]. In particular, a low L-cysteine vegetarian diet resulted in a
reduction in sulfation and excretion of acetaminophen metabolites. Re-
duced sulfation can be attributed to low levels of sulfur containing com-
pounds such as L-cysteine, which contributes to the biosynthesis of a
critical co-factor, phosphoadenylyl sulfate, for sulfation reactions [53].

There have been notable efforts to integrate the strengths of PBPK
and COBRA methods [54,55]. Krauss et al., combined COBRA and PBPK
methods to more accurately predict allopurinol pharmacokinetics and
pharmacodynamics. Allopurinol is a preventative antigout medication
that prevents increases in uric acid levels and alters gutmicrobiota com-
position [56]. The authors predicted the pharmacological effects of allo-
purinol on the biosynthesis of uric acid and reported a 69.3% decrease in
uric acid concentrations which is supported by clinical data [55]. Future
use of these approaches will enable both a systems level and targeted
mechanistic understanding of host-microbiome metabolism.

6. Bringing insights frommicrobiome-drug interaction studies into
the clinic

6.1. Microbiome metabolic phenotyping

The impact of themicrobiome on the efficacy and toxicity of the che-
motherapeutic irinotecan and the cardiac drug digoxin are relatively
well characterized (Fig. 1b). In the case of metastatic colorectal cancer
patients receiving irinotecan (CPT-11), microbial β-glucuronidases hy-
drolyze the glucuronide group from the major inactive metabolite of
CPT-11, SN-38 glucuronide. A build-up of SN-38 in the colon causes ep-
ithelial cell damage that contributes to severe diarrhea in some patients
[15,57]. Using a combined shotgun metagenomics and targeted meta-
bolomics approach, a group previously identified a phylogenetically di-
verse set of bacterialβ-glucuronidases and transporter proteins that are
associatedwith high turnover of SN-38 glucuronide and a potentially el-
evated risk of irinotecan dependent toxicity [46]. Defining themetabolic
and metagenomic basis of variability in drug metabolism using ex vivo
incubations of drugs with human fecal samples may suggest putative
biomarkers of a patient's risk of poor drug efficacy and safety.

6.2. Developing drug metabolism classifiers

To datemetabolic phenotyping studies ofmicrobe-drug interactions
pairing DNA or RNA high throughput sequencing with metabolomics
reveal that the level of gut microbiome complexity linked to drug me-
tabolism varies between drugs [45,46,58]. A major hurdle is under-
standing what microbiome features identified through these
preclinical studies, using model systems or human fecal samples as a
proxy for the gut microbiome, will translate into accurate surrogate
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endpoints for clinical studies. For example, the presence or absence of a
particularmicrobe or enzyme in a sequenced fecal samplemay not have
the power to predict drug metabolism.

One approach to overcome this hurdle is to combine features using
machine learning to identify the combinations of featuresmost strongly
predictive of drug metabolism. One such supervised learning approach
is the “random forest” [59,60] method, which can be used to combine
chemical, molecular, and clinical features. Initially one could define
drug metabolism as a binary value where every sample is labeled as ei-
ther “high” or “low” based on drug concentrations in a fecal sample
from a patient. A receiver-operator curve plotting true-positive and
false-positive rates can then be used to assess performance on different
combinations of feature sets [61]. To target specific features that drive
predictions one can calculate the importance of individual features to
prediction accuracy by calculating the mean decrease in accuracy per
feature [60]. This analysis outputs the highest performing feature set
and classifier to be usedwith future patient data for a givendrug (Fig. 2).

6.3. Clinical trials

6.3.1. CPT-11
There are a number of clinical trials investigating the efficacy of

probiotics tomodulatemicrobiome-dependent adverse drug responses.
A randomized, double blind design was carried out to investigate the
potential for probiotic use tominimize CPT-11 induced toxicity. Patients
were randomized in to a probiotic group (PRO) and a placebo group
(PLA). 39% of patients in the PRO group experienced grade 3–4 diarrhea
while 61% of participants in the PLA group experienced diarrhea
Fig. 2. Pipeline for metabolic phenotyping andmodulation of microbiome driven adverse drug r
metabolizers (HM) from low drugmetabolizers (LM). For patients treatedwith therapeutic dru
reflect an elevated risk for drug-dependent toxicity. The main steps for metabolically phenotyp
classifier training and testing, followedby the selection of key features that predict outcomeand
preclinical and clinical studies and might include multi'omic data derived from both microbio
further predictive and mechanistic insight into drug pharmacokinetic profiles and aid in the
new patients taking susceptible therapeutics into either HM or LM ‘metabotypes’ based on n
may undergo pre-treatment therapy, ranging from the use of probiotics and prebiotics to FMT
safety.
(Table 1) [62]. Future studies of a similar design may also address how
diet influences microbiome β-glucuronidase activity and patient toxic-
ity by including metagenomics or metatranscriptomic sequencing
from fecal samples to assess microbiome function.

Recent efforts to reduce CPT-11 toxicity also include targeted inhibi-
tion of microbial enzymes that convert the inactive form of the drug to
its active form. Wallace et al., 2010, identified potent Escherichia coli β-
glucuronidase inhibitors which substantially reduce CPT-11 induced
toxicity in mice while having no effect on the orthologous mammalian
enzyme [15]. A clinical trial establishing the safety and efficacy of this
approach in human population has the potential to yield valuable in-
sight into the efficacy of targeted, small molecule modulators of specific
microbiome functions.

6.3.2. Tacrolimus
Tacrolimus is an immunosuppressant commonly used for kidney

transplant recipients. A narrow therapeutic range limits its efficacy: un-
derexposure increases the risk of graft rejection and over-exposure in-
creases the risk of drug-related toxicity [63]. An ongoing clinical trial
focused on identifying biomarkers of successful discontinuation of im-
munosuppressants including tacrolimus for patients with liver disease,
includes microbiome profiling as a secondary outcome measure for a
trial (Table 1). However, preclinical research provides compelling evi-
dence of a role of the gut microbiota in patient outcomes.

In a pilot study of kidney transplant recipients, patients who re-
quired a 50% increase in the standard dose of tacrolimus to maintain
therapeutic levels had a greater abundance of Faecalibacterium
prausnitzii [64]. Subsequently, Guo et al., reported that tacrolimus is
esponses. a The construction of a high performance classier (HPC) to distinguish high drug
gs that are susceptible to glucuronidation, such as irinotecan and NSAIDs, being a HMmay
ing of HM and LM patients include data aggregation and preparation as input features for
evaluation of classifier performance. The feature space for the classifier can bederived from
me and host studies. This data can be integrated into hybrid COBRA-PBPK models to gain
identification of key host and microbiome parameters. b The HPC can be used to stratify
on-invasive fecal sampling alone or in addition to host biological samples. HM patients
, to modulate the microbiome towards a LM profile and improved treatment efficacy and



Table 1
Clinical trials investigating microbiome intervention and profiling approaches to improve drug efficacy and safety.

Drug (s) ATC Classification Target
Outcome

Microbiome Intervention Phase N NCT Status

Xanthohumol Anti-cholesterol,
Anti-inflammatory

Establish PK Microbiome profiling 1 32 NCT03735420 Not yet
recruiting

Metronidazole Anti-infective ↑ Efficacy Probiotic: Lactobacillus GG 4 0 NCT00304863 Withdrawn
Antibiotic-unspecified Antibiotic ↓ Toxicity Probiotic: BioGaia Lactobacillus reuteri NA 73 NCT02127814 Completed
Irinotecan Antineoplastic agents ↓ Toxicity Probiotic: PROBIO-FIX INUM 3 100 NCT02819960 Recruiting
Irinotecan Antineoplastic agents ↓ Toxicity Probiotic: Colon DophilusTM 3 46 NCT01410955 Completed
Irinotecan Antineoplastic agents ↓ Toxicity Antibacterial: Cefpodoxime 1 20 NCT00143533 Completed
VEGF-TKI Antineoplastic agents ↓ Toxicity Probiotic: Activia yogurt containing Bifidobacterium

lactis DN-173010)
NA 20 NCT02944617 Recuriting

Dacomitinib Antineoplastic agents ↓ Toxicity Probiotic: VSL 3 2 236 NCT01465802 Completed
Tenofovir Antiviral ↑ Efficacy and

Safety
Fecal Microbiota Transplant NA 64 NCT02689245 Completed

Chemotherapy-unspecified Chemotherapy-unspecified ↓ Toxicity Probiotic: VSL 3 NA 20 NCT03704727 Recruiting
Tacrolimus Immunosuppreseant ↑ Efficacy and

Safety
Microbiome profiling 4 148 NCT02498977 Recruiting

Pembrolizumab Monoclonal antibody ↑ Efficacy Fecal Microbiota Transplant 2 20 NCT0334113 Recuriting
Aspirin NSAID ↓ Toxicity Probiotic: 2 109 NCT03228589 Completed
Aspirin NSAID ↓ Toxicity Microbiome profiling NA 100 NCT03450317 Recruiting
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converted into less potent metabolites by Faecalibacterium prausnitzii
and other Clostridiales in monocultures as well as by the fecal microbi-
ota from healthy individuals [65]. Given that the host physiological and
pharmacokinetic parameters relating to tacrolimus are well defined, in-
cluding the identification of host CYP3A4*22 and CYP3A5*3 polymor-
phisms linked to variable tacrolimus levels [66], there is an
opportunity to integrate known data regarding host and microbe me-
tabolism of the drug into an integrated PBPK and COBRA model.

6.3.3. Xanthohumol
Xanthohumol is a prenylated flavonoid and promising anti-

cholesterol and anti-inflammatory candidate therapeutic. The mecha-
nisms for its antiatherogenic properties are diverse and include the inhi-
bition of triglyceride synthesis, prevention of low density lipoprotein
oxidation and the promotion of reverse cholesterol transport in macro-
phages [67,68]. In vitro, xanthohumol has strong antimicrobial activity
against Bacteroides fragilis and toxigenic, clinically relevant, strains of
C.difficile [69]. Microbial metabolism has been linked to the bioactivity
and toxicity of xanthohumol. For example, the gut microbiota converts
xanthohumol into 8-prenylnaringenin, an estrogenic phytoestrogen,
and then further metabolizes the compound into less potent end prod-
ucts [70]. Eubacterium ramulus, from the abundant human microbiome
genus Eubacterium, metabolizes xanthohumol extensively in vitro70.
How the microbiome contributes to xanthohumol efficacy and toxicity
is the focus of an ongoing Phase I randomized, interventional clinical
trial (Table 1).

7. Conclusions and future prospects

The extent to which the gut microbiome influences variability in
population level therapeutic drug efficacy and toxicity is unknown. Fur-
thermore, we have limited insight into the underlyingmechanisms, en-
zymes, metabolites and species that play key roles in microbiome-drug
interactions. A broader map of the metabolic potential of gut microbes
will support the development of predictive models of how drugs and
foods are modified by the host microbiome, enabling crucial insight
into the microbial enzymes and pathways that are responsive to drugs.

Collectively, mechanistic animal model studies, high throughput se-
quencing and computational approaches used to investigate the
microbiome-drug interactions, represent a pipeline for the prediction
and modulation of gut microbiome driven adverse drug responses in
the clinic (Fig. 2). A shift away from snapshot study designs towards
longitudinal human studies that monitor microbiome function over
time and at varying levels of granularity may accelerate our discovery
of population-level variability in drug response. Longitudinal study
designs, depending on their resolution, offer unique insights into how
microbial communities respond to a particular perturbation [71].

8. Outstanding questions

Among the outstanding questions to address through preclinical
studies and randomized clinical trials are: Is a patient's pre-treatment
microbiome predictive of her drug response outcome? What
microbiome features aremost predictive?What is the temporal stability
of patient microbiome phenotypes? How does diet and antibiotic use
impact therapeutic drug treatment?What host factors are key modula-
tors of microbiome activity that may shape drug response outcomes?
Addressing these questionswill enable us to reengineermicrobial inter-
actions to better promote drug safety and efficacy.

9. Search strategies and selection criteria

Clinical trial data for this review was identified by searches of
ClinicalTrials.gov in addition to PubMed and references from relevant
articles using the search terms “microbiome”, “microbiota”, “drug”,
“metabolism”, “drug treatment”, “gene expression”, “metagenomics”,
“prebiotic”, “probiotic”, “intervention”,“16 s” and “NOT
‘review’[Publication Type]”. Only articles published in English between
2010 and 2019 were included with an exception for those introducing
key terms for the first time; preference was given to articles published
between 2016 and 2019.
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