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Abstract: Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-
healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these
methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of
these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE),
in which novel engineering and biological approaches are introduced to accelerate the development
of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and
cell sources have been employed for CTE to either recapitulate microenvironmental cues during a
new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical
and biomechanical properties of the original tissue. Towards modifying current cartilage treat-
ments, advanced hydrogels have been designed and synthesized in recent years to improve network
crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on
the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage
tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric
hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of
advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed.
Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods
for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article
then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of
prevalent challenges and future outlooks for self-healing hydrogels in CTE applications.

Keywords: polymeric hydrogels; self-healing; articular cartilage; tissue engineering

1. Introduction

Cartilage defects as a result of aging and degenerative pathology, sports-related in-
juries, unexpected events, fatness, diseases, etc. have been noticed for more than 200 years.
Non-vascular and finite cellular tissue of cartilage causes its limited regeneration [1]. With
the growth of the elderly population in recent years, it is predicted that more than 15% of
people aged 60 years and older (nearly 310 million people) will develop cartilage-related
problems [2]. Although surgical methods, such as cartilage chondroplasty and microfrac-
tures, have been developed to treat cartilage defects, they have been unable to entirely
repair the damaged cartilage. The current restrictions of cartilage surgery, such as compli-
cated surgical procedures, post-infection, risk of the immune response, and poor-quality
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of the regenerated cartilage, have created a research field in tissue engineering and bio-
logical sciences to advance new cartilage tissue treatments [1–3]. However, the important
constraint limiting CTE outcomes is the poor cell migration and growth inside implanted
scaffolds, which yields new cartilage with undesirable physiological properties [2,3].

Hydrogels are appearing as an attractive class of biomaterials for organ regeneration
and tissue repair due to interesting properties including tunable elasticity and stiffness,
high-water content (typically 70%–99%), excellent biocompatibility, biodegradation, etc.
Their three-dimensional (3D) network structures are made of natural macromolecules
and/or synthetic polymers upon physical/chemical cross-linking [4]. The mechanical
strength of the natural hydrogel scaffolds can range from 0.45 to 5.65 MPa [4] while
synthetic hydrogels could attain 15–125 MPa [4]. In recent years, hydrogels for various
biomedical applications have been prepared via the blending of both natural and synthetic
polymers, thereby permitting the regulation of the physical and chemical characteristics
of final products to meet their ultimate application [5]. Hydrogel properties can also be
modified through chemical functionalization and physical manipulation (e.g., scaffold-
ing) to mimic physicochemical and biological properties desired for a particular tissue
construct [4,5].

Self-healing ability is one of the interesting properties of native tissues to repair injuries.
Due to tensions and stresses exerted during physical activities, implanted hydrogels usually
experience microcracks and structural defects. These microcracks gradually grow in size
and finally yield to failure of the hydrogel structure [6]. Tissue engineering has taken a
novel path for the regeneration of cartilage by using self-healing hydrogels. Self-healing
hydrogels offer unique benefits such as self-repairing of damages, retaining structural
integrity, and long-term functionality [7–9]. Despite many similarities between synthetic
self-healing hydrogels and the extracellular matrix (ECM), hydrogels have demonstrated
some drawbacks such as insufficient mechanical strength, low fracture energies (<15 J m−2),
low cell viability, etc. [10]. As presented by some researchers, self-healing hydrogels with
tunable mechanical properties have gained significant attention in tissue engineering and
are desirable for organ regeneration, particularly for CTE [4,11,12].

The timeline of the major developments in CTE is presented in Figure 1. It started with
the simple definition of hydrogel in 1960 and has reached the novel bioprinting for CTE
using advanced hydrogels. Its focus on CTE for cartilage repairing also briefly addresses
the development of hydrogels for CTE applications. Several review papers studied different
natural and synthetic biopolymers and their properties, their recent advances including
nanocomposites and interpenetrating networks, etc., fabrication of hydrogel scaffolds, and
fillers utilized as hydrogel components for cartilage repairing [13–16]. Additionally, some
papers considered self-healing hydrogels in tissue engineering. However, these articles
did not provide an overall and comparative classification of the self-healing hydrogel for
CTE application, which is essential from the material selection point of view. While several
research groups have comprehensively reviewed self-healing materials, these publications
have rarely focused on applying such systems in CTE. In the current manuscript, we
concisely explained self-healing hydrogels in CTE. This review summarized the latest
efforts for the preparation of hydrogels for cartilage-repairing applications, with a particular
focus on advanced self-healing hydrogel. Therefore, the outstanding goal of the current
review was to reinforce the importance of modification and improvement of the high-
performance hydrogels in CTE.
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Figure 1. A timeline for the most important developments in the history of cartilage repairing with focus on hydrogel-based
CTE. Reproduced with permission from Refs. [16,17].

2. Cartilage Structure

The main role of cartilage is to create a low-friction area inside synovial joints that
provides the skeleton connections with load transmission capabilities during a range of
motions in different activities [14]. The cartilage has a complex avascular and aneural
structure. The superficial (external), the middle (central zone), the deep zone, and the
calcified zone are the four basic layers of cartilage wherein their thickness depends on the
ECM contents, structure, and chondrocyte status. Figure 2A,B shows components and
various types and the four main zones of hyaline cartilage tissue [3].

In general, this complex texture is composed of water, various types of collagen,
proteoglycans, and chondrocytes. The interaction of these components during cartilage
formation leads to the formation of a robust tissue construct that can tolerate the incoming
mechanical tensions and loads [3,18]. For example, articular cartilage tissue contains
70%–85% water and 60%–70% (of the dry weight of cartilage) collagen [19]. While collagen
type II is the basis for articular cartilage and hyaline cartilage, collagen types I, III, V,
VI, IX, XI-XII, and XIV also exist in the cartilage. Proteoglycans, as the next prevalent
portion of cartilage, comprise around 30% of the dry weight of cartilage and are made of
hyaluronic acid (HA) backbone with sulfated glycosaminoglycans (GAGs) branches [18].
The mentioned portions together are considered as ECM. Chondrocytes produce the ECM
components; however, they organize 2% of the volume of mature cartilage [2].

An amorphous layer on the outer surface of the cartilage protects the cartilage surface
and plays an essential role in lubricating the knee joint. This layer has approximately
equal quantities of glycosaminoglycan (GAG), protein, and lipid [20]. Articular cartilage is
also surrounded by a synovial fluid—made of water, hyaluronan, proteins, proteoglycans,
and lipids—which acts as a lubricant to reduce friction between cartilage and meniscus
surfaces [21].
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Figure 2. (A) Cartilage tissue component and its types in the human body; (B) main layer of hyaline cartilage tissue.
Reproduced with permission from Refs. [3,22].

2.1. Mechanical Properties of Cartilage

Articular cartilage made of a proteoglycan gel reinforced matrix by collagen fibers
has the main task of load bearing and its distribution in the knee. Articular cartilage
dis-plays properties such as high stiffness (fracture energy (toughness) ≥1000 J m−2 [20],
stiff-ness ≥1 MPa [22]), and high tensile resistance (≥30 MPa) [21]. Tensile elongation
of up to 140% limits its stretchability [23]. The most important factors in the design of
the cartilage scaffolds are biocompatibility, biodegradability, enhanced cell differentiation,
stability, suitable mechanical properties and porosity, cell adhesion, and accretion with
the adjoining native cartilage [22,23]. Currently, design views for tough hydrogels have
been focused on the effective damping of mechanical energy around the damaged area
through the fracture of weak bonds. Tensile, compressive, permeability, and shear tests are
the main techniques to determining cartilage mechanical properties and highly depend
on test methods [24]. Additionally, the types of cartilage, strain value, depth from the
articular surface, and maturation of cartilage tissue affect tensile, compressive modulus,
and permeability of cartilage tissue. A wide range of 0.08–2.5 MPa is reported for the
confined equilibrium compression modulus (for superficial and deep zones of cartilage,
respectively). Additionally, the tensile modulus of the superficial layer in mature human
cartilage is ~25 MPa, while it is 5.5 MPa in the middle zone and 4.5 MPa in the deep
layer. The hydraulic permeability varies between 0.3 × 10−17 to 4.6 × 10−15 m2/ (Pa. s) in
articular cartilage [21,24,25], 11.15 × 10−16–15.85 × 10−16 m2/(Pa. s) in the knee joint [26],
and 0.9 × 10−17–2.9 × 10−15 m2/(Pa. s) in nose cartilage [27].

Mechanical properties including the equilibrium shear modulus, Poisson’s ratio,
and aggregate modulus change notably for different joint positions. Additionally, these
properties are dependent on the anisotropies existing within the cartilage, the sample area,
and the sample orientation in test machines [21]. Some properties of cartilage, including
Poisson’s ratio and Young’s modulus, do not depend on the applied test method and the
alteration in these properties in different joint positions provides values within a particular
range [21]. These typical values of the mechanical properties of cartilage are summarized
in Table 1.
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Table 1. Mechanical and biological properties of natural articular cartilage.

Mechanical Property Value Test Method Ref.

Aggregate modulus (MPa) 0.10–2.1 Confined compression [22]

Hydraulic permeability (m2/Pa.s) 10−16–10−15 Unconfined compression,
indentation [22]

Compressive Young’s modulus (MPa) 0.23–0.85 Unconfined compression [22]

Poisson’s ratio 0.05–0.30 Unconfined compression [22]

Tensile equilibrium modulus (MPa) 5.0–12.0 Tensile stress relaxation [22]

Tensile Young’s modulus (MPa) 5.0–25.0 Tensile constant strain rate [22]

Tensile strength (MPa) 0.7–25.0 Equilibrium shear [22]

Equilibrium shear modulus (MPa) 0.05–0.40 Equilibrium shear [22]

Complex shear modulus (MPa) 0.2–2.5 Dynamic shear [22]

Shear loss angle (◦) 10–15 Dynamic shear [22]

Biological property Value Ref.

Initial cell seeding ≥63 million cells/mL [28]

Osmolality Physiological osmolality [29]

Extracellular pH 7–8 [29]

Pore size 2.5–6.5 nm [29]

Growth factors PDGF, TGF-β, FGF, BMP, IGF [29]

Mechanical loading (dynamic compression) 2–10% strain or 0.5–1.0 MPa at physiological frequency
0.01 to 1.0 Hz [29]

The biological properties are another main factor that depends on the mechanical
properties of the tissue constructs. For example, the high loss angle and plastic deformation
occur in highly porous scaffolds (pore size ≥250 µm), although the storage modulus and
aggregate modulus reduce in such scaffolds. Mainly, small pore size (≤200 µm) causes
lower aggregate modulus, propagation, and transition of nutrients and essential material;
so, the suitable pore size and its propagation are essential for cell delivery and development
of cartilage tissue [18]. Additionally, surface roughness and friction coefficient are two
measurable tribological characteristics in both native and engineered articular cartilage.
Native cartilage has a smooth and shiny surface with friction coefficients as low as 0.001 up
to physiologically high pressures. However, human-made hydrogels are unable to match
that of the native tissue [20,30].

In addition, different scaffold materials are identified with distinct chondrocytes and
mechanical and biological properties and could be utilized for controlling the mechan-
ical properties of the engineered cartilage [31]. For example, the mechanical properties
of poly(glycolic acid) (PGA) scaffolds are higher than the one with similar geometry
made of poly(lactic acid) (PLA). Additionally, synthesized polyglyconate (PG) increases in
poly(glycolic acid) scaffolds, whereas the synthesis of collagen type II enhances in collagen-
based scaffolds [29]. Using an IPN scaffold helped to minimize the surface roughness of
the scaffold by approximately 80%.

2.2. Damage and Treatment of Cartilage

Articular cartilage defects are one of the major clinical challenges for orthopedic sur-
geons and typically begin due to trauma, unusual mechanical forces during an activity,
aging, etc. Due to the limited ability of cartilage to self-regenerate, local lesions can lead to
debilitating joint pain, functional impairment, and degenerative arthritis [24]. Articular
cartilage incapability self-repair is attributed to its avascular nature of cartilage tissue,
catabolism reflex to pathological inter-mediators, finite capability of progenitor cells mi-
gration, proliferation, and ECM production [32]. Nowadays, two main healing techniques
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are applied to treat cartilage injuries: surgical approaches and tissue engineering [33].
Depending on structural defects in the cartilage, an inevitable surgical intervention includ-
ing osteotomy, autologous osteochondral graft transplantation, or total joint replacement
is required. Chondroprogenitor cells from bone marrow or blood cannot easily reside
within the injured area of the cartilage to repair it; therefore, the healing process begins
within a few weeks. The tissue regenerated by the cartilage self-healing process is gener-
ally fibrotic and has poor mechanical and structural properties compared with the native
healthy tissue [32,34]. The available surgical methods such as microfracture, mosaicplasty,
transplantation of autologous chondrocyte transplantation and supportive matrix methods,
and osteochondral allograft for healing of cartilage defects can alleviate pains and recover
joint functions with great success [34]. However, cartilage regenerated by these methods
does not recapitulate all the physiological specifications of natural cartilage and, thus,
it does not last for a long period. For instance, the regenerated tissues usually contain
collagen type I, which has undesirable chemical and mechanical properties [34].

Over the past two decades, tissue engineering has become one of the most popular
methods to regenerate cartilage tissue and reconstruct it [16]. Two main procedures for
the biofabrication process applied in CTE include cell-laden bio-inks for direct fabrication
of structures and cell-free methods for scaffold constructions. However, in most cases,
cartilage produced has a high fiber content and does not exhibit the ideal characteristics of
hyaline cartilage because of the finite differentiation of stem cells. So, many research studies
have been performed to improve mesenchymal cell-mediated osteochondral lesions and to
increase the ability of stem cell differentiation, in order to create an organized chondral
tissue with a cellular content that emulates ideal hyaline cartilage and ECM [2].

3. Cartilage Tissue Engineering

Since the 1990s, different biomaterials (natural and/or synthetic materials, chondro-
cytes, stem cells, growth factors) have been explored and examined in CTE for injection or
scaffold implantation [35]. The main types of scaffolds are polymeric films, hydrogels, and
fibrous scaffolds [36,37]. Among them, hydrogel scaffolds made of natural resources have
become more popular due to their comparable structure and biological properties to native
ECMs, which facilitate cell transplantation, proliferation, and differentiation [35,37].

The most important factors in the design of cartilage scaffolds are biocompatibility,
biodegradability, cell differentiation and cartilage creation, stability, suitable mechanical
properties and porosity, cell adhesion, and accretion with the adjoining native cartilage [16].
Because the cartilage mechanical properties may significantly change due to the age,
joint donor site, and specimen orientation, various methods and procedures have been
developed to improve the mechanical properties of an engineered cartilage. These include
controlling the fiber geometry of the scaffolds, controlling the composition of ECM made
by the chondrocytes, and the selection of different scaffold materials [21,36,38]. Scaffolds
should have cell adhesion ligands, including epitopes for cells-surface interactions. This
type of scaffolds can improve cell adhesion, cell differentiation, and integration into the
surrounding native tissues. The ability to fill the irregular shape of the lesion and specific
cell differentiation in damaged areas are other requirements for an ideal biomaterial scaffold
used for delivering cells for cartilage healing [39]. Additionally, the mechanical properties
of cartilage change with distance from the articular surface, maturation, degree of cartilage
defect, and the capacity of compression and stress. Therefore, the desirable biomaterials
for cartilage regeneration should be adjustable to mimic a range of the compression and
tensile properties [40].

3.1. Hydrogels for Cartilage Healing

Hydrogels are 3D crosslinked hydrophilic networks of polymers or macromers that
swell in an aqueous environment and create a platform for cells to proliferate and differ-
entiate similar to a native ECM. The unique properties of hydrogels are mainly due to
their high water content, specific structure, the ease of loading growth factors, and their
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mechanical properties [41]. Ideal biomaterials and specific production methods have main
roles in improving desirable hydrogels that could be applied as CTE scaffolds [42].

A wide range of natural and synthetic biopolymers [18,43] have been tested to produce
hydrogels such as chitosan [44,45], collagen [46] or gelatin [47,48], alginate [49], hyaluronic
acid [50,51], heparin [52,53], chondroitin sulfate [54], poly(ethylene glycol) (PEG) [55], and
poly(vinyl alcohol) [56] (Figure 3). Table 2 summarizes the studies on the most popular
biopolymers used to repair cartilage.

Figure 3. Schematic representation of different biopolymers used for CTE.

Hydrogels could be produced by physical and/or chemical processes. A schematic
diagram of various methods of hydrogel production is represented in Figure 4. Physically
prepared hydrogels are created via relatively weak intermolecular forces, but chemical
methods of hydrogels preparation are typically created by covalent crosslinking [13].

Figure 4. Various methods of hydrogel production.
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The viscoelasticity of hydrogels permits load transmission to chondrocytes [43].
Although different hydrogels produced by various procedures have been investigated in
re-cent years, rarely have any integrated hydrogels been used in the regenerative medical
profession. Hence, novel injectable hydrogels with improved physicochemical properties
are required for cartilage regeneration in vivo [4,57].

Table 2. Summary of the last 10 years studies on cartilage regeneration via biopolymers.

Main Base Main Materials Advantages Highlighted
Achievements Disadvantages Ref.

Chitosan

Chitosan, kartogenin

Increased mechanical
properties, excellent

biocompatibility,
biodegradability,
and cell adhesion

Significant statistical
models to predict the

properties

Immunogenic

[58]

Gellan gum
(GG)/nanoparticles/graphene

oxide/hydroxyethyl
cellulose/dialdehyde starch/
poly (vinyl alcohol)/gelatin/

hyaluronic acid

Controllable properties,
degradation rate,

and pore size
[43,59,60]

Chitosan, Pyrrole Good thermo-sensitive
gelation

High gelation time,
swelling, and degradation

time
[61]

Chitosan, PLA, calcium
phosphate, hydroxyapatite - Bioinert [62]

Collagen/gelatin

hyaluronic acid/dialdehyde
micro fibrillated cellulose

(DAMFC)/transglutaminase
enzyme Biosafe, excellent mechanical and

biochemical properties,
biocompatibility, and cell

viability, low cost,
biodegradable, ECM

production of cartilage

- Immunogenic [63–68]

Riboflavin, collagen,
hyaluronic acid -

Delayed
enzyme-triggered
degradation time

[69]

Gelatin,
graft-poly(N-isopropyl

acrylamide)

Low water/oil interfacial
tensions,

thermo-responsive
[70]

Alginate, borax Reduced inflammatory
effect [71]

Hyaluronic acid

Alginate/cellulose
nanocrystals, adipic acid

dihydrazide/fibrin/
lysine methyl ester/divinyl

sulfone, functionalized inulin

Bioprintable, biocompatible, good
proliferation, stable,

enhanced cell adhesion,
proliferation,

and differentiation

- Weak mechanical
integrity, fast degradation

in vivo

[72–78]

Polydactyly chondrocytes,
heparin/fibrin Cartilage-like matrix [79]

Trans glutaminase
crosslinked hyaluronan

Excellent mitogen
chondrification, superior

adhesion
to native cartilage

[80]

PEG, chondrocytes
Superior mechanical
properties, improved

metabolic viability
Fast degradation [81]

Fibrin

ECM microparticle, alginate
microbeads/PEG, human

amniotic fluid-derived stem
cells

Stable, biocompatible,
injectable - [82,83]

Alginate

Gelatin, Hydroxyapatite,
protein (BSA),Alginate,

Fibrinogen
Tunable mechanical

properties similar to native cartilage,
excellent

osteochondral regeneration and
proliferation, 3D

printable, excellent cell adhesion
and biocompatibility

Interconnected mesh
structure, great flexibility

and degradation Slow and unpredictable
degradation in vivo

[84]

Hydroxyapatite (HAP)
complex - [85]

Bone marrow-derived
mesenchymal stem

cells/polymethacrylate hybrid,
collagen type I/hyaluronic

acid, elastin-like protein (ELP)

- [86,87]

- Excellent viscoelasticity [88]
Gelatin High degradation [89]

Elastin

Poly(N-isopropylacrylamide-
co-polylactide-2 hydroxyethyl

methacrylate-co-oligo
(ethylene glycol) monomethyl

ether
methacrylate (PNPHO)

Biocompatible, proper
mechanical properties, good

structural stable, cell proliferation,
injectable - Difficult to integrate with

surrounding tissue,
Immunogenic

[90]

Silk Cell interactions [91]

Chondroitin
sulfate

Pullulan/poly
(N-isopropylacrylamide)

(NIPAAm)

Biocompatible,
cytocompatible, increased cell

proliferation, mechanically stable,
improved cartilaginous ECM

deposition,
good mechanical

properties, injectable

Self-healing Immunogenic [92]

No cytotoxicity

[93]
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3.2. Advanced Hydrogel for Cartilage Tissue Engineering

Hydrogels based on single-polymer networks usually illustrate very poor mechan-
ical properties compared with native cartilage [94]. For example, alginate is utilized
as a single-component hydrogel because of its properties such as biocompatibility and
ionic crosslinking using calcium ions. However, it is almost bioinert and has limited cell
interaction and adhesion [95].

For improving the hydrogel mechanical properties to attain those of native cartilage,
more complex systems of multiple polymers have been recently used. These systems
not only display higher mechanical properties than single polymeric networks, but also
illustrate better integration with living tissue environments [96]. Recent advances in the
hydrogel are categorized into four main groups: multi-material hydrogels, supramolecular
hydrogels, nanocomposites hydrogels, and interpenetrating network (IPNs) hydrogels [97].

Multi-material hydrogels are one of the studied bioinks to dominate the restrictions
of single-component hydrogels. In multi-material hydrogels, different single polymeric
components are crosslinked together chemically to improve the final characteristics of the
composite construction [98]. Supramolecular polymers are another currently under study.
Supramolecular (host-guest) interactions happen physically between two or more chemical
portions via non-covalent bonds [99,100]. In a supramolecular interaction, a guest segment
of the polymer chains is connected to a host segment by non-covalent interactions all over
the hydrogel network [101,102].

Due to the reversibility of these interactions, formed polymer networks illustrate
self-healing properties. The most popular self-healing polymers that involve in guest-
host interactions are based on cyclodextrins, cucurbits. Under high tensions or forces,
these non-covalent interactions are reversibly broken for damping network energy. The
reversible bonds also develop shear-thinning properties that facilitate their application in
CTE [103,104]. Jeong et al. modified hyaluronic acid (HA)-based hydrogels byβ-cyclodextrin.
Resulted hydrogels demonstrated remarkable shear-thinning, cell viability, adhesive strength,
and desirable mechanical properties for CTE applications [105]. Until now, several hydrogel
substances have been employed for stem cell therapy. Salati et al. reviewed the sources
and superior properties of the agarose-based bio-materials with/without various types of
signaling molecules and their functions in the keeping of cartilage homeostasis [18].

Nanocomposite hydrogels have been studied to tailor the properties of hydrogels.
The addition of nanoparticles to the hydrogel matrix can considerably change physical
and chemical specifications of the scaffold, such as compressive strength, elastic modulus,
storage modulus, and degradation rate under physiological conditions [106]. Depending
on nanoparticles applied to the hydrogel network, interesting functions and properties
such as bioactivity, controlled drug delivery, and electrical conductivity are induced to
the hydrogel matrix [107]. However, despite numerous advantages of nanocomposite
hydrogels, few studies have investigated their applications for cartilage.

Mechanically tough hydrogels with limited deformation under cyclic loads are highly
desirable in cartilage tissue regeneration [108]. When subjected to cyclic stress, conven-
tional hydrogel bonding can break due to the lack of mechanical integrity. To improve the
mechanical properties of hydrogel-based scaffolds, Piluso et al. developed a 3D nanocom-
posite hydrogel composed of gelatin and starch nanocrystals (SNCs). The incorporation
of SNCs within the hydrogel matrix led to an increase in the compressive modulus from
2.0 ± 0.1 kPa to 3.1 ± 0.1 kPa when the SNCs content increased from 0 to 0.5 wt%,
compared with the hydrogel without SNCs [109]. Asadi et al. studied the role of var-
ious nanoparticles such as polymeric and silica nanoparticles in CTE [107,110]. They
developed nanocomposite hydrogel scaffolds via combining gelatin and polycaprolactone–
polyethylene glycol (PCL–PEG–PCL) nanoparticles which are loaded with transforming
growth factor β1 (TGFβ1) and evaluated their potential as scaffolds for cartilage tissue
engineering. Their results demonstrated a higher Young’s modulus of nanocomposite
scaffold compared with the gelatin scaffold after the addition of PCL–PEG–PCL nanopar-
ticles [110]. Bonhome-Espinosa et al. reported the fabrication of a novel magnetic 3D
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fibrin-agarose hydrogel using encapsulated magnetic nanoparticles and human native
chondrocytes with the possibility of applying as articular cartilage tissues. The produced
hydrogel showed excellent biocompatibility, viability, and proliferation in vitro [111]. The
combination of nano-hydroxyapatite (n-HA) and magnetic nanoparticles (Fe2O3) with
poly(vinyl alcohol) (PVA) could also produce a magnetic nanocomposite hydrogel with
tensile strength of ~28.7 MPa [112]. In another study, Nejadnik et al. investigated the addi-
tion of calcium phosphate nanoparticles to bisphosphonate-functionalized hyaluronic acid
for knee cartilage tissue engineering. The resulting hydrogel illustrated superior properties
including self-healing [113]. The development of injectable nanocomposite hydrogels with
mechanical properties comparable with bovine cartilage was reported by Schlichting and
co-workers. They fabricated a photopolymerizable PEG-1000 and Pluronic F-127 hydrogels
embedded with calcium phosphate nanocrystals via an in-situ mineralization technique.
Their nanocomposite hydrogels had compressive and shear modulus of 0.64 ± 0.1 MPa
and 1.5–2 GPa, respectively, slightly higher than those of bovine cartilage (0.35 ± 0.1 MPa
and 0.7 GPa, respectively) [114].

Compared with multilateral composite hydrogels, interpenetrating networks (IPNs)
are composed of independent polymer networks physically entangled to one another [115].
They are usually formed using different crosslinking methods and agents to solely crosslink
one type of polymers within the network. Therefore, a network of independently crosslinked
polymers are created that shows improved mechanical properties compared with their
single-component network counterparts [116]. Generally, the primary polymeric network
is made of flexible and elastic materials compared with the secondary network, which is
stiffer and more brittle in relatively lower concentration [115,116]. Schipani et al. studied
mechanically reinforced IPN hydrogels of alginate and gelatin methacryloyl (GelMA) rein-
forced by polycaprolactone (PCL) fibers. Motivated by the significant tension-compression
nonlinearity of the collagen network in articular cartilage, they printed PCL networks to
reinforce IPN hydrogels. This new composite hydrogel exhibited dynamic and equilibrium
mechanical properties that approached or matched those of healthy articular cartilage [117].
Advanced hydrogels are summarized within the framework of different network types for
cartilage tissue application in Table 3. Although a few research groups have reported the
design of materials with predetermined properties and precise computational or mathe-
matical models [118] to find their unique applications, the majority of researchers have
simply combined new materials based on trial and error and characterized the properties
of the final products [4]. These models provide us with useful tools to control hydrogel
properties depending on the damaged cartilage area and its characteristics.

Stimuli-responsive hydrogels (SRHs) have gained great attention in drug deliv-
ery [119] and tissue engineering [120] due to their capability to undergo physical or chemi-
cal changes in response to external stimuli or small alterations in their environment. In con-
trast to the static hydrogel scaffolds, stimuli-responsive scaffolds have emerged as powerful
platforms to dynamically respond to the cytocompatible stimuli, thus enabling on-demand
manipulation of cell microenvironments. To induce such dynamic behaviors into the
scaffolds, various physical (e.g., temperature [121,122], electrical or magnetic fields [123],
wavelength or intensity of light [124–126], ultrasound [127]), chemical (e.g., pH [128,129],
ionic strength [130], chemical triggers [131]), and biological (e.g., enzymes [132]) stimuli
have been introduced. The extent of the responses to such triggers strongly depends on the
nature and magnitude of a stimulus and the sensitivity of materials.

Temperature-responsive hydrogels that undergo physical sol-gel transitions can be eas-
ily implanted via minimally invasive operations without the need for external crosslinking
agents [133]. However, the transition temperature, gelation time, and pH of polymer solu-
tions should be precisely adjusted to meet clinical requirements and minimize detrimental
effects on cell viability. N-isopropylacrylamides (NIPAAm), poloxamers, and different PEG-
based polymers are common examples of temperature-responsive hydrogels [134]. Sá-Lima
et al. explored the ability of poly(N-isopropyl acrylamide)-g-methylcellulose (PNIPAAm-
g-MC) hydrogels (with lower critical solution temperature of ~32 ◦C) in supporting cell
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encapsulation and GAGs production, required for cartilage regeneration [135]. Park et al.
introduced an injectable thermo-sensitive chitosan-pluronic hydrogel as a potential candi-
date for CTE [136]. This hydrogel demonstrated a transition temperature of ~25 ◦C and
could support the proliferation of bovine chondrocytes and the synthesis of glycosamino-
glycan for 28 days. Recently, Abbadessa et al. synthesized methacrylated pHPMA-lac-PEG
hydrogels (a thermo-responsive triblock copolymer) for cartilage 3D bioprinting [137]. It
was found that the incorporation of polysaccharides (methacrylated chondroitin sulfate
(CS-MA) or methacrylated hyaluronic acid (HA-MA)) could improve the stability and
printability as well as the mechanical properties of the hydrogel-based constructs.

The pH-responsive hydrogels contain acidic or basic functional groups with proton
exchange capability, depending on the pH of the surrounding environment. Strehin et al.
synthesized a pH-responsive chondroitin sulfate (CS)—PEG adhesive hydrogel with po-
tential applications in regenerative medicine, including cartilage repair [138]. It was
found that changes in the initial pH of the precursor solutions could impact the stiffness,
swelling properties, and kinetics of gelation of the final hydrogel products. In another
study, Halacheva et al. developed pH-sensitive hydrogels from poly(methacrylic acid)-
containing crosslinked particles with high porosity, elasticity, and ductility [139]. The
enhanced mechanical properties of the produced hydrogels made them a suitable candi-
date for regenerative medicine. Sá-Lima et al. designed pH-sensitive hydrogels based on
chitosan-β-glycerophosphate-starch with the ability to induce chondrogenic differentiation
of adipose-derived stromal cells (ADSC) for CTE [140]. Despite considerable progress in
the development of pH-responsive hydrogels for cartilage regeneration, it is still difficult to
clinically predict the pH at the diseased site, which may cause undesired tissue response.

Light-sensitive hydrogels can also be applied for CTE. Levett et al. prepared photo-
crosslinkable hydrogels based on gelatin methacrylamide that enhanced chondrogenic
differentiation and improved mechanical properties of the regenerated cartilage [141].
Giammanco et al. developed photo-responsive hydrogels composed of alginate–acrylamide
hybrid gels and ferric ions [142]. The physicochemical properties of these hydrogels could
be modulated using visible light irradiation. While better spatial and temporal control
over precursor gelation can be achieved via photo-crosslinking processes, their in vivo
applications can be restricted due to the potential toxicity of photo-initiators at an elevated
temperature over a prolonged irradiation period.

Chemical bonds formation and cleavage by enzymes can also be utilized for hydrogels
formation. Skaalure et al. synthesized aggrecanase-sensitive hydrogels based on photo-
clickable thiol-ene PEG that contains a CRDTEGE-ARGSVIDRC peptide, derived from
the aggrecanase-cleavable site in aggrecan [132]. The bovine chondrocytes encapsulated
within this hydrogel produced a connected matrix rich in aggrecan and collagen II, but
not collagens I and X. In contrast, the matrix deposition in the non-degradable hydrogels
(i.e., control groups) consist of aggrecan and collagens I, II, and X, indicative of hypertrophic
cartilage. Jin et al. prepared injectable chitosan-graft-glycolic acid (GA) and phloretic acid
(PA) (CH-GA/PA) hydrogels enzymatically crosslinked via horseradish peroxidase (HRP)
and hydrogen peroxide (H2O2) [143]. They also synthesized injectable hydrogels using
hyaluronic acid-dextran-tyramine conjugates with potential applications for CTE [144]. The
hydrogels were formed via enzymatic crosslinking of tyramine residues in the presence of
HRP. Nevertheless, the high concentration of H2O2 during injection may cause cytotoxicity
in these hydrogels in vivo [145]. For the development of smart scaffolds that can respond
to various stimuli, we direct readers to an excellent published review in the literature [119].
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Table 3. Summary of advanced hydrogel in cartilage tissue engineering.

Advanced
Hydrogel Type Main Materials Advantages Disadvantages Ref.

Multi materials

Chondrocyte-laden GelMA,
PCL

Porous structure, cell
proliferation, excellent

mechanical and
thermo-reversible

properties, printable

Long-time UV exposure
and low cell viability [146]

PCL, Pluronic F-127 Biocompatible, biodegradable,
finite antigenicity

Immune response and
therapeutic efficacy

have not determined
[147]

Poly(vinyl alcohol),
poly(ε-caprolactone),

Gelatin
methacrylamide/Gellan

gum, Alginate

Great differentiation, ability to
produce complex structure and

support components
Low shape fidelity [98]

IPN

Polycaprolactone, Poly
(acrylic acid), Cellulosic

nano-whisker,
Acrylic-urethane

cross-linker

Improved the mechanical
properties, water

absorption of about 30%,
excellent hydrophilic property

Need to optimization
of physicochemical

surface
conditions for cell

adhesion
and proliferation

[148]

Carboxymethyl dextran,
Amino dextran

Excellent mechanical stable,
adhesion, and spreading

behavior of fibroblast cells,
biodegradable and

biocompatible

Immune responses have
not been determined [149]

Hydroxyapatite particles,
Alginate

Proper osteochondral healing,
suitable

compressive modulus and
swelling property, high porosity,

uniform pores

Using of poor
supramolecular
gelation agent

[150]

Conjugated dextran with
2-naphthylacetic, HA,

β-cyclodextrin

Excellent resilience, good
biocompatibility N/A [151]

Gelatin, Alginate
polyacrylamide

Enhanced mechanical
properties, excellent cell

proliferation, finite cytotoxicity,
chondrogenic gene expression,
and structural stability, great

porosity in long-term

Uncontrollable porosity,
Formation of a thin

superficial layer that
does not allow cell

penetration

[152]

Ethylene
diamine-functionalized HA,

Divinyl sulfone-inulin

Biodegradable, FDA-approved,
good mechanical properties Low cell viability [78]

Low-molecular-weight PVA,
High molecular weight HA

Biocompatible, excellent
swelling properties and cell

viability

Fast gelation in room
temperature [153]

Poly(ethylene glycol),
Low-molecular weight HA

Excellent solubility in GAG
deposition during structure

maturation, support
of collagen biosynthesis

Low enzyme
degradation [154]

Methacrylated HA, Fibrin Biocompatible, Support of
differentiation

Unstable and unsuitable
mechanical properties
in low concentration

[155]

Methacrylated chondroitin
sulfate,

Agarose-poly(ethylene
glycol) diacrylate

Enhanced collagen biosynthesis
and GAGs in the cell-matrix,

low cost
Low cell viability [156]
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Table 3. Cont.

Advanced
Hydrogel Type Main Materials Advantages Disadvantages Ref.

Supramolecular

Adamantane-functionalized
HA, monoacrylated
β-cyclodextrin

Great drying and re-swelling
without changes in water
content or shape, excellent

collagen
deposition, suitable biophysical

properties, rapid stress
relaxation, self-healing

N/A [157]

Cucurbituril,
diaminohexane

Controlled dexamethasone
release, enhanced cell

proliferation, GAG synthesis,
and chondrogenic gene

expression, in vivo neocartilage
production

N/A [158]

Nanomaterials

Alginate, Poly(acrylamide)
hydrogel,

poly(lactide-co-glycolide)
(PLGA) nanoparticles

Great viscoelasticity,
biodegradable,

biocompatible and protein
absorber, excellent cell

proliferation and mechanical
strength, stable

N/A [159]

Poly(vinyl alcohol),
Graphene oxide

Great bio-mechanical and
bio-friction properties, excellent

shear-thinning, printability,
and printing accuracy, proper
compressive and tribological

properties

Unsuitable pore size [160]

Nano hydroxyapatite,
Poly(vinyl alcohol),

Poly(lactic-co-glycolic acid)

Biocompatible, practicable,
excellent mechanical properties,
sensitive to compressive stress,
suitable chondrocyte adhesion

and proliferation

N/A [161]

Poly(vinyl alcohol),
Nano-hydroxyapatite,

magnetic Nanoparticles
(Fe2O3)

Proper mechanical properties,
great mesenchymal stem cells

growth
Variable crystallinity [112]

Hydroxypropyl
methylcellulose, Laponites

Excellent mechanical properties,
oxygen

diffusion, and cell expression

Some toxicity, decreased
cell density [162]

PEG, Laponite particles
Good elastic modulus,

biocompatible, excellent
mechanical properties

Low cell viability [163]

Silk fibers,
Chitosan/Glycerophosphate

Excellent mechanical properties,
GAG,

and collagen type II expression

Unsuitable biological
properties, toxic
gelation agent

[164]

4. Self-Healing Hydrogel in Cartilage Tissue Engineering

Recently, self-healing soft systems with large deformation capabilities have been
developed using multiple crosslinking mechanisms. These materials have attracted signifi-
cant attention due to their extensive applications in electronics, coatings, and biomedical
prosthetics [12]. Self-healing enables materials to repair themselves and restore their
morphology and mechanical properties after defects. This ability not only maintains the
longevity of a system, but also enhances the mechanical stability and prevents sudden or
permanent failure of such materials in sensitive applications [165].

One of the basic self-healing techniques for the repair of polymer network defects
is the increase of temperature. Thermoplastics, i.e., polymers that can be melted and
re-cast almost indefinitely, benefit from a simple self-healing mechanism activated upon
heating to a temperature above their melting points [166]. However, they usually show
low stiffness and thermal stability which limit their applications where mechanically
robust structures are needed. Therefore, self-healing research has mainly focused on
thermosetting polymers, i.e., polymers that are irreversibly hardened by heat [167]. In
thermosets, however, the intrinsic chain mobility within the polymer network is slow or
negligible compared with thermoplastics. While heating is a simple method of self-healing,
the restrictions excreted by the physicochemical properties of new materials have made an
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inevitable need for the development of new techniques to accelerate the self-healing process.
Self-healing approaches can be classified into (i) intrinsic healing, due to an inherent ability
of materials to self-heal, triggered either by a damage or in combination with an external
stimulus and (ii) extrinsic healing, based on the release of the healing agents (e.g., liquid
agents such as catalysts, monomers, hardeners containing microcapsules and hollow fibers
embedment), pre-embedded into the (polymeric) matrix, upon damage [168]. In general,
both intrinsic and extrinsic processes can be accomplished via physical self-healing by chain
entanglements and chemical self-healing by the recovery of chemical bonds (e.g., hydrogen
bonds, covalent bonds, etc.) [169], shown in Figure 5.

Figure 5. Schematic classification of self-healing schemes.

Self-healing in hydrogels are prepared via dynamic covalent reactions (chemical
crosslinking) and/or non-covalent reactions (physical crosslinking) [23] shown in Figure 6.
In covalent reactions, the re-use of polymerization conditions or the utilization of an
external stimulus (e.g., heat [148], pH [170], UV, visible light [171]) is necessary for the
completion of the healing process. In contrast, autonomous self-healing generally occurs
in materials without using an external stimulus and leads to partial or full recovery of
their physicochemical characteristics (e.g., mechanical properties). Non-covalent inter-
actions commonly employ an individual or a combination of bonding mechanisms such
as ionic bonding [172], hydrogen-bonding [173,174], supramolecular interactions [101],
hydrophobic bonding [175], and molecular diffusion and chain entanglement [169].
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Figure 6. Main self-healing mechanisms and polymer behavior in hydrogels. (1). Damage occurrence,
(2). Self-healing process, and (3). Healed hydrogel.

4.1. Materials

Self-healing hydrogels made from either natural or synthetic polymers can be ob-
tained by incorporating functional groups mentioned above in the polymer backbones via
various non-hazardous and non-toxic chemical modifications. Natural hydrogels used
for self-healing hydrogels include plant-derived hydrogels (e.g., polysaccharide-based
alginate, carboxymethyl cellulose, cellulose, and agarose) and animal-derived hydrogels
(hyaluronic acid, gelatin, chitosan, collagen, and fibrin). Synthetic hydrogels are based on
polymers such as poly (ethylene glycol), poly (acrylic acid), poly (vinyl alcohol), and poly-
acrylamide [168,176]. It is possible to use a combination of a synthetic and natural polymer
to produce novel hydrogels with remarkable positive properties of both components [168].
Roh et al. combined polysaccharide-based hydrogels with alginate to reinforce self-healing
and properties such as stability, viscoelasticity, and printability by dual crosslinking for
CTE application [177]. Wang et al. produced a dual responsive hydrogel based on oxidized
sodium alginate (OSA) and hydrazide-modified poly(ethyleneglycol) (PEG-DTP) with
injectability and self-healing properties. OSA has weak properties at low PH. However,
PEG-DTP efficiently enhanced the flexibility, self-healing, mechanical properties, and hy-
drophilicity of OSA due to the reversibility of its dynamic acylhydrazone connections. The
resulting hydrogels illustrated self-healing of approximately 100% after damage [178]. In
another study, Yu and coworkers introduced a multifunctional hydrogel of hyaluronic acid,
furylamine (furan), and adipic dihydrazide. Combination of Diels-Alder click reaction and
acylhydrazone bond enhanced integrity and mechanical performance of this hydrogel in a
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biological environment, although the dynamic covalent bond of acylhydrazone created an
excellent autonomous self-healing property and cell-adhesion for CTE applications [179].
However, other self-healing hydrogels based on peptides, mussel-inspired proteins, con-
ductive polymers, and zwitterionic polymers have also obtained attention in recent years;
however, they are not suitable for cartilage tissue engineering [167,169].

4.2. Mechanisms of Self-Healing

Generally, intrinsic self-healing hydrogels are preferred in CTE applications due
to their superior advantages in the restoration of their functions without adding new
chemicals. Re-crosslinking damaged scaffolds via chemical reactions of different functional
groups or physical interactions is the main objective in all intrinsic self-healing processes
(these mechanisms have been discussed in detail elsewhere [180]). The intrinsic self-
healing is dependent on reversible crosslinking. The type and strength of bonds (used as
crosslinkers) define the degree of self-healing, durability, and the mechanical properties of
repaired hydrogels. Thus, they are the main factors in designing hydrogels with specific
applications. For example, hydrogels made of physical crosslinking via hydrogen bonds are
mechanically weaker than covalently crosslinked hydrogels of the same materials [180–182].
The bonding energy of hydrogen bonds is typically in the range of 5 to 30 kJ mol−1, around
10 times weaker than that of covalent bonds (≈345 kJ mol−1 for C-C bonds). The energy
of the hydrogen bonds mostly depends on the negative charge of acceptor atoms (i.e., O,
N, F) and, therefore, it varies significantly with the electronegativity of acceptor atoms
and pH of the solution in which the interactions occur. The strongest hydrogen bonds are
associated with hydroxyl (-OH) or amide (-NH) groups while the weakest are those that
incorporate fluorine.

Hydrophobic interactions play an essential role in biological systems for shape chang-
ing of proteins in water-rich environments and membrane formation. These interactions
are slightly stronger than hydrogen bonds and can be easily modulated through altering
the shape and the balance of hydrophobic and hydrophilic moieties in a system [183].
In intrinsic self-healing hydrogels, the presence of hydrophobic interactions leads to
the re-arrangement of hydrophobic blocks to reduce or eliminate contacts with water
molecules. Jeon et al. introduced novel hierarchical systems of non-covalent crosslinks
with excellent stretchability and damage recovery created by incorporating amphiphilic
polymers (UPyHCBA with an acrylic head, a hydrophobic alkyl spacer, and a 2-ureido-
4-pyrimidone (UPy) tail) and surfactants (sodium dodecyl sulfate) into polyacrylamide
hydrogels (Figure 7a) [105]. The obtained hydrogels were able to stretch ~100 times their
initial length and to intrinsically self-heal within ~30 s. Using reversible hydrophobic
interactions, Meng et al. fabricated silk fibroin-based hydrophobic-association hydrogels
incorporated into an alginate ionic network (Figure 7b) [184]. This new system demon-
strated excellent biocompatibility, mechanical properties, and intrinsic self-healing behavior
without applying external energy at room temperature.

Due to the limited research on the suitable dynamic chain mobility of supramolecular
and component interactions, the production of self-healing materials with versatile mechan-
ical properties still remains a challenge [185], impeding their real-world applications that
require mechanical integrity. Recent advances in supramolecular chemistry have acceler-
ated the development of an increasing number of biologically inspired hydrogels [186,187].
Biopolymers physically crosslinked via host–guest interactions in supramolecular hydro-
gels have shown great potential for the development of minimally invasive therapeu-
tics [188]. Most of these hydrogels demonstrate shear-thinning behavior under shear stress
and recovery (i.e., self-healing) when the shear force is removed. However, these systems
generally rely on nonspecific interactions, leading to protracted recovery times (from min-
utes to hours) following the shear stress removal [189]. This limits the efficacy of injectable
hydrogels in the immobilization of material components or encapsulated cargos (e.g., cells,
growth factors, etc.) at a target site. To overcome this problem, host−guest interactions
based on non-covalent bonding of a macrocyclic host (e.g., cyclodextrin (CD)) and a comple-
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mentary guest molecule (e.g., adamantane) have been introduced (Figure 8a,b) [190–193].
Generally, host−guest hydrogels are mechanically weak [194,195]. This issue significantly
limits their widespread applications in tissue engineering, particularly in load-bearing
tissues such as cartilage. Recently, Jeong and co-workers reported injectable hydrogels
based on β-cyclodextrin-modified hyaluronate and adamantane-modified HA, encapsulat-
ing mesenchymal stem cells (MSCs) for CTE applications. These hydrogels demonstrated
remarkable mechanical characteristics including shear-thinning and self-healing with high
cell viability [105]. The therapeutic efficacy of the HA hydrogels/MSCs for cartilage
tissue regeneration was evaluated in vivo (Figure 8c), where the hydrogels/MSCs con-
firmed better macroscopic neocartilage formation covering the entire defect area compared
with control groups. He et al. introduced a highly stretchable and tough alginate-based
cyclodextrin/azo-polyacrylamide composite with self-healing properties via light irradi-
ation [196] (Figure 8d). The azobenzene group used in the chemical structure of these
hydrogels is a light-responsive group that experiences a reversible transformation between
a cis structure (under light irradiation) and a trans structure (in the absence of light). There-
fore, host-guest interactions between Azo derivatives and CD derivatives under the dark
condition yielded hydrogels with the tensile strength of 0.06 MPa at 1819% strain, where
the presence of calcium ions crosslinking alginate chains increased the tensile strength but
reduced the elongation of hydrogels. While many self-healing hydrogel platforms currently
exist, Table 4 highlights the most promising systems for cartilage tissue engineering.

Figure 7. (a) Schematic illustration of the micellar copolymerization of the UPyHCBA and acrylamide. The self-healing
mechanism (i.e., hydrophobic interactions) of the micellar copolymerization hydrogels [183]. (b) Schematic illustration of
the preparation process of silk fibroin-based hydrophobic-association hydrogels; optical images of the self-healing process
of hydrogels over time; hydrogel region before and after healing. Reproduced with permission from Ref. [184].
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Figure 8. (a) Guest–host hydrogel formation based on the complexation of adamantane and β-cyclodextrin and correspond-
ing synthesis processes. Schematic representation of hydrogel formation via guest–host interactions. Reproduced with
permission from Ref. [193]. (b) Schematic illustration of a supramolecular hydrogel based on host–guest complexation
with cucurit[8]uril (CB[8]). Reproduced with permission from Ref. [191]. (c) Left: Schematic illustration for injectable
supramolecular hydrogels encapsulating MSCs for cartilage tissue regeneration. Right: optical images and histological
analysis of regenerated cartilage tissues after treating with hydrogels and MSCs. Reproduced with permission from
Ref. [105]. (d) The host-guest interactions between Azo derivatives and CD derivatives in the presence and absence of
light and the schematic illustration of the alginate-based cyclodextrin/azo-polyacrylamide composite self-healing process.
Reproduced with permission from Ref. [196].
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Table 4. Summary of intrinsic mechanisms of self-healing hydrogels in cartilage tissue engineering.

Mechanism
Type Materials

Self-
Healing

Conditions
Time of
Healing Properties Main Reactions Healing

Efficiency Ref.

Dynamic
Covalent

interaction

Poly(ethylene oxide)
Room

temperature
(RT), acidic pH

48 h

Biocompatible, cell
viability, good
viscoelasticity,

improved
mechanical stability

Acylhydrazone
exchange

reactions, disulfide
exchange reactions

N/A [197]

Chitosan, Dialdehyde
debranched starch

(DADBS)
25 ◦C <30 min

Fast crosslinking
time under

30 s, tunable
self-healing,

excellent
viscoelasticity,

and mechanical
properties,

excellent 3D
printability,

obvious
responsiveness

to fluorescence light

Crosslinking by
Schiff-base

reactions between
the aldehyde

groups in DADBS
and the amino

groups in chitosan

100% [198]

O-carboxymethyl
chitosan RT -

Electrostatic
attraction, porous

and interconnected
morphology,

storage modulus,
excellent pH

sensitive swelling
properties

Schiff base reaction
between the amino

groups on the
chitosan and

aldehyde groups of
crosslink agent,

host-guest reaction
of poly(β-

cyclodextrin) with
diamantine

≥97% [45]

Dialdehyde—modified
hyaluronic acid (AHA),

Cystamine
dihydrochloride (Cys)

Ambient
temperature 10 min

Fast crosslinking,
improved

mechanical
properties,

bioprintable,
biocompatible

Schiff base reaction
between the

di-aldehyde groups
on AHA and amino

groups on Cys

~100% [199]

Aldehyde—
functionalized

surface-modified
cellulose nanocrystals

(a-CNCs)

RT -

Biocompatible,
injectable in situ,

rapid shear
thinning, cell

viability, good
viscoelasticity,

improved
mechanical stability

Schiff-base reaction
between the

aldehyde groups on
a-CNCs and amine
groups on collagen

~100% [200]

Lactose-modified
chitosan (CTL), Boric

acid, Mannitol
RT 5 min

Biocompatible,
excellent

viscoelasticity

Schiff base reactions
between the bronic
groups in boric acid

and the amino
groups in CTL

100% [201]

Triblock(ABA)
copolymers with a

central poly(ethylene
oxide) block and

terminal dithiolane
blocks

25 ◦C 24 h,

Biocompatible,
excellent

Stiffness and
viscoelasticity,
photosensitive,
mucoadhesive

The reversible
ring-opening
of disulfide
exchange,

the intracellular
redox potential

N/A [202]

Gelatin, Dialdehyde
carboxymethyl cellulose 37 ◦C 1 h

Excellent
biocompatibility,
biodegradability

and non-
immunogenicity,

good fatigue
resistance

Schiff base reaction
between

amino-gelatin and
dialdehyde

carboxymethyl
cellulose

90% [203]

Oxidized alginate (OA),
Semicarbazone
(or hydrazine)

RT 10 min
(or 30 min)

Biocompatibility,
excellent stiffness,

viscoelasticity,
spreading of

fibroblasts and cell
adhesion,

printability,
non-cytotoxic

The Divalent bond
between amino

bonds of OA and
Ca+2

of semi-carbazone

70% (40%) [204]
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Table 4. Cont.

Mechanism
Type Materials

Self-
Healing

Conditions
Time of
Healing Properties Main Reactions Healing

Efficiency Ref.

Acrylamide-modified
chitin, Oxidized alginate Basic pH, 25 ◦C 2 h

Good
biocompatibility

and
biodegradability,
excellent viability

Schiff base reactions
between imine
linkages amine

groups of
acrylamide-

modified chitin and
dialdehyde groups

on oxidized alginate

N/A [205]

Chondroitin sulfate
multiple aldehydes

(CSMA),
N-succinyl chitosan (SC)

20 ◦C, high
moisture 2 h

Excellent viability,
good

biocompatibility,
and

biodegradability,
finite

inflammatory,
injectable

Schiff base reactions
between

aldehyde groups on
CSMA and amino

groups on SC

N/A [206]

Hydrogen
interaction

Urethane, Urea,
2-ureido-4[1H]-
pyrimidinone

RT 48 h

Excellent toughness,
tensile strength,
and mechanical

properties

Hierarchical
hydrogen bonding

of urethane and
supramolecular

interaction

90% [207]

Ureido- pyrimidinone
(UPy), Functionalized

dextran
20 ◦C 10 min

Biocompatible,
good

mechanical
properties

Ureido-
pyrimidinone (UPy)-

functionalized
dextran

100% [11]

2-ureido-4[1H]-
pyrimidinone (UPy),
Poly(ethylene glycol)

(PEG)

RT N/A

Tunable mechanical
properties, shape

memory
behavior. Tough

Hydrogen-bonding
between UPy and

PEG
N/A [208]

Polyurethane (PU),
Tannin, Acid- modified
nano tungsten disulfide

RT 12 h
Excellent

mechanical strength
and tensile

Noncovalent
bonding connection

of nano filer,
interfacial hydrogen

bonds between
TA-WS2 and PU

100% [209]

Cucurbit[8]uril (CB[8]),
Acrylamide,

N,N′-bismethylene
bisacrylamide

RT Very fast Good mechanical
properties

Hydrogen bond
and Supramolecular
interaction between

CB[8] and
acrylamide,

covalent

N/A [185]

Ionic
interaction

2-
hydroxypropyltrimethyl

ammonium chloride
chitosan (HACC),
Poly(acrylic acid)

(PAAc)-Fe3+

70 ◦C 48 h

Excellent
mechanical

properties, tough
and transparent

Both
macromolecular

positively charged
HACC and Fe3+

metal ions acted as
cross-linkers to form

ionic bonds with
negatively charged

PAAc

74% [210]

Chitosan, Arginine
(Arg), Tripolyphosphate

(TPP)
RT 48 h

Tunable structural
and chemical

physical properties

Reaction of
Polyanions of TPP

and cations of
amino acid arginin

N/A [211]

Ammonium persulfate
(APS), N,N,N′ ,N′-

tetramethylethylenedi
amine (TEMED)

RT, pH ≤ 3 N/A

Anti-fatigue, good
mechanical
properties,

time-independent
healing

Positively and
negatively charged
groups of APS and

TEMED

66–73% [212]

Supramolecular
Interaction

β-cyclodextrin modified
alginate (Alg-CD),

Adamantine modified
graphene oxide,

RT 12 h

Injectable, good cell
adhesion and
differentiation,

excellent
mechanical
properties

Guest–host
interactions 100% [213]

Adamantane
functionalized

hyaluronic acid,
β-Cyclodextrin

RT 12 h Photo-cross-linkable
compressible

Guest–host
interactions N/A [157]

β-cyclodextrin,
adamantine bound by

peptide tether to
Hyaluronic acid

37 ◦C Fast

Injectable, good cell
adhesion and
differentiation,

excellent
mechanical stability

Guest–host
interactions 100% [214]

β-cyclodextrin-,
α-bromonaphthalene

functionalized
acrylamide

20 ◦C 1 min–1 h
Injectable, excellent

mechanical
properties

Guest–host
interactions N/A [215]
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Table 4. Cont.

Mechanism
Type Materials

Self-
Healing

Conditions
Time of
Healing Properties Main Reactions Healing

Efficiency Ref.

β Cholic-acid,
β-cyclodextrin-
functionalized

N,N′-
dimethylacrylamide

20 ◦C <1 min Injectable,
degradable

Guest–host
interaction 97% [216]

Hydrophobic
interaction

Acrylamide, Octyl
phenol

polyethoxy ether
acrylate copolymer

RT 6 days
Excellent

mechanical
properties, flexible

Micelles between
the hydrophobic

acrylates and
sodium

dodecyl sulfate

70% [175]

Cellulose nanowhiskers
(CNW), Acrylamide

(AM), Stearyl
methacrylate, Sodium
dodecylsulfat (SDS)

RT 60 min

Excellent
mechanical
properties,
stretchable

Hydrophobic
interaction of CNW

and AM
100% [217]

Despite extensive research on improving the mechanical strength of self-healing
hydrogels, these systems still encounter serious challenges within the vibrant and mechani-
cally demanding environment. To address this issue, scientists have developed hydrogels
crosslinked via multiple dynamic as well as covalent bonds. While the number of research
articles reporting self-healing hydrogels with multiple crosslinks for cartilage tissue engi-
neering is limited, Table 5 summarizes the recent studies with potential applications in
CTE. Qin et al. studied using reversible noncovalent bonds along with permanent covalent
crosslinks to increase the mechanical strength of hydrogel to 34.0 MPa [218]. Yanagi-
sawa and coworkers fabricated noncovalently crosslinked hydrogels with a low molecular
weight and tensile strength of almost 26.5 MPa [219]. Ding et al. fabricated cross-linked
hydrogel via both ionic- and hydrogen-bonds by applying acrylic acid and acrylamide,
xanthan gum, and guar gum, which demonstrated excellent mechanical characteristics and
moderate water content for use in the CTE [205].

Table 5. Summary of the recent studies on self-healing hydrogels with multiple crosslinks for CTE applications.

Hydrogels (Materials) Bonding Mechanisms Properties Ref.

Polyvinyl
alcohol/poly(3,4-ethylenedioxythiophene)/sulfosuccinic acid

H-bonding High water content (75 wt %)
[220]Crystallization High tensile stress (~2.5 MPa)

Electrostatic interactions Large elongation (>600%)
Conductivity (~25 mS/cm)

Carboxymethyl cellulose/borate/gelatin Schiff-base reaction pH and glucose responsive [221]Boronate-diol complexation

P(urea-IL1-SPMA1)-3d
IL: imidazolium-based ionic liquid

SPMA: 3-sulfopropyl methacrylate potassium salt

H-bonding Tensile strength of ~1.3 MPa
[222]Ionic interaction Strain at break of ~720%

Toughness of ~6.7 MJ/m3

Laponite® nano-clay, hydroxyapatite, poly-L-arginine,
sodium polyacrylate

H-bonding - [223]Electrostatic interactions

Poly(diallyldimethylammonium chloride)/branched
poly(ethylenimine)/poly(sodium

4-styrenesulfonate)/poly(acrylic acid)

H-bonding Tensile strength: 1.26 MPa
[224]Electrostatic interactions Strain at break: 2434.2%

Toughness: 19.53 MJ/m3

Free radical polymerization of acrylic acid/acrylamide in the
presence of chitosan

H-bonding High water content (<90%)
[225]Electrostatic interactions Strain at break <625%)

High self-healing efficiency
(<88%)

Functionalized single-wall carbon nanotube/polyvinyl
alcohol/polydopamine

H-bonding Fast self-healing ability (~2 s)
[226]

π-π interactions
High self-healing efficiency

(99%)
Robust adhesiveness

Amoc (9-anthracenemethoxycarbonyl)-capped dipeptides H-bonding Antibacterial efficacy [227]
π-π interactions

Hyaluronic acid-graft-dopamine and reduced graphene
oxide/using a H2O2/HPR (horseradish peroxidase)

H-bonding Antioxidant activity

[228]
Photothermal effect

π-π interactions
Adhesive hydrogel

Hemostatic hydrogel
Conductive hydrogel

Casein sodium salt from bovine
milk/polydopamine/polyacrylamide

H-bonding Super-stretchability
[229]

π-π interactions Excellent fatigue resistance
Rapid self-healing
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Table 5. Cont.

Hydrogels (Materials) Bonding Mechanisms Properties Ref.

Poly (styrene-acrylic acid) core-shell nanoparticles/free radical
copolymerization of acrylamide and stearyl methylacrylate

H-bonding Excellent self-healing [230]Hydrophobic interactions Good mechanical properties

Alginate aldehyde/poly (acrylamide) Schiff-base reaction Excellent self-healing and
mechanical properties

[231]H-bonding

Glycol chitosan/cellulose nanofiber/telechelic difunctional
polyethylene glycol

Schiff-base reaction Injectability (neural stem cells
delivery)

[232]H-bonding

Salicylaldehyde benzoyl hydrazone-terminal poly(ethylene
glycol)/Ni2+

Metal–ligand coordination Rapid self-healing
Reversible pH-responsiveness

[233]Hydrophobic interactions

Adamantane and β-cyclodextrin modified hyaluronic
acid/methacrylated hyaluronic acid

Michael addition crosslinking
(covalent reaction)

Injectability
[234]Rapid self-healing

Host-guest interactions Cytocompatibility
Mechanical toughness

5. Fabrication Methods

The precise fabrication of bio-scaffolds is among the main aims of tissue engineering
research. Traditional scaffold fabrication techniques such as foam processing, solution
casting, and freeze-drying have limited control on the chemistry, macrostructure, and
porosity of final products. Electrospinning and 3D bioprinting are two advanced manufac-
turing technologies for making desirable tissue engineering scaffolds [235,236]. Scaffolds
prepared using these two techniques are hollow matrices that support cell structures and
improve cell adhesion and proliferation due to their highly porous geometry which facili-
tate the transport of oxygen, nutrients, and biological wastes. The most popular fabricating
methods are listed in Table 6.

Table 6. Comparison among fabrication methods in tissue engineering.

Method Main Characteristic Resulted Porosity Cell
Viability Ref.

Freeze casting

Ceramic slurries are used in this
method; then, water is evaporated. It
produces pores due to formation of

ice crystals.

<85% <90% [237]

Freeze-drying

It is an easy procedure that can be
applied with natural materials such

as collagen and fibers. The porosity can
be improved by freezing temperature

alterations and changing of the
concentration of materials.

30%–80% <90% [238]

Solvent casting and
Particle leaching

It uses casting molds to produce 3D
scaffolds by polymer solution. Then,
it requires leaching by using organic
solvents to simplify the addition of

drugs or growth factors to scaffolds.

50%–90% 75%–88% [239]

Gas foaming

Using high-pressure carbon dioxide for
expanding the polymer matrix without

applying high temperature or toxic
solvents. Changing pressure can also

create scaled porous scaffolds.

<90% N/A [240]

Phase separation

Changing temperature for polymer and
solvent separation results in a solid
polymer due to phase separation.
Finally, a desirable, homogenous,

and interconnected porous scaffold is
produced depending on cooling rates.

60%–98% <98% [241]

Electrospinning
Nanoscale or microscale fibers are

produced by tuning process parameters
and chemicals in this method.

80%–95% <80% [242,243]
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Table 6. Cont.

Method Main Characteristic Resulted Porosity Cell
Viability Ref.

Sol–gel

Colloidal metal oxides are applied
traditionally to create tunable porous
scaffolds in the sol–gel method with
desirable chemistry. Double phasic

chitosan scaffolds with a conjunction
peptide have demonstrated the

capability to recruit stem cells for
cartilage repair.

N/A N/A [244]

Additive manufacturing

Extrusion methods in biomedical
applications are often polymer-based
and provide benefits in cost, size, and
flexibility against old manufacturing

methods. Both polymers and metals can
be used in solid free-form sintering,

while laser melting is limited to metals.

80%–90% 60%–95% [245]

3D printing, a growing additive manufacturing technology for fabricating precise
3D structures, is currently widely used to increase the applicability and functions of
cell-laden scaffolds. During the recent decay, tissue engineering has shown promising
results for treatment of osteoarticular damage and has provided a suitable alternative to
current therapies using 3D bioprinting methods in the clinical environment such as the
use of various biomaterial scaffolds, allogeneic and autologous of chondrocytes bases,
chondroprogenitor cells and growth factors, and mixtures of them [235]. The bioprinting
process is based on the combination of various living cell-laden biomaterials referred to
as bioinks [246,247]. The physicochemical properties of bioinks are very important to
produce functionally live tissues such as cartilage. Thus, bioinks should have biological
properties, biodegradability, and printability. Generally, hydrogels are a suitable candidate
for bioinks preparation [17]. Figure 9 schematically presents the most important properties
of bioinks and their effects on bioprinted constructs. With regards to cartilage regeneration,
the hydrogel-based scaffolds are the primary biomaterials applied due to their bioadhesion
and compatibility with the surrounding cartilage tissue environment. The physicochemical
properties such as swelling ratio, surface tension, gelation time, and rheological parameters
are the main factors affecting the printability of a hydrogel solution [17,236]. Roseti et al.
reviewed the recent advances in bioprinting 3D scaffolds embedded with stem cells for
CTE [248]. Additionally, Semba et al. introduced state-of-the-art 3D bioprinting techniques
in cartilage and bone design for orthopedic applications [246]. Sadeghianmaryan et al.
investigated the printability of chitosan scaffolds. They studied the effect of methods of
drying, concentration, and crosslinking density on scaffold properties. They exhibited that
the drying method is a critical character in the mechanical and biological performance
of chitosan scaffolds. Additionally, smaller pore sizes and higher elastic modulus occur
in higher crosslinking density at chitosan concentration of 10% [44]. Until now, many
approaches have been reported for the production of proper bioinks, for the prediction
of mechanical properties of a hydrogel structure after bioprinting, type of materials and
additives, cell density, and material–cell interaction [249].
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Figure 9. Hydrogel properties in bioprinting. (a) The crosslinking mechanism is related to polymer types that impact cell
viability and structure properties. (b) Hydration of a hydrogel system facilitates nutrients and wastes transport within a
printed structure. (c) Cell adhesion that supports cell proliferation and migration can be controlled by changing the polymer
type. (d) Degradation mechanisms can influence cellular migration. (e) The durability of 3D printed structures is essential
to mimic native tissue biomechanical properties and to retain the shape of constructs during cellular growth. (f) Viscous
solutions can suspend and protect cells from shear stress inside an extrusion nozzle and reduce flowability of hydrogels
after printing (low viscosity solutions can avoid clogging; however, cell settling may occur).

6. Conclusions and Perspective Remarks

Over the past decades, self-healing of damaged organs (due to trauma or degener-
ative pathology) in biological systems inspired researchers to develop new biomaterials
able to mimic natural organs’ ECMs. Among these materials, hydrogels are attractive for
clinical applications because of their high-water content and physicochemical properties,
like what are found in native human tissues. Currently, with the advances of synthetic
methods, a range of self-healing hydrogels has been expanded, introducing a new class
of premium materials for specific applications in cartilage and bone repairing. However,
current self-healing biomaterials are considerably suffering from weak and inadequate
physicochemical and spatiotemporal properties and high production costs. Although
various reversible bonding strategies are currently available for the development of new
self-healing hydrogels, they do not meet all the specifications (e.g., high toughness and
excellent elasticity, rapid self-healing, excellent integration with surrounding cartilage tis-
sue, sufficient nutrition transportation, drugs and growth factors delivery, and printability)
required for CTE.
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On the other hand, clinical applications of new biomaterials can be limited by the
cost and difficulty of passing safety and regulatory processes. FDA approval can pose a
significant challenge to biomaterial-based therapies as new biomaterials need to meet FDA
standards. Materials other than those already approved for use in humans have extensive
requirements in quality control and safety. Therefore, when combining cells and materials,
considerable animal and clinical testing is required, which comes with high costs and
lengthy development timelines [250,251].

The creation of multi-functional self-healing hydrogels with multiple covalent/non-
covalent bonds can significantly impact the future of CTE. Designing new materials us-
ing mathematical modeling and simulation methods offers interesting and cost-effective
opportunities for generating new hydrogels mimicking the native tissue microenviron-
ment. Modifications of currently available models would be another future direction to
precisely predict the mechanical properties of hydrogels used for cartilage tissue regenera-
tion [244,252,253].

Undoubtedly, one of the most promising future trends in the development of hydrogels
is the combination of advanced hydrogels (nanomaterials, supramolecular, multi-materials,
and IPNs) to make new composites with superior properties compared with every individ-
ual component. Combining high-performance hydrogels with the novel structure design,
biological activity, and superior properties such as self-healing is a promising approach to
repair cartilage defects. However, the lack of control over the structure of newly developed
tissues is another challenge that can be addressed via multi-component 3D bioprinting
technologies benefiting from higher resolution and faster printing speeds. The combination
biofabrication methods are a relatively new approach in fabrication of bio-mimicking,
heterogeneous, and complex tissue structures. Organ-on-a-chip, as an emerging technology
that combines cell biology, engineering techniques, and biomaterials, can be utilized to
simulate organs’ microenvironments on a microfluidic chip. These organ models recapitu-
lating the main features of human physiopathology are highly desired to investigate new
materials in terms of cell-tissue interfaces and metabolic performance. The combination of
organ-on-a-chip and 3D bioprinting can provide even more realistic osteoarthritis models
for testing new therapies. The opportunities for combination of approaches are tremendous
and should motivate the field to push past technical and regulatory barriers, especially
with the growing interest in personalized therapeutic approaches.

Author Contributions: All authors read and revised the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: Pooya Davoodi greatly appreciates financial support from Keele University, School of
Pharmacy and Bioengineering starting grant and Faculty Research Award 2021, Keele University, UK.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Krishnan, Y.; Grodzinsky, A.J. Cartilage diseases. Matrix Biol. 2018, 71, 51–69. [CrossRef]
2. Killen, M.-C.; Charalambous, C.P. Advances in cartilage restoration techniques. In Advances in Medical and Surgical Engineering;

Elsevier: Amsterdam, The Netherlands, 2020; pp. 71–83.
3. Ngadimin, K.D.; Stokes, A.; Gentile, P.; Ferreira, A.M. Biomimetic hydrogels designed for cartilage tissue engineering. Biomater.

Sci. 2021, 9, 4246–4259. [CrossRef]
4. Wei, W.; Ma, Y.; Yao, X.; Zhou, W.; Wang, X.; Li, C.; Lin, J.; He, Q.; Leptihn, S.; Ouyang, H. Advanced hydrogels for the repair of

cartilage defects and regeneration. Bioact. Mater. 2021, 6, 998–1011. [CrossRef]
5. Lin, H.; Yin, C.; Mo, A.; Hong, G. Applications of Hydrogel with Special Physical Properties in Bone and Cartilage Regeneration.

Materials 2021, 14, 235. [CrossRef]

http://doi.org/10.1016/j.matbio.2018.05.005
http://doi.org/10.1039/D0BM01852J
http://doi.org/10.1016/j.bioactmat.2020.09.030
http://doi.org/10.3390/ma14010235


Polymers 2021, 13, 4199 26 of 35

6. Talebian, S.; Mehrali, M.; Taebnia, N.; Pennisi, C.P.; Kadumudi, F.B.; Foroughi, J.; Hasany, M.; Nikkhah, M.; Akbari, M.; Orive, G.
Self-healing hydrogels: The next paradigm shift in tissue engineering. Adv. Sci. 2019, 6, 1801664. [CrossRef]

7. Ghomi, E.R.; Neisiany, R.E.; Khorasani, S.N.; Dinari, M.; Ataei, S.; Koochaki, M.S.; Ramakrishna, S. Development of an epoxy
self-healing coating through the incorporation of acrylic acid-co-acrylamide copolymeric gel. Prog. Org. Coat. 2020, 149, 105948.
[CrossRef]

8. Panahi, P.; Khorasani, S.N.; Koochaki, M.S.; Dinari, M.; Das, O.; Neisiany, R.E. Synthesis of Cloisite 30B-acrylamide/acrylic acid
nanogel composite for self-healing purposes. Appl. Clay Sci. 2021, 210, 106174. [CrossRef]

9. Wang, Y.; Adokoh, C.K.; Narain, R. Recent development and biomedical applications of self-healing hydrogels. Expert Opin. Drug
Deliv. 2018, 15, 77–91. [CrossRef] [PubMed]

10. Esmaeely Neisiany, R.; Enayati, M.S.; Sajkiewicz, P.; Pahlevanneshan, Z.; Ramakrishna, S. Insight Into the Current Directions in
Functionalized Nanocomposite Hydrogels. Front. Mater. 2020, 7, 25. [CrossRef]

11. Hou, S.; Wang, X.; Park, S.; Jin, X.; Ma, P.X. Rapid self-integrating, injectable hydrogel for tissue complex regeneration. Adv.
Healthc. Mater. 2015, 4, 1491–1495. [CrossRef]

12. Taylor, D.L.; in het Panhuis, M. Self-healing hydrogels. Adv. Mater. 2016, 28, 9060–9093. [CrossRef] [PubMed]
13. Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue

engineering. Bone Res. 2017, 5, 1–20. [CrossRef] [PubMed]
14. Yang, J.; Zhang, Y.S.; Yue, K.; Khademhosseini, A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta

Biomater. 2017, 57, 1–25. [CrossRef]
15. Zhang, X.; Zhang, W.; Yang, M. Application of hydrogels in cartilage tissue engineering. Curr. Stem Cell Res. Ther. 2018,

13, 497–516. [CrossRef] [PubMed]
16. Vega, S.L.; Kwon, M.Y.; Burdick, J.A. Recent advances in hydrogels for cartilage tissue engineering. Eur. Cells Mater. 2017, 33, 59.

[CrossRef]
17. Abdollahiyan, P.; Oroojalian, F.; Mokhtarzadeh, A.; de la Guardia, M. Hydrogel-Based 3D Bioprinting for Bone and Cartilage

Tissue Engineering. Biotechnol. J. 2020, 15, 2000095. [CrossRef]
18. Salati, M.A.; Khazai, J.; Tahmuri, A.M.; Samadi, A.; Taghizadeh, A.; Taghizadeh, M.; Zarrintaj, P.; Ramsey, J.D.; Habibzadeh, S.;

Seidi, F. Agarose-based biomaterials: Opportunities and challenges in cartilage tissue engineering. Polymers 2020, 12, 1150.
[CrossRef]

19. Little, C.J.; Bawolin, N.K.; Chen, X. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng. Part
B: Rev. 2011, 17, 213–227. [CrossRef]

20. Lin, W.; Klein, J. Recent progress in cartilage lubrication. Adv. Mater. 2021, 33, 2005513. [CrossRef]
21. Jahn, S.; Seror, J.; Klein, J. Lubrication of articular cartilage. Annu. Rev. Biomed. Eng. 2016, 18, 235–258. [CrossRef]
22. Kuiper, N.; Sharma, A. A detailed quantitative outcome measure of glycosaminoglycans in human articular cartilage for cell

therapy and tissue engineering strategies. Osteoarthr. Cartil. 2015, 23, 2233–2241. [CrossRef]
23. Zhang, Y.; Yu, J.; Ren, K.; Zuo, J.; Ding, J.; Chen, X. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering.

Biomacromolecules 2019, 20, 1478–1492. [CrossRef]
24. Cutcliffe, H.C.; DeFrate, L.E. Comparison of cartilage mechanical properties measured during creep and recovery. Sci. Rep. 2020,

10, 1–8. [CrossRef] [PubMed]
25. Oinas, J.; Ronkainen, A.; Rieppo, L.; Finnilä, M.; Iivarinen, J.; van Weeren, P.; Helminen, H.; Brama, P.; Korhonen, R.; Saarakkala,

S. Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation. Sci.
Rep. 2018, 8, 1–12. [CrossRef]

26. Peters, A.E.; Akhtar, R.; Comerford, E.J.; Bates, K.T. The effect of ageing and osteoarthritis on the mechanical properties of
cartilage and bone in the human knee joint. Sci. Rep. 2018, 8, 1–13. [CrossRef]

27. Bos, E.J.; Pluemeekers, M.; Helder, M.; Kuzmin, N.; van der Laan, K.; Groot, M.-L.; van Osch, G.; van Zuijlen, P. Structural and
mechanical comparison of human ear, alar, and septal cartilage. Plast. Reconstr. Surg. Glob. Open 2018, 6. [CrossRef] [PubMed]
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