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Efficient microbial colony 
growth dynamics quantification 
with ColTapp, an automated image 
analysis application
Julian Bär1,5, Mathilde Boumasmoud1,5, Roger D. Kouyos1,2, Annelies S. Zinkernagel1 & 
Clément Vulin1,3,4*

Populations of genetically identical bacteria are phenotypically heterogeneous, giving rise to 
population functionalities that would not be possible in homogeneous populations. For instance, a 
proportion of non-dividing bacteria could persist through antibiotic challenges and secure population 
survival. This heterogeneity can be studied in complex environmental or clinical samples by spreading 
the bacteria on agar plates and monitoring time to growth resumption in order to infer their metabolic 
state distribution. We present ColTapp, the Colony Time-lapse application for bacterial colony growth 
quantification. Its intuitive graphical user interface allows users to analyze time-lapse images of agar 
plates to monitor size, color and morphology of colonies. Additionally, images at isolated timepoints 
can be used to estimate lag time. Using ColTapp, we analyze a dataset of Staphylococcus aureus 
time-lapse images including populations with heterogeneous lag time. Colonies on dense plates reach 
saturation early, leading to overestimation of lag time from isolated images. We show that this bias 
can be corrected by taking into account the area available to each colony on the plate. We envision 
that in clinical settings, improved analysis of colony growth dynamics may help treatment decisions 
oriented towards personalized antibiotic therapies.

Delayed and insufficient clearance of bacterial infections leading to treatment failure is associated with antibiotic 
resistance as well as antibiotic persistence. In antibiotic persistence, a subpopulation of bacteria, termed persister 
cells, can survive antibiotic challenges due to their phenotypic state of metabolic inactivity and then reconstitute 
the population by resuming growth when the stress is  relieved1. This manifestation of phenotypic heterogeneity 
exists even in homogeneous liquid cultures, where each bacterial cell experiences the same local  conditions2. On 
top of this, bacteria often aggregate in dense communities such as biofilms, where environmental conditions are 
highly heterogeneous and further promote wide phenotypic  distributions3.

The clinical relevance of antibiotic persistence remains poorly understood. The main reason for this is that 
the existence and extent of persistence is difficult to assess because it is a transient phenotype and only concerns 
a small fraction of the bacterial population. However, these inactive bacteria are lagging longer than already 
actively dividing bacteria when plated on nutrient-rich agar medium, and the bacterial colonies’ macroscopic 
appearance time is a good proxy of single-cell lag  time4,5. For this reason, Levin-Reisman and co-authors pro-
posed ScanLag, a platform to monitor colony growth dynamics with time-lapse  imaging5,6.

In clinical settings, the direct observation of colony growth dynamics from bacteria recovered from infection 
sites is  rare7,8. Typically, in clinical microbiology laboratories the patient’s samples are plated and observed at a 
single timepoint, e.g. after 18 h of incubation. Colonies which are smaller than the bulk at that timepoint have 
been associated with antibiotic tolerance, persister cells and relapsing  infections9. Small colonies can result either 
from mutations that affect growth rate (small colony  variants10,11) or from heterogeneous growth  resumption5,8,12. 
Reading solely the colony size at a given timepoint does not allow to distinguish between these two phenomena. 

open

1Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 
Zurich, Switzerland. 2Institute of Medical Virology, University of Zurich, Zurich, Switzerland. 3Institute of 
Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland. 4Department of Environmental 
Microbiology, 8600 Eawag, Dubendorf, Switzerland. 5These authors contributed equally: Julian Bär and Mathilde 
Boumasmoud. *email: clement.vulin@usz.ch

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-72979-4&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16084  | https://doi.org/10.1038/s41598-020-72979-4

www.nature.com/scientificreports/

Moreover, while a bimodal classification, e.g. small or “normal”, may be appropriate to describe differences in 
colony size due to genetic  changes13,14, it fails to be quantitative when the range of observed colony sizes is not 
bimodal. This is a problem because phenotypic heterogeneity in single cell lag times typically results in unimodal 
colony size distributions with long tails of small colonies, and the experimenter is left with defining subjective 
cutoff values.

We anticipate that investigation of the antibiotic persistence phenomenon’s clinical relevance will greatly 
rely on colony growth dynamics analyses. Therefore, we propose to bridge the technical gap with a new analysis 
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tool, the Colony Time-lapse application (ColTapp). Its goal is to promote wide access to colony growth dynam-
ics quantification and enable diagnostic microbiology laboratories to further improve their routines. ColTapp 
is an image analysis pipeline embedded in an intuitive graphical user interface, which allows any user to derive 
colony sizes, growth rates and appearance times from time-lapse images of bacterial colonies. It also includes 
the possibility to estimate colony growth parameters from endpoint images. Additionally, it can report metrics 
characterizing colony color, outline and texture (morphology descriptors), and proximity of neighboring colonies 
(spatial metrics). We speculate that ColTapp will prove useful in a broad spectrum of microbiology applications, 
such as species identification in environmental samples as shown by Ernebjerg and  Kishony15.

A technical problem common to both clinical and environmental samples is the difficulty to assess their 
initial bacterial density: samples can be accidentally plated at high or uneven densities. Yet, colonies compete 
for nutrients on the agar plates and thus the total number of colonies and their spatial distribution impacts their 
size at an  endpoint16. This results in difficult appearance time estimation. To address this problem, as well as 
demonstrate the applicability of ColTapp, we present a dataset of Staphylococcus aureus bacterial colony time-
lapse images and explore their response to density. The colonies’ Voronoi cell areas, one of the spatial metrics 
computed by ColTapp and previously explored in the context of colony  growth16, can be taken into account to 
minimize the bias in appearance time estimation due to density.

Results
A user-friendly application implementing image- and downstream analysis. ColTapp takes 
images as input and implements image analysis functions to detect microbial colonies and track colony radius 
over time when images are part of a time-lapse sequence. Common formats (png, single page tiff, jpeg, and 
bmp) and either color (Red Green Blue) or grayscale images are supported. ColTapp also includes downstream 
analysis steps, to extract biologically relevant data such as colony growth rate and appearance time. A graphical 
user interface (GUI) provides access to all functionalities, displays the images and enables early visual evaluation 
of the results with simple data visualization options (Fig. 1a, Supplementary Fig. S1). An Options menu allows 
the user to change parameter values and access optional functionalities (Supplementary Fig. S2, Supplementary 
text 8) The generated data can be exported in a standard csv file (Supplementary Fig. S3, Supplementary text 9).

The application’s workflow from raw images to exported data is illustrated in Fig. 1b. The program operates in 
two different modes, depending on the user input data: endpoint images or time-lapse images. In the first mode, 
Time-Lapse (TL), images in a folder are considered as an ordered time-lapse image series of a single plate. In 
the second mode, Endpoint (EP), all images in a folder are considered independent from each other. Typically, 
they are an aggregate of images from several plated samples or from replicates of the same sample, captured at 
a single timepoint.

The implementation of the two main image analysis algorithms is described in the Materials and meth-
ods (Colony detection algorithm implementation and Radius tracking algorithm implementation). The user is 
referred to the supplementary information for more detailed directives concerning interaction with the interface, 
quality control functionalities, parameters optimization and performance assessment of the algorithms.

In the following sections, the downstream analyses to derive growth parameters from the resulting data are 
demonstrated on a dataset of 22 time-lapse movies of S. aureus colonies growing on blood agar plates, designed 
to include both homogeneous and heterogenous colony lag time and various colony densities. Note that in addi-
tion to growth parameters, a palette of colony characteristics may be exported by the user for further analysis, 
including spatial metrics and morphology descriptors (Supplementary Fig. S4, Supplementary text 4). Although 
we focus on S. aureus grown on blood agar in this work, ColTapp can process images of many different bacte-
rial species growing on different colored agar media (Supplementary Fig. S5 and S6, Supplementary text 3.4).

In conclusion, an example is given to show how the ColTapp-derived measurements of radius, growth rate 
and appearance time can be used to assess the influence of colony density on appearance time estimation from 
endpoint images and how spatial metrics can be used to correct for density effects.

Figure 1.  ColTapp graphical user interface and analysis workflow. (a) For visualization, results are overlaid onto 
the images: typically, the circles representing detected colonies and the edges of the Voronoi tessellation shown 
here in blue on the image. The main analysis panel, on the left of the image, is separated in three tabs. Here 
the Detect tab, which allows the user to detect colonies on a plate, is visualized. The Main tab, which allows the 
user to analyze either time-lapse or endpoint images and the Visualize tab are displayed on the Supplementary 
Fig. S1. (b) Schematic of simple image acquisition setups including a camera holder. An Arduino board (blue 
icon) can be used to trigger the camera automatically for time-lapse imaging of a plate (Materials and methods, 
Image acquisition, for implementation). ColTapp operates in two modes: either Time-lapse (TL) or Endpoint 
(EP) mode, depending on input data, illustrated by the two different folders (turquoise and yellow respectively). 
The turquoise highlighted functionalities are specific to the Time-lapse mode, while the yellow highlighted 
ones are specific to Endpoint mode. In the middle, the green highlighted functionalities are common to both 
modes. Note that each step of the workflow (apart from the two which are detailed in the following sections) 
has a corresponding section in the Supplementary text, which may serve as a guide to the user. For example, the 
“Analysis set-up” is described in the Supplementary text 2: a user may define the area of analysis on its images, 
as shown here in turquoise on the 3 example images. The implementation of the “colony detection” and “radius 
tracking over time” algorithms are described in the Materials and methods and illustrated here with small 
subsets of Figs. 6 and 7 respectively. The colony characteristics are illustrated here with a small subset of the 
Supplementary Fig. S4.

◂
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Appearance time and growth rate determination from time-lapse images. Colonies formed by 
non-swimming bacteria pass through three growth phases (Fig.  2a). Initially, when all bacteria forming the 
colony can access nutrients and thus contribute to its expansion, the colony radius increases exponentially while 
the colony also increases in height. Eventually, bacteria at the center of the colony do not have access to nutrients 
diffusing from the edge of the colony. The zone of growth at the edge of the colony becomes constant and the 
radial growth rate becomes linear (at this point radius = Rlin, see Fig. 2b)17. Finally, when the nutrients become 
scarce, or when growth byproducts reach an inhibitory concentration, the colony enters the saturation phase, 
during which the radial growth rate starts decreasing towards  018. Supplementary Fig. S7 shows the exponential 
phase of S. aureus colonies grown on sheep blood agar captured by time-lapse imaging with a macro lens. How-
ever, in typical settings where the entire plate is captured (see Materials and methods, Image acquisition), the 
resolution is not high enough to observe the exponential phase.

Heterogeneity of the distribution of colony appearance times can be an indication of phenotypic heterogeneity 
in dormancy. For this reason, appearance time is a widely used proxy for single cell lag time until first division. We 
define a detectable size threshold in micrometers  (Rthresh), and the time at which a colony reaches this threshold 
as the appearance time  (tapp). The minimal possible  Rthresh depends on the image quality and needs to be set at 
the same value for comparisons of  tapp in different experiments. In our analysis setting, we assume that colonies 
reaching this size are already in the linear growth phase  (Rlin < Rthresh, Fig. 2b,c).

Tracking the colony radius over time using time-lapse imaging makes it possible to directly determine colony 
 tapp and linear radial growth rate (GR). ColTapp determines  tapp and GR by detecting the first of 6 consecutive 
frames for which a colony radius is bigger than  Rthresh (default: 200 µm). The following radius measurements 
within a user-specified timespan in hours  (Frlin, default: 10 h) are used for a linear regression to determine GR 
and  tapp (Fig. 2c).  Frlin might need to be reduced to only use a timespan in which radial growth is approximately 
linear. Additionally,  Rthresh can be adjusted depending on the image resolution and bacterial species investigated. 
The reason to perform a linear regression to determine  tapp instead of simply observing the time when a colony 
radius reaches  Rthresh is that it reduces artificial noise, to be expected if camera resolutions are low (for example 
if 1 pixel = 50 µm). Note that a low rate of image acquisition (long interval between time-lapse frames) might 
result in under-sampling of the linear growth phase, which could impact both growth rate and appearance time 
determination.

Growth parameters such as the duration of the exponential phase and the colony GR depend on strain 
characteristic properties such as replication frequency, metabolic  yield17, cell-to-cell  adhesion19 and surfactant 

Figure 2.  Typical colony radial growth curves. (a) Schematic cross section of a colony in the three growth 
phases. The 3 colors represent the phases (green: exponential phase, blue: linear phase, light red: saturation 
phase). The grey depicted areas represent bacterial cells which do not contribute to colony expansion. The 
arrows represent the flow of the diffusing growth substrate, steady during the linear phase and decreasing 
during the saturation phase. (b) Typical radial growth curve, with the three phases highlighted with colors 
corresponding to (a).  Rlin, displayed by the solid line, is the radius at which the radial growth rate becomes 
linear.  Rthresh, displayed by the dashed line, is the threshold below which a forming colony is not yet 
macroscopically visible. (c) The typical radial growth curves obtained by time-lapse image analysis in settings 
where the whole plate is captured (represented by the camera holder and agar plate icon). On the graph, the 
dashed horizontal line represents the threshold radius  (Rthresh) used for appearance time calculation and thick 
colored line segments represent the linear regression. Appearance time is the intersection of bold regression 
lines with the threshold line.
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 production20. In addition, growth dynamics depend on the nutrient medium and physical properties of the agar 
surface such as substrate  roughness21 or water  activity22.

Therefore, for downstream analyses, reference growth parameters need to be measured with a control dataset 
(Supplementary text 6). The reference lag time is the minimal colony appearance time and can be observed by 
plating bacteria from a liquid culture in exponential phase which show little to no delay in growth  resumption8. 
The reference linear radial growth rate is the maximal growth rate  (GRmax) observed in any experiment before 
competition between neighboring colonies starts to affect it.

The average colony growth rate derived from our control dataset (plates with less than 150 colonies) is 
60.4 µm/h (SD = 4.7 µm/h). We define  GRmax taking the 95th percentile (65.0 µm/h) of the growth rate 
distribution.

Appearance time and growth rate estimation from endpoint images. In some laboratories, set-
ting-up high-throughput time-lapse imaging might not be possible, thus ColTapp proposes to estimate colony 
lag time from endpoint images. This is possible because when bacterial cells with a lag resume growth, they rap-
idly reach their maximal replication rate and the resulting colonies have linear radial growth rates (GR) similar 
to those of colonies emerging from cells with no  lag8. Therefore, a reference linear radial growth rate (GR) (Sup-
plementary text 6) can be used to estimate the colony appearance time  tapp based on colony radius R at a given 
timepoint  (tf) by means of a linear extrapolation:

with  Rthresh defining the radius (R) at time  ti = tapp.
Note that using a linear extrapolation with a reference growth rate to estimate the appearance time has two 

strong assumptions: first, that all colonies are still in the linear phase of their growth and second, that they all 
have the same linear radial growth rate.

To allow users to evaluate the validity of these two assumptions, or to estimate a reference growth rate if a 
time-lapse imaging setup is unavailable, ColTapp proposes a functionality to analyze a sequence of endpoint 
images (Supplementary text 7.1 and 7.2). By taking endpoint images at multiple timepoints and performing 
colony detection at each timepoint one can create a timeseries of colony radius. In Fig. 3a, we exemplify this 
functionality by analyzing independently four frames extracted from the time-lapse image sequences of three 
plates. Two of these plates belong to our demonstration dataset (plate 18 and plate 11, Supplementary Fig. S9, 
S10). With the third plate, we illustrate differences in growth rates, as it includes colonies from both a S. aureus 
laboratory strain and a S.aureus small colony variant clinical isolate, which exhibits a slow growth rate (plate 
MX, Supplementary Fig. S8). ColTapp computes the slope between colonies’ radii at different timepoints (Eq. 1), 
which results in an individual colony radial growth rate  GRcol for each time interval (Fig. 3b).

This time-series analysis enables assessment of the entry time to saturation phase, identified by a decrease 
in growth rate (Fig. 3b). Moreover, should colonies have different growth rates, the individual colony radial 
growth rate can be used to estimate the appearance time, rather than a fixed reference growth rate for all colo-
nies (Fig. 3c–f). Using individual colony growth rates increased overall agreement between appearance times 
determined by the full time-lapse analysis and appearance times estimated from endpoint images (Fig. 3d,f).

However, note that using individual colony growth rates for appearance time estimation is appropriate to 
correct for differences in size which are independent from saturation, for example when a subpopulation on 
the plate has mutations affecting growth rate or a different genetic background (e.g. Plate MX in Fig. 3). Should 
colonies be past the linear growth phase, growth rate estimations are inaccurate, thus appearance time cannot 
be accurately predicted (e. g. Plate 18 at 24 h in Fig. 3). In these cases, one needs to take saturation into account. 
We introduce an approach to density-based corrections of saturation in the next section.

Response to density. One typical problem for environmental or clinical samples is that the number of 
colony-forming-units per milliliter of sample is often unknown before plating, resulting in unpredictable colony 
densities on the plates. Yet, colony growth dynamics are affected by the presence of neighboring colonies, which 
compete locally for nutrients and are affected by the total number and proximity of colonies on the  plate16,24. 
As soon as the effects of competition with neighboring colonies become strong  enough25, a colony enters the 
saturation phase of its growth, meaning that its radial growth rate decreases over time until it reaches 0 (Fig. 2). 
Therefore, colonies on denser plates are expected to be smaller than colonies on less dense plates at a given point 
(Fig. 4a).

On top of this, if the plating is heterogeneous, not all colonies have access to the same amount of resources. 
They therefore differ in size within a plate as soon as they enter the saturation phase. Thus, experiments aiming 
to compare either colony size or appearance time are biased by colony density.

We explored the response to density using our purposely designed demonstration dataset of colonies formed 
by the S. aureus lab strain JE2 on Columbia sheep blood agar. Of the 22 time-lapse movies, eight were plated 
from a single liquid culture at exponential phase to obtain a homogeneously growing population (control dataset, 
Fig. 4a). The other fourteen were plated from another culture immediately after 24 h exposure to the antibiotic 
rifampicin (further referred to as rifa dataset, Fig. 4a). Rifampicin arrests bacterial cell growth by stopping protein 
synthesis, resulting in a bacterial population with a wide appearance time  distribution26. In order to observe 
the impact of density on colony radius over time and elaborate a method to correct this bias, the replicates were 
plated at different densities over two orders of magnitude (ranging from 16 to 1509 colonies per plate) (Sup-
plementary Fig. S9, S10).

(1)ti = tf −
R
(

tf
)

− R(ti)

GR
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The effect of high densities on the colony growth rate is shown on Fig. 4c,d displaying the colonies’ radii 
against their observed appearance times at a given timepoint. One may follow the evolution of this relationship 
over time (Supplementary movie 2). At low densities, colonies grow at the maximal linear radial growth rate, 
 GRmax, which depends on strain and culture conditions (here 65.0 µm/h, see section Appearance time and growth 
rate determination from time-lapse images). Colonies that deviate from the  GRmax appear below the expected 
linear regression line (Fig. 4b). Therefore, when performing a linear extrapolation using  GRmax, the appearance 
time of colonies which are already in the saturation phase are overestimated (i.e. colonies on plate 18, Fig. 3d). 
The systematic error (E) introduced by saturation corresponds to the difference between  tapp, GRmax (the result of 
the linear extrapolation with  GRmax) and the appearance time  (tapp) determined by the full time-lapse analysis 
(Fig. 4c):

The error depended both on the local density of the plates and on the age of the colonies on the plate. Colonies 
in denser plates (warmer colors) deviated more than colonies on less dense plates (colder colors). Also, at a given 
time point, colonies on plates with earlier appearance time (Fig. 4c) deviated more than the ones on plates with 
later appearance times (Fig. 4d).

Density correction. Chacón et al.16 proposed that the amount of nutrients available to each colony on the 
agar plate can be approximated with Voronoi cell areas, obtained by drawing equidistant lines between neighbor 

(2)tapp = tapp,GRmax − E.

Figure 3.  Growth rate and appearance time estimation from endpoint images. (a) Four images corresponding 
to the timepoints 12 h, 24 h, 36 h and 48 h were extracted from the full time-lapse image sequences of three 
independent plates and separately analyzed. Color indicates plate ID. Each dot represents radius of one colony at 
the given timepoint and all dots corresponding to the same colony are connected by lines (n = 44, 162 and 34 on 
Plate 11, 18 and MX respectively). Three colonies for each plate were highlighted. (b) Growth rate was estimated 
for each of the three intervals between the four timepoints for each colony. Crossbars indicate mean ± SD per 
timepoint and plate ID. When the radius was null at one of the timepoints involved in the interval, growth 
rate was not calculated. Therefore, only two growth rate values are shown for Plate 11 at the first interval. (c,e) 
Estimation of appearance time from radius at 24 h by linear extrapolation for the three colonies highlighted in 
(a) for each plate. The dashed line represents  Rthresh (200 µm). The usage of either the same  GRmax (65 µm/h) 
for all colonies, or individual colony  GRcol leads to different results. (d,f) Bland-Altman23 comparison plots of 
the appearance time  (tapp) determined by full time-lapse analysis (real  tapp) and the appearance time estimated 
by linear extrapolation (predicted  tapp) with  GRmax or  GRcol respectively. The x-axis is the mean of the two 
measurements (obtained by full time-lapse analysis and linear extrapolation). The y-axis is the difference 
between the real  tapp and the estimated  tapp. Positive values indicate underestimation and negative values an 
overestimation of appearance time by the linear extrapolation method. The dotted line is the average bias of the 
linear extrapolation method and the two dashed lines are showing the lower and upper limits of agreement.



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16084  | https://doi.org/10.1038/s41598-020-72979-4

www.nature.com/scientificreports/

colonies centers. The correlation between the radius at the time of observation and colony Voronoi cell area is 
time dependent and strongest at a late growth stage, as colonies approach their maximal  size16.

Aiming to use the Voronoi cell area  (Va) to approximate the error in appearance time estimation introduced 
by saturation (E), we evaluated the mathematical relation between log(Va) and E in the control dataset. At 24 h, E 
was close to 0 for colonies with large  Va and increased for colonies with smaller  Va (Fig. 5a, we attribute negative 
values to noise in colony detection at very high density). The relation E(Va) was fitted with a modified logistic 
model (Fig. 5a):

where  Emax, b and c are fitted parameters using the least square method.  Emax, depends on the control dataset. 
In theory, one could imagine that maximal error would increase indefinitely, but  Emax exists because even for 
infinitely small values of  Va, colonies still grow by using nutrients immediately below them, even though they do 
not receive flux from the sides. b and c are shape parameters for the transition from no error to  Emax.

As expected, the relation E(Va) was time dependent. When fitted through time, a linear increase of  Emax was 
observed starting as soon as the first colonies enter saturation phase (Supplementary movie 3, Supplementary 
Fig. S11). In addition to being time-dependent, E(Va) was observed to depend on the general lag time of the 
plate: at a given timepoint, colonies originating from populations with a large median lag time (e.g. rifa dataset) 
were in an earlier phase of their growth as compared to colonies originating from populations without lag (e.g. 

(3)E(Va) = Emax −
Emax

1+ eb(c−log(Va))

Figure 4.  Plate density affects colony size. (a) At a given time (here 68 h), colonies on a dense plate have a 
smaller radius than colonies plated at low density. This effect is visible if colonies all grow at the same time 
(Control, blue) or after a delay (Rifa, orange). (b) This relationship between radius and appearance time 
at a given time can be visualized as a drop of the colony radius (yellow) from the ideal growth line (blue). 
An example of one colony is shown, represented by the orange dot. Its appearance time  (tapp) is given by its 
x-coordinate, and the appearance time estimated using a linear extrapolation with  GRmax is given by the x 
coordinate of its projection on the ideal growth line  (tapp,GRmax). The error (E) is the difference between these 
two values along the x-axis. (c) In our control dataset, the linear relationship expected between the colonies’ 
appearance time and their radius (red line defined by  GRmax = 65 µm/h) was lost when colonies grew on dense 
plates (here with warmer colors) and was heterogeneous within a plate at a given time. Here, at 24 h, while some 
colonies were still following a linear growth, other colonies from the same plate had already entered saturation 
phase. (d) The effect of plate density was also visible in the rifa dataset, with a larger variance in colonies’ 
appearance times and radii.
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control dataset) (Fig. 5b). Ideally, one would adapt the relation E(Va) to take into account the median lag time 
of the plate, so that the correction applied to the rifa dataset observed at a given timepoint  (tobs) corresponds to 
E(Va) fitted on the control dataset at an earlier timepoint, when the colonies were still at that stage of growth.

The difference in appearance time between the control dataset (median appearance time: 9 h) and the rifa 
dataset (median appearance time: 17.4 h) was Δtapp = 8.4 h. The correction applied to the rifa dataset when 
observing colonies at  tobs = 24 h should thus correspond to E(Va) fitted on the control dataset at  tobs-Δtapp = 15.6 h 
(Fig. 5c). However, the median appearance time is not known a priori when observing colonies on a plate at an 
endpoint.

Let us assume that we know the radius at 24 h but do not know the appearance time of the rifa dataset. We 
propose to use an iterative process to estimate the appearance time based on the knowledge acquired from the 
(strain and condition dependent) control dataset with known appearance time. An initial guess of the appearance 
time  (tapp,i) was obtained with Eq. (2) where E(Va) was fitted on the control dataset at  tobs. Then the difference 
between the known median  tapp of the control dataset and the median  tapp,i of the observed rifa plate (Δtapp,i) was 
calculated. A new  tapp,i was estimated with Eq. (2) where E(Va) was fitted on the control dataset at  tobs—Δtapp,i, 
which in turn gave a new Δtapp,i. This process was iterated until stabilization for a final estimate of  tapp (Fig. 5d–h, 
Supplementary Fig. S11).

Note that the shown approach tended to overcorrect the appearance time of colonies on dense plates due to 
the nature of the data: fully saturated colonies have little information left regarding their appearance time since 
the radius does not change with time anymore. Thus, this correction cannot perform well if many colonies have 
reached late saturation phase (Supplementary Fig. S11). For this reason, in populations with very large variance 
of appearance time, one single image may not allow a proper appearance time estimation, especially if some 

Figure 5.  Iterative correction of density effects. (a) For a given timepoint (here 24 h, control dataset), the error 
between appearance time estimated by linear extrapolation and appearance time determined by the full time-
lapse analysis correlates with the Voronoi cell area  (Va) and can be fitted using a logistic model (black line). Each 
dot represents one colony, colored by density (log values on the color bar, left side of figure) same as in (c, d, 
g, h). (b) The relation E(Va) observed at 24 h on the control dataset (blue dots underlaid on this plot) depends 
on the median lag time. Here it can be seen that E(Va) observed at 24 h on the rifa dataset (red dots, fitted by 
the purple line) is systematically smaller. (c) Here the relation E(Va) observed at 15.6 h on the control dataset is 
shown. The fit of this data (black solid line) is very close to the fit of E(Va) observed at 24 h on the rifa dataset 
(dashed purple line). Dashed black line is the fit of E(Va) observed at 24 h on the control dataset. (d) The result 
of the iterative correction for the control dataset observed at 24 h (shown in (a) before iterative correction). (e,f). 
Visualization of the improvement of appearance time estimation by iterative corrections depending on time 
difference between median estimated  tapp and the known median  tapp of the control dataset (vertical blue line), 
yielding predictions closer to the appearance time determined by the full time-lapse analysis (real, bold black 
line). The initial guess (Iteration 0, bold dark green line) is corrected (thin lines) over 20 iterations to yield final 
corrected  tapp (Iteration 20, bold light green line). Histograms of the probabilities p are binned in 2 h bins. (g,h) 
Estimated appearance time of the rifa dataset (shown without correction in b) is either corrected using E(Va) 
observed at 24 h on the control dataset (no iterations), or through 20 iterations (abbreviated it. on figure).
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colonies stop growing before the late ones appear. In such cases, we recommend using several pictures of the 
same plate at different timepoints in order to minimize possible biases in estimations of lag time distributions.

Discussion
We developed ColTapp, a user-friendly application with a graphical interface. This application extracts biologi-
cally relevant data from images of microbial colonies including size, growth rate and appearance time as well as 
morphology descriptors and spatial metrics. Colony growth dynamics parameters are derived from time-lapse 
images. As it might not always be feasible to utilize high-throughput time-lapse imaging, ColTapp also includes 
a framework to estimate appearance time from endpoint images. Colony size at an endpoint is affected by colony 
density, resulting in a bias in appearance time estimation. Thus, we propose an iterative correction utilizing local 
plate density to moderate this bias. The correction is based on a control dataset and applied to a dataset with 
different growth characteristics (generalized long lag time).

In the past decades, the existence of phenotypic heterogeneity in bacterial populations has gained interest. 
Mathematical modeling of bacterial population dynamics in their ecosystems used to rely on average behavior. 
Advances in single cell microscopy and the development of models that can take into account the phenotypic 
state of thousands of individual bacteria shed light on the ecological function of phenotypic  heterogeneity2,27. In 
medicine, while most bacterial infections can successfully be treated with antibiotics, treatment failure occurs 
even if the bacteria are not resistant to the antibiotics that are given. The existence of subpopulations unresponsive 
to treatment is thought to ultimately be the cause for these treatment failures.

Under standard laboratory conditions, the established methods to investigate phenotypic heterogeneity in 
bacterial populations are single cell microscopy and flow cytometry, but these methods are often expensive and 
technically difficult to setup and maintain. Moreover, many medical and environmental samples are too complex 
to study with these methods, either because they consist of complex substrates (e.g. viscous fluids) or they contain 
contaminating particles that may hinder proper quantification. The high fluctuation in quality and bacterial load 
in natural samples might also not justify the time and money investment required to carry those experiments out. 
In the case of microscopy, rare phenotypes are difficult to quantify if the setup does not allow the observation 
of very large number of bacteria. Therefore, plating bacteria on nutrient media offers a cheap and easy way to 
assess lag time heterogeneity, as previously  proposed4,5. While time to growth resumption on undefined nutrient 
media reflects the dormancy state of the bacterial cells upon plating, one may be interested in following time to 
growth resumption of an active population upon plating on selective media. Indeed, this can be an opportunity 
to investigate the ability of a population to switch metabolic states (e.g. to a new carbon source)28.

Note that although colony formation can be seen as a good alternative to single cell behavior assessment, it is 
not a direct single cell observation. For example, clumped bacteria or an inhomogeneous spreading of cells on 
a surface, resulting in deposition of aggregates of cells instead of single cells on the agar, will likely result in an 
underestimation of single cell lag time. This needs to be kept in mind even when calibrating data to optimize anal-
ysis. Assessing the effect of the studied condition on clumping of bacteria might help avoiding false discoveries.

With ColTapp, we propose an easy to use graphical user interface, so that any laboratory, regardless of the 
technical equipment and image analysis expertise accessible, can approach single cell growth phenotypes by 
monitoring colony growth dynamics. Usage of colony size determined by image analysis to assess stressor effects 
is a long-established  method29 and various end-user applications to facilitate colony counting and size assessment 
were developed over the years (e.g. a standalone GUI by Clarke et al.30 or an ImageJ plugin by Cai et al.31), of 
which OpenCFU is one of the best known  applications32. Image analysis algorithms implemented by the various 
applications are usually very similar and consist of a combination of pre-processing steps to clean raw images, a 
variety of thresholding algorithms to derive binary images and optional watershed segmentation to finally count 
and measure isolated objects. Variations exist, with for example multiple rounds of pre-processing33 or a two-step 
colony detection algorithm for plate border and  center34. Modern colony counter image analysis applications 
are using smartphones to acquire and process images all in one simple  app35,36 or are starting to use the power 
of deep learning  algorithms37.

OpenCFU was the best operating tool at the time of writing this manuscript, while many other programs 
are not maintained. We compared its performance to detect colonies with ColTapp, using our image dataset of 
colonies from multiple species plated on multiple media (Table 1, Supplementary Fig. 5, Supplementary Table S2). 
The average ratio between found colonies and actual colonies on an image (not accounting for false positive or 
false negative detections) was 0.75 (SD = 0.26) indicating a general underestimation of colony numbers. Col-
Tapp on the other hand has ratio of 1.09 (SD = 0.28) between initially detected and actual colonies. ColTapp, on 
average, overestimates number of colonies. OpenCFU has no option for manual correction of detected colonies 
which limits the usability of it.

The above mentioned applications (Table 1) are meant to analyze endpoint images, which do not capture 
colony growth dynamics. Levin-Reisman, et al.5 released the ScanLag code package to analyze colony time-lapse 
images. Yet, although multiple groups use this type of analysis for their  research7,15,16,38, there is no comprehen-
sive and flexible application including a graphical user interface currently available for this purpose. ScanLag 
works best on a specific imaging setup and we were not able to compare it with ColTapp. Therefore, by bringing 
together the standard endpoint analysis with time-lapse image analysis, our user-friendly ColTapp fills a gap in 
the collection of existing dedicated image analysis tools.

As for any image analysis tool, the quality of the analysis will highly depend on the quality of the images them-
selves. We recommend users to maintain homogenous lighting, avoid light flares and reflections and create good 
contrast using background modifications and proper focusing. ColTapp is flexible enough to allow processing of 
colored and grayscale images acquired either through dedicated platforms or with simple camera solutions. For 
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endpoint images, this can be best achieved using a dedicated white box with diffused, indirect light, but recent 
phone cameras can also give decent results on a bench.

We propose an analysis of the linear radial growth phase, assuming a colony has already reached this stage 
upon appearance. It is not difficult to observe the initial exponential part of the colony growth (occurring 
before a colony reaches a radius of ~ 100 µm) by using commercially available photographic macro lenses (Sup-
plementary Fig. S7, see methods). However, one should be aware that defining appearance time with a linear 
extrapolation is incorrect in this case as the exponential growth phase is actually observed and should be taken 
into account. Similarly, our estimation of appearance time from endpoint images assumes that colonies are in 
the linear growth phase.

As soon as the steady flow of nutrients sustaining colony growth decreases (timing is dependent on proxim-
ity of competing neighbors and the total number of colonies on the plate), the colony enters saturation phase, 
which impacts the linear appearance time estimation. Density may even affect the observed appearance time if 
colonies enter saturation phase before they are  visible5. However, in the presented S. aureus dataset (including 
extremely dense plates), only a marginal correlation was observed between colony appearance time and density 
(Supplementary Fig. S12). Colony growth is a complex biological process and different species on different 
growth substrates will respond differently to  density16. For this reason, it is impossible to propose a universally 
valid method to take density into account. Nevertheless, the explored correction based on spatial metrics, which 
can easily be exported with ColTapp, might be used as a starting point to develop suitable correction methods 
for the investigated species.

We wrote the ColTapp application using the classical programming language MATLAB, and the code is 
designed as a modular shell that can host further image analysis methods that may meet specific needs, while 
benefiting from the easy to operate graphical interface. Typically, we envision that the introduction of more 
sophisticated morphology descriptors could facilitate the study of intra- and inter-species colony interactions.

Materials and methods
Hardware and software details. We programmed the ColTapp application with MATLAB 2020a (Math-
Works). Very preliminary code of the GUI and time-lapse radius tracking was proposed  earlier8. All algorithm 
accuracy and computational efficiency tests were performed on a computer with Windows 10 OS, i7-8700K 
@4.70 GHz, 32 GB RAM.

We used external code acquired from the File Exchange server of MathWorks for certain functions. Namely, 
these were a Voronoi tessellation function by  Sievers39, an image zoom and pan function by  Cabrera40, multiple 
directory acquisition function by  Cannell41, a smoothing function tolerant to missing values by  Pittam42 and a 
function to fit a circle through three points by  Malyuta43.

Additionally, we used  ggplot244 within R and R  Studio45 as well as Inkscape (www.inksc ape.org) for certain 
figures.

Image acquisition. ColTapp does not rely on a specific image format or quality. Achieving homogenous 
lighting is undoubtedly critical for successful image analysis, but image acquisition itself can be operated using 
any kind of device. For correct image capture (Supplementary text 2.1), the camera should be positioned perpen-
dicular to the plate. For time-lapse imaging, acquisition triggering at defined time intervals is necessary. Typical 
systems include scanners, dedicated applications and cameras or commercially available consumer-grade cam-
era, provided they include a time-lapse mode or can be triggered by an external controller.

The time-lapse series presented in this paper were generated acquiring images every 10 min for ~ 70 h, result-
ing in series of either 410 or 423 images. Monitoring colony growth for this duration ensured that bacteria 
experiencing long lag time became eventually visible and that the colonies reached the saturation phase on all 
plates to permit our analysis of density.

Plates were either captured individually with Canon EOS 1200D reflex cameras generating .jpg files of 
size 5184 × 3456 pixels triggered through an Arduino controller (Fig. 1a) or four plates at a time with Basler 
acA5472-17um 20MP cameras (Fujinon Objectives CF16ZA-1S 16 mm/1.8M37.5 × 0.5) generating .tiff files of 
size 5472 × 3648 pixels triggered with Basler’s pylon software suite (Version: 6.0.1). The spatial calibration factor 
was around 1 pixel to 25 µm using the Canon EOS 1200D and 1 pixel to 50 µm using Basler acA5472-17um 20MP 
cameras. When using an EF100mm f/2.8L IS USM macro lens on the Canon camera, we obtained a 1 pixel to 

Table 1.  Comparison with other colony image analysis tools. Here, we qualitatively compare ColTapp with 
two tools dedicated to image analysis of pictures of bacterial colonies grown on solid agar. We summarize the 
availability of code and a graphical user interface (GUI), the output data provided (colony counts, position, size 
and growth kinetics, i.e. appearance time and linear radial growth rate) as well as the aim of the three tools. For 
details and more publications, see main text.

Availability Data extracted from colonies on images

AimCode GUI Count Position Size Growth kinetics Additional characteristics

Levin-Reisman et al. 2010 (ScanLag) Yes No Yes Yes Yes Yes None Analysis of colony time-lapse images

Geissmann 2013 (OpenCFU) Yes Yes Yes Yes Yes No Morphology descriptors, number of 
adjacent colonies Analysis of colony endpoint images

ColTapp Yes Yes Yes Yes Yes Yes Morphology descriptors, spatial 
metrics

Analysis of colony endpoint and 
time-lapse images

http://www.inkscape.org
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5 µm spatial calibration factor. The plates were laid on a black background surface upside-up below the cameras 
and the whole system was set inside an incubator at 37 °C. To prevent drying out of agar plates and airborne 
contamination, lids were kept on the plates. To avoid condensation, lids were pre-warmed to 37 °C. Best image 
analysis quality was observed when special attention was brought to the illumination method: indirect, homoge-
neous white illumination was obtained by covering the incubator walls with white paper and using a LED based 
light source (Philips Hue Lightstrips Basis, operating in warm-white mode) emitting minimal heat (temperature 
of LED aluminum encasing: 45.1 °C ± 2.4 °C (mean ± standard deviation, n = 7); temperature of agar plate surface: 
37.5 °C ± 0.51 °C. Temperature measured with a Stanley STHT0-77365 infrared thermometer). Endpoint images 
were acquired manually with a Canon EOS 1200D reflex camera and lids were temporarily removed. Plates were 
placed in a custom-built box with light diffusing sides and a fixed plate- and camera-holder.

Colony detection algorithm implementation. Colony detection uses a series of image analysis opera-
tions starting from a grayscale image (Fig. 6a) and depends on user-specified minimal and maximal expected 
radius of colonies (see Supplementary text 3.1 and 3.2 for additional pre-processing possibilities). ColTapp uses 
top-hat filtering with a disk-shaped structuring element based on the minimal expected radius to reduce lighting 
gradients and other inhomogeneities of the agar background (Fig. 6b). Local adaptive thresholding is then used 
to create a binary image (Fig. 6c). This image is cleaned from artifacts and unwanted objects by discarding small 
and big isolated objects (threshold defined by minimal and maximal expected radius, respectively). Objects with 
a low extent (foreground/background pixel ratio), are discarded as well (Fig. 6d). Next, distance transformation 
is used to derive local minima, which are subsequently filtered by minima imposition. Overlapping colonies are 
separated with watershed segmentation (Fig. 6e). Sequentially, ColTapp extracts images containing an isolated 
object  (imgcrop) from the top-hat filtered grayscale image and further performs circular filtering and contrast 
enhancement (Fig. 6f). Objects are discarded if the proportion of low intensity pixels within  imgcrop is above 
a threshold defined by the median intensity of all objects. A two-step circular Hough transform is applied to 
 imgcrop by the imfindcircles  function46,47 available in MATLAB to detect all probable colony circles within the 
given radius range (all circles in Fig.  6g). False positive circles may be detected (red circles in Fig.  6g) and 
sequential quality control functions are used to exclude these. Circles are excluded based on their distance from 
the image boundaries of  imgcrop, proportion of pixels categorized as foreground within the circle, proportion of 
overlap with each other, distance between each other and relative fitting quality. After every  imgcrop is processed, 
a final quality control round is deployed to remove circles with extremely close centers (Fig. 6h). Several param-
eters involved in circle detection and quality control can be tuned to potentially improve performance (Sup-
plementary text 3.2). In addition, the user may intervene directly to correct the results (Supplementary text 3.3).

Figure 6.  Image analysis steps for colony detection. (a) Original grayscale image. (b) Top-hat filtering of image 
in (a). (c) A binary image is obtained by adaptive local thresholding. (d) Noise is filtered out of binary image. (e) 
Distance transformation and watershed segmentation are used to identify isolated objects. (f) Sequentially, each 
minimal sized image containing an isolated object is extracted. (g) Potential circles are detected with a two-step 
Hough transform (all circles). A series of automatic quality control functions are used to discard false positive 
circles (red circles). Only circles passing the quality control are kept (blue circles). (h) Final detected circles. The 
small rectangle in (a,b,c,d,e,h) marks the region of the extracted object shown in (f, g).
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In Endpoint mode, colony detection is done independently on each frame. In Timelapse mode, it is done on 
a single frame, as the colony radius can subsequently be tracked over time.

We tested the accuracy and computation speed of the colony detection algorithm with 30 images acquired 
with different cameras, including smartphones (Supplementary Fig. S5). Images of the bacterial species S. aureus, 
Escherichia coli, Staphylococcus epidermidis, Pseudomonas putida48, Acinetobacter johnsonii48 and Alteromonas 
macleodii49 as well as bacteriophage plaques on E. coli48,50 using the standard agar media necessary for optimal 
growth of the respective species (Colombia sheep blood, tryptic soy broth, lysogeny broth, marine broth, etc.) 
were included. ColTapp successfully detects colonies from various bacterial species on distinctly colored agar 
plates. Adapting imaging conditions towards homogeneous light and reduced reflections can reduce the amount 
of manual correction required (Supplementary text 3.4, Supplementary table S2 and Supplementary Fig. S5).

Radius tracking algorithm implementation. Executing the above described colony detection method 
on each frame to generate time-lapse data of growing colonies creates several potential problems: (1) manual 
correction would be tedious, (2) colony to colony center matching between frames needs high accuracy, (3) 
radius range search of ColTapp is not time dependent, (4) the colony detection algorithm does not operate 
well with an expected minimal radius below 3 pixels. This would impose a detection limit. Therefore, ColTapp 
proposes to initially detect all colonies on a frame corresponding to a late timepoint, which is set as the refer-
ence frame. Once colonies have been detected on a late frame of the time-lapse series, their radius is tracked on 
the previous frames. For each time frame, ColTapp extracts sub-images of each colony from the main image. 
Intensity of each sub-image is scaled based on minimal and maximal intensity values of the last image of the 
time-lapse. These sub-images are then unwrapped with a polar transformation (Fig. 7a). The placement of the 
colony center position is important in this step since a misplaced center’s distance to the edge of the colony is not 
equal to the radius. Image drift correction as well as center correction functions are implemented in ColTapp 
to improve centering (Supplementary text 5.1 and 5.2). Each transformed sub-image is averaged into a single 
intensity vector representing the intensity gradient from the colony center towards its edge. This averaging step 
reduces the noise introduced by slight off-centering of colonies and reduces file sizes. Finally, all vectors result-
ing from the corresponding sub-images of each time frame are combined into a kymograph, which represents 
the colony radial growth as a curve in intensity (Fig. 7a). The kymograph’s highest contrast edge corresponds to 
the colony radius over time. Since the presence of neighboring colonies would create blurry regions in the top 
of kymographs and thus hinder edge detection (Fig. 7b), ColTapp ignores the angle ranges corresponding to 
adjacent colonies for kymograph creation (Supplementary text 5.3).

In order to detect the kymograph edge to derive colony radius over time, two methods are implemented: 
Global thresholding and Edge detection. Both methods first apply an automatic contrast enhancement function, 
then a pixel-wise adaptive low-pass Wiener  filter51 followed by a circular averaging filter (pillbox) to the kymo-
graph to derive a smoother image. Additionally, a low-pass threshold for maximal intensity may be applied.

These pre-processed images are then further transformed with either a Global thresholding or Edge detection 
method to create binary images. The default Global thresholding method uses Otsu’s  method52 to derive a global 
threshold from which a user-defined constant is subtracted to prevent biasing towards background (Fig. 7c).
The Edge detection method uses a series of edge detection and morphological operations (Fig. 7d). In brief, the 
method by  Canny53 is used for initial edge detection. Subsequently, small isolated foreground pixels are removed 
with area opening operations. Straight vertical and horizontal lines, typically originating from light artifacts and 
particles on the agar respectively, are removed. Two iterative morphological closing operations are used with 
line- and disk-shaped kernels, respectively. Additionally, active contouring using the Chan-Vese  method54 is 
applied to the pre-processed kymograph to derive a second binary image with a filled region of probable colony 
area. The two binary images are merged, and morphological closing is performed to close potential gaps to suc-
cessfully fill connected regions afterwards. A final morphological opening is applied to remove jagged edges. 
The fully connected object located in the lower right side of the kymograph (corresponds to end of time-lapse 
and close to colony center) is kept as the only foreground object in the binary image.

ColTapp includes automatic error detection and manual correction tools for the kymograph derived radius 
growth curves (Supplementary text 5.4, Supplementary Fig. S13).

The Edge detection method is more complex and is suggested when the default Global thresholding method 
fails. Switching to the Edge detection method for the incorrect growth curves resulted in a reduction of the 
number of growth curves requiring further manual correction to 3.1% (SD = 2.7%) (Supplementary text 5.5, 
Supplementary Table S3). Generally, computational time increases with the number of frames in a time-lapse 
series, number of colonies to track, image file size and final colony size (Supplementary text 5.5, Supplementary 
Table S3).

Bacterial strains and cultivation. To generate our 22 demonstration time-lapse movies (Supplemen-
tary Fig. S9, S10), the Staphylococcus aureus strain JE2 was grown overnight at 37 °C in shaking (220 rpm) test 
tubes containing tryptic soy broth (TSB, Difco), inoculated from a single colony picked from blood agar plates. 
These cultures were diluted to an optical density (600  nm) of 0.2 in fresh TSB containing rifampicin (1  µg/
ml) to generate the Rifa dataset and without rifampicin to generate the control dataset. After 24 h rifampicin 
exposure, cultures were pelleted (10,000 g, 3 min), resuspended twice in phosphate buffered saline solution and 
then plated on blood agar plates (Columbia, 5% sheep blood, BioMérieux) at dilutions ranging from undiluted 
to a  10–4 dilution in 2/3rd dilution steps. For the control dataset, after 2 h of incubation in TSB (corresponding 
approximately to mid-exponential growth phase), bacteria were serially diluted (2/3rd dilution steps) and plated 
on blood agar plates.
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To generate the extra time-lapse movie of a plate including colonies from two different genetic backgrounds, 
the S. aureus strain Cowan I and a S. aureus small colony variant clinical isolate were picked from a plate, set 
to an optical density (600 nm) of 0.5, diluted to  10–6. 50 µl of each of these dilutions were plated on the same 
blood agar plate.

To generate the 30 images on which we assess the performance of the colony detection algorithm (Supple-
mentary Fig. S5) the strains and growth conditions specified in Supplementary table S1 were used.

Figure 7.  Time-lapse processing. (a) A polar transformation is applied to grayscale sub-images of each 
colony and intensity values are averaged over the radius for each frame in the time-lapse. These radial average 
intensity vectors are combined into a kymograph representing colony radius growth. (b) Overlapping colonies 
result in blurry regions in the top part of the kymograph. The angle range corresponding to overlapping 
colonies is excluded to reduce this effect. Kymographs can be processed either by (c) Global thresholding or 
(d) Edge detection method. (c) In the Global thresholding method, a threshold is applied to a filtered version 
of the kymograph to derive a binary image. (d) The Edge detection method uses a series of filtering steps, edge 
detection algorithms and morphological operations to optimize the binary image.
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Data availability
The ColTapp MATLAB source code and standalone executable (macOS/Windows) can be found at https ://
githu b.com/ColTa pp under the GNU General Public License 3 and freely downloaded, together with a package 
of demo images, the code to trigger cameras with an Arduino board and experimental data analysis files. Raw 
images are accessible on Figshare at https ://doi.org/10.6084/m9.figsh are.12951 152.v1.
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