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“Brainless” cells, the living constituents inhabiting all biological materials, exhibit
remarkably smart, i.e., stimuli-responsive and adaptive, behavior. The emergent spatial
and temporal patterns of adaptation, observed as changes in cellular connectivity and
tissue remodeling by cells, underpin neuroplasticity, muscle memory, immunological
imprinting, and sentience itself, in diverse physiological systems from brain to bone.
Connectomics addresses the direct connectivity of cells and cells’ adaptation to
dynamic environments through manufacture of extracellular matrix, forming tissues
and architectures comprising interacting organs and systems of organisms. There is
imperative to understand the physical renderings of cellular experience throughout life,
from the time of emergence, to growth, adaptation and aging-associated degeneration
of tissues. Here we address this need through development of technological approaches
that incorporate cross length scale (nm to m) structural data, acquired via multibeam
scanning electron microscopy, with machine learning and information transfer using
network modeling approaches. This pilot case study uses cutting edge imaging
methods for nano- to meso-scale study of cellular inhabitants within human hip tissue
resected during the normal course of hip replacement surgery. We discuss the technical
approach and workflow and identify the resulting opportunities as well as pitfalls to avoid,
delineating a path for cellular connectomics studies in diverse tissue/organ environments
and their interactions within organisms and across species. Finally, we discuss the
implications of the outlined approach for neuromechanics and the control of physical
behavior and neuromuscular training.

Keywords: connectomics, imaging, machine learning, cell, cell memory, cellular epidemiology

INTRODUCTION

Cells of the human body populate their habitat through division, starting with two cells at
conception and expanding to over 70 trillion cells over the course of a lifetime (Knothe Tate,
2017). Throughout the lifespan of the organism they inhabit, cells memorialize the biophysical and
chemical stimuli they experience via gene expression of structural proteins created from molecular
building blocks, e.g., amino acids. In this way, cells encode an organism’s and their own experiences
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in the physical world, by creating and adapting tissues,
throughout life. Just as punch cards encode the recursive logic
of textile weaves created with weaving looms (where card holes
allow passage of hooks and the fibers they shuttle), genes
encode and translate the arrangement of amino acids comprising
elastin, collagen and other structural proteins making up tissue
weaves (Knothe Tate, 2017, 2020; Ng et al., 2017a,b). A major
barrier to understanding the emergent behavior that underpins
this tissue genesis and adaptation is the lack of methods
to image and analyze cellular connectivity across length and
time scales.

The manuscript proposes a paradigm shifting approach to
understand the cellular underpinnings of diseases as different
as osteoarthritis and early onset dementia in bone and brain.
We know as biologists that cells manufacture, remodel and
adapt tissues throughout life (Knothe Tate et al., 2016a; Putra
et al., 2019). The tissues render physically the collective cellular
experience, reflected in architectures (bones) and memories
(brain) which themselves exhibit emergent properties (Knothe
Tate, 2020). These emergent properties cannot simply be deduced
from the individual parts, which themselves do not exhibit
such properties; rather, these emergent properties arise from
spatial and temporal arrangements among multiple parts, e.g.,
memories that are physically encoded in neurons are not
observable in single neurons but rather emerge from the spatial
arrangement and temporal behavior of interacting neurons in
the brain. A pathological example of emergence would be
disease emergence, e.g., of osteoarthritis in the musculoskeletal
system or early onset dementia in the brain, which cannot be
predicted based on the occurrence of a single sick cell but
rather at the stage of loss in function or loss in return to
homeostasis due to emergence of disease amongst groups of
cells that interact.

The elucidation of such disease emergence represents a
currently untenable yet compelling research problem. On the one
hand, the lack of methods to probe and understand emergent
behavior of inhabitant cells within their complex ecosystems
presents a hurdle to understanding and fundamental discoveries.
On the other hand, the role of cell populations and the loss of
their connectivity in disease progression has been stymied by
the tradeoff between achieving sufficient resolution across vastly
different length and time scales, e.g., single field of view and
single time point images (nano- to microscale for electron to
optical microscopy), and other imaging modalities that enable
high temporal albeit less spatial resolution (MRI). Rapid advances
in the field seek to overcome this current hurdle. To address
each of these points, workflows are needed to render and
analyze vast amounts of imaging data from nano- to meso-
length scales. The manuscript describes that process and sets a
path forward.

The neuroscience community refers to the totality of
cellular connections and their three-dimensional (3D) networks,
e.g., in the brain, as the connectome and the process of
rendering, analyzing and understanding the connectome as
connectomics (Seung, 2012; Jbabdi and Behrens, 2013; Blakely,
2021). A recently integrated biosystems engineering, imaging
and analysis platform enables a connectomics approach to map

cellular connectivity across organs as diverse as brain and bone
(Eberle et al., 2015; Knothe Tate et al., 2016c, 2019; Pereira et al.,
2016). Tested in mouse brains (Mikula et al., 2012; Lichtman
et al., 2014; Hayworth et al., 2015; Mikula and Denk, 2015;
Swanson and Lichtman, 2016; Hayworth et al., 2020; Günther
et al., 2021) and in our own pilot studies of the human hip
(Eberle et al., 2015; Pereira et al., 2016; Knothe Tate, 2017),
as well as validated through the delineation of standardized
protocols and workflows (Ngo et al., 2019), these biosystems
engineering approaches may find future applications relevant for
every organ of the body.

Here, key enabling steps are described for quantifying
relationships and connectivity between cells in different disease
states. Specifically, we test machine learning algorithms with
cellular network maps of the human hip to elucidate the role
of cell networks in organ and organism (patho)physiology
throughout life (Figure 1). This approach may pave the way
for next generation theranostics, i.e., enabling prediction of
emergent cell scale pathology, including disease detection as well
as treatment, well before permanent damage occurs at tissue
and organ length scales. Based on the results of this pilot study,
we assess opportunities and identify potential pitfalls of the
integrated imaging, modeling and machine learning approaches.

Datasets Rendered as Cellular Networks
in Maps of Human Tissue
Human tissue samples from the femoral neck and head of
patients undergoing total hip replacement were obtained with
Institutional Review Board Approval (Cleveland Clinic IRB12-
335). Samples were prepared for electron microscopy (EM)
using a published protocol (Ngo et al., 2019) developed to
enable fixation and polymethyl methacrylate embedding and
electron microscopy of mesoscopic samples which exceed
the typical diffusion path lengths for mm-sized electron
microscopy samples.

Samples were first etched (to expose cells just below the
block face surface) and imaged using multi-beam Scanning
Electron Microscopy, to achieve nano- to meso-scale renderings
of cellular inhabitants (mainly osteocytes with some red blood
cells visible in resulting images). Based on this protocol,
carbon coating provided sufficient contrast to visualize
osteocytes exposed by chemical etching on the surface of
the sample block. Although not used for the current study,
sequential layers of cellular networks could be revealed by
reiterating the etching and imaging steps, resulting in a
volume of tissue with fully rendered three dimensional (3D)
cellular network.

Three datasets were acquired using three generations of
multibeam Scanning Electron Microscopes (mSEM) to image
three different samples, starting with a 61 beam prototype at
12 nm pixel size and ending with a state-of-the-art commercial
system (Zeiss mSEM 505) (Table 1).

In our first pilot study (Knothe Tate et al., 2016c; Pereira
et al., 2016), we tested the feasibility of using the Google Maps
API platform to stitch and render the maps in a way that
would be accessible to, as well as navigable and quantitatively
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FIGURE 1 | Imaging cellular networks and environments across length scales, from nano to meso, using cross length scale imaging (multi-beam scanning electron
microscopy) of the cellular inhabitants of the human femoral neck, i.e., osteocytes, as a case study. (A) Organism (A1) to tissue (A2) to cellular (osteocyte, A3) length
scales demonstrating the most prevalent cellular inhabitants of bone, osteocytes. During development, cells manufacture the tissues comprising the femoral head
and neck (proximal femur, A1,D); the cellular inhabitants of bone, cartilage and other tissues model (during growth) and remodel (enabling adaptation) the respective
tissues of their local environment through up- and down-regulation of structural protein transcription, and secretion into the extracellular matrix. (B) The cellular
network of bone’s resident osteocytes changes throughout life, in health and disease (B1: healthy, B2,B3: diseased). (B,C) The loss in network connectivity reflects
the health status of the cells (C1, live and dead osteocytes visualized using an ethidium bromide assay) as well as the patency of the network (C2—stochastic
network model with nodes representing cells, C3—calculation of loss in information transfer with loss in network nodes); loss of viable cells within the network results
in loss in network connectivity and subsequent diminished information transfer capacity across and within the network. (D–J) mSEM imaging, combined with image
stitching and Google Maps API geonavigation applications, enables high resolution imaging of inhabitant cells within tissues, as well navigation and analysis of single
cells and their complex networks, seamlessly across length scales (D, femoral head and neck; E, section through the femoral head created by stitching together of
many images, comprising arrays; F, of hexagons; G, themselves made of arrays of electron beams). Rather than using single electron beams as in traditional
electron microscopy, mSEM uses arrays of 61 and more beams (F,G) to capture large areas of tissue (mesoscale, E) with nanoscale resolution (H–J). Through
inorganic and organic etching procedures adapted from atomic force microscopy, the third dimension of cellular networks may be captured (H,I) and the local and
global environment of tissues’ cellular inhabitants (Ot, Osteocyte; BLC, Bone Lining Cell) can be explored within tissue contexts (BV, upper half of oval Blood Vessel,
above which bony matrix is seen). Images adapted and used with permission (A, Knothe Tate et al., 2010; B, Knothe Tate et al., 2002; C, Anderson et al., 2008;
D–J, Knothe Tate et al., 2016c).

analyzable, by scientists and the lay public alike. The resulting
data set was annotated using Google Maps’ pins to mark
manually viable and pyknotic cells (necrotic and apoptotic
cells are typically identified by condensation of the chromatin

TABLE 1 | Dataset metrics from three generations of mSEM maps from three
different human hip samples obtained with IRB approval.

Data metrics 1st generation (gen)# 2nd gen+ 3rd gen

Total area imaged (mm2) 5.69 13.1 1,810

Total images in area 54,717 100,589 7,335,982

Multibeam FOVs 897 1649 120,262

Pixels (megapixels) 75,276 857,086 1.07 × 1010

Size (Terabytes) 0.08 0.87 10.98

FOVs refers to Fields of View. See links for navigable, rendered maps comprising
each dataset:
#https://www.mechbio.org/sites/mechbio/files/maps5/index.html (Knothe Tate
et al., 2016c).
+https://www.mechbio.org/sites/mechbio/files/maps7/index.html user: mechbio,
password: #google-maps.

and fragmentation of the nucleus, defining pyknotic). As a
surrogate identification factor (classifier for machine learning
implementation), osteocytes with less than three visible processes
were identified visually and manually pinned as pyknotic,
indicated by a red pin. Osteocytes with more than three visible
processes were identified visually and manually pinned as viable,
indicated by a green pin. The manual process took several weeks
for the 1st generation dataset (Table 1). Full details of this process
are described in previous publications (Knothe Tate et al., 2016c;
Pereira et al., 2016).

Automation of Landmark Identification
Using the You Only Look Once Machine
Learning Algorithm
Increasing dataset sizes necessitated development of objective,
automated methods for identification and quantification of cells,
an ideal application for machine learning approaches. To this
end, we implemented the so-called “You Only Look Once”
(YOLO) machine learning algorithm (Redmon et al., 2015), using
the previously marked datasets as training data (Figures 2A,B).
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FIGURE 2 | Automated detection algorithm to classify osteocytes using manual methods and the You Only Look Once algorithm (YOLO; Redmon et al., 2015). (A,B)
Training and testing data for the machine learning algorithm using the 1st generation mSEM map. The manually acquired training data set, comprising 629 examples
of osteocytes (A—stitched electron microscopy scan on left and manually located and “pinned,” using Google Maps API, osteocytes, where green indicates viable
and red marks pyknotic), was scaled up to an augmented training set of 106 examples (B) using digital permutations of translation and rotation, scale and
illumination. From the augmented dataset, 75% of the data was used for training and 25% of the data was used for testing of the YOLO algorithm, all using the data
from the 1st generation map. The algorithm was then run independently on the 2nd (Figure 3) and 3rd generation maps. Note: the red bounding boxes (A) indicate
detected cells prior to classification, i.e., not indicative of cells’ health status.

Seventy five percent of the augmented dataset was used to train
the model and 25% of the data were set aside to test the model.
The You Only Look Once machine learning algorithm was
applied to detect cells on all datasets (Figure 2C). The image
processing was simple and straightforward. The YOLO detection
system resizes the input image to 448 × 448, runs a single
convolutional network on the image, and thresholds the resulting
detections by the model’s confidence.

In summary, we acquired three datasets rendering osteocyte
networks in tissues of the femoral head. The different
datasets include data from different samples imaged using new
generations of mSEM and associated increasing computational
capacity. The first data set included 5.69 mm2 tissue and over
50,000 images (0.08 terabyte), with manual identification of 629
osteocytes taking several weeks’ time. To enable automated, rapid
detection of osteocytes and in consideration of the increasing size
and complexity of the datasets enabled through advances in the
mSEM instrument and parallel computational advances (second
and third generations) over the past decade (from an advanced
prototype to a commercial system), we applied a machine
learning algorithm to detect osteocytes based on the You Only
Look Once (YOLO) convolutional neural network described
originally by Redmon et al. (2015). The YOLO algorithm is
faster and more efficient than typical classifier-based algorithms.
YOLO "looks at an image once" (thus the acronym) to predict
the presence of objects and their locations. The image is divided
into an S × S grid in which bounding boxes and confidence
scores for object detection within bounding boxes are calculated.
The confidence scores give a quantitative probability of how
similar the predicted box detecting an object is with the training
data (ground truth). The higher the confidence score, the more
accurate the prediction (Redmon et al., 2015; Shivaprasad, 2019).

We applied the machine learning approach to second and
third generation maps, with the third data set comprising 1,810

mm2 tissue and over 7,000,000 images (10.98 TB), identifying a
total of 206,180 osteocytes in 100 h on a graphics processing unit
(GPU, GeForce GTX 1080 graphics card enabled) compared to
the manual pinning method of our previously published work
(Knothe Tate et al., 2016c) that identified 629 osteocytes manually
over several weeks. The algorithm performance currently exceeds
92% accuracy for osteocyte detection and classification, based
on the accuracy of detecting the 629 original cells using the
trained procedure.

Osteocyte coordinates can be extracted from the YOLO
classified image set, enabling high throughput analyses of
massive datasets, which in the future could include other
cellular inhabitants of tissues including blood cells, immune
cells, chondrocytes, etc. While the method shows great promise
for automated detection of cells, the greatest limitation of the
method is the definition of appropriate and unbiased classifiers.
The definition of osteocytes as pyknotic and viable based
on the number of cell processes was shown to be flawed
in a parallel study testing the assumption using biochemical
based viability measures (Anastopolous and Knothe Tate,
2021). Not only did the method not account for empty
osteocyte lacunae that appeared as "ghost osteocytes" (resin
filled empty lacunae) but also osteocyte process number has
not been tied inextricably to cell viability. Multimodal imaging
methods and assays using iodine to stain nuclear material
demonstrate that better descriptors of cell health are needed
(Anastopolous and Knothe Tate, 2021).

With these limitations in mind, the technological approach
provides novel opportunities for a new field of cellular
epidemiology, where emergent changes in cell health may in
the future be used to predict disease outbreaks and prevent
disease transmission, much like they are used at the length scale
of human inhabitants of geographically defined environments
(Knothe Tate et al., 2016c; Dong et al., 2019). The described
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FIGURE 3 | Automated detection algorithm applied to the 2nd generation map (A), where detections with greater than 70% confidence (quantitative prediction of
match to "ground truth" defined by training data) are depicted. (B) The entire map, depicting higher resolution details at increasing levels of zoom (C,D) in the Google
Maps API. Note: the red circles indicate detected cells which are changed to green when the classifier (three or more processes) is met. Red circles above the
dotted yellow line delineating the edge of the tissue surface (B, upper corner) are cells, vessels and artifacts outside of the femoral head and neck tissue. The map
depicted here can be navigated and explored like Google Maps at http://www.mechbio.org/sites/mechbio/files/maps7/index.html to access the map, type in user:
mechbio, password: #google-maps.

workflow and data analytics pipeline enables acquisition,
preparation, and imaging of tissue and organ samples, as well
as post-imaging rendering of and analysis of cellular networks
from different tissues across length scales, of nano- to meso-
length scales.

Implications for Understanding
Neuromechanics and the Control of
Physical Behavior and Neuromuscular
Training
In addition to its obvious application for development of next
generation materials, devices and diagnostics, this disruptive
biosystems engineering platform provides a novel tool for
elucidating the relationship between neural and musculoskeletal
connectomics, movement, navigation and memory (Epstein
et al., 2017; Knothe Tate, 2017). The loss in connectivity

observed in the dendritic osteocyte network of aging and
diseased bone is similar to that of the brain cells in aging
individuals and patients with early onset dementia (Huang et al.,
2015; Knothe Tate and Fath, 2016; Knothe Tate et al., 2016c;
Pereira et al., 2016; Rossini et al., 2020). The possibility that
movement and geographical maps are encoded not only in
the brain but also in the musculoskeletal tissues is tantalizing.
The technological platform here provides a means by which
networks within tissues and organs of different systems within
individual organisms can be studied, from cellular to whole
being contexts. This is expected to lead to discovery of
novel mechanisms underpinning motor neural circuitry and
biomechanical action. Just as dogs and other mammals train
their neural networks in their sleep, running and jumping
across virtual dream terrains, perhaps the physical experience
of life itself is encoded in our cells, the structural proteins our
cells manufacture via gene expression and secrete to form our

Frontiers in Physiology | www.frontiersin.org 5 July 2021 | Volume 12 | Article 647603

http://www.mechbio.org/sites/mechbio/files/maps7/index.html
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-647603 July 7, 2021 Time: 16:52 # 6

Knothe Tate et al. Machine Learning to Neuromechanics

FIGURE 4 | Processing of images and application of the machine learning classification algorithm. (A) Module A preprocesses the mSEM output by stitching
individual images into region-wide panoramas by the virtue of recorded image coordinates. In the interest of computational efficiency, the resulting image is
down-scaled such that individual cells occupy circa 200 × 200 pixels. Here, the 11TB mSEM output from the 3rd generation map is stitched into 30 image regions
amounting to 150 GB of data after downscaling. (B) Module B applies the pretrained object detector. (C) The output is a file listing that includes the location of each
detected cell as a bounding box (X,Y,W,H), class (viable/pyknotic, annotated as “deceased”) and associated confidence p. Each of N detections results in a set of
five predictions for each corresponding bounding box, including the x and y coordinates of the center of the bounding box (Xn,Yn), width and height of the bounding
box (Wn,Hn), and the confidence of the detection (pn where a confidence or probability of 0 means no object was detected and 1.0 means a perfect match with
"ground truth"). The object is then further classified as live or deceased (Cn). The object detector is pretrained using 600 living and 50 pyknotic examples (Knothe
Tate et al., 2016b) and took 12 h to train on a single graphics processing unit (GTX1080). The testing phase on the 150 GB dataset lasted 100 h. Note: modules A
and B can be combined into a single module.

tissues, as well as the adaptation of our tissues throughout life
(Knothe Tate, 2020).

MATERIALS AND METHODS

Sample Preparation
Tissues were fixed in a combination of 4% formaldehyde and
2.5% paraformaldehyde in 0.2 M cacodylate buffer. Tissues were
then embedded in poly(methyl methacrylate) under vacuum
(Ngo et al., 2019). Following this, the sample was precision CNC-
milled and etched using 0.02 M hydrochloric acid and 10%
sodium hypochlorite to remove organic and inorganic top layer,
in order to reveal cellular material (Reilly et al., 2001; Knapp
et al., 2002). The sample was then carbon coated and placed
under a vacuum, preparing for mSEM imaging. Imaging was
performed on the 61-beam Zeiss MultiSEM 505-prototype at
12 nm pixel size.

Identification of Relevant Landmarks,
Creation of Training Datasets
Manual marking of landmarks was described in a previous
paper (Knothe Tate et al., 2016c) and the thereby identified 629

osteocytes were used as the basis for a training and testing data
set (Figure 2).

Machine Learning Approach Using the
You Only Look Once (YOLO) Algorithm
The “You Only Look Once” (YOLO) neural network automated
object detection algorithm (Redmon et al., 2015; described further
for the layperson in Shivaprasad, 2019) was applied to facilitate
rapid throughput diagnostic assessment of imaging datasets while
mitigating the effects of observer bias. An image is first divided
into a grid, where each grid cell predicts bounding boxes for
objects. Then probability-based confidence scores are calculated
for the bounding boxes; the confidence score compares how
close the predicted bounding box and object therein matches
the known objects and bounding boxes defined by the training
data set, or "ground truth." To prevent multiple detections of
the same object, the bounding box with highest confidence
greater than 0.5 (which would be 50% chance of matching
the training data point) is selected from overlapping bounding
boxes; referred to as non-max suppression, this process results in
highest confidence for model predictions per object detected and
maximizes accuracy of the model.

Initially, YOLO was trained for automated osteocyte
detection, using 629 annotated cells, which were further
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augmented to 106 examples through variation by rotation, scale
and contrast (Figure 2). Unseen images were then processed with
YOLO and automatically detected objects were identified and
marked by bounding boxes. The success of the YOLO algorithm
has been proven for detecting osteocytes in the 2nd generation
map within 100 h of testing. A straight-forward approach to
improve the detector performance includes collection of more
than 1,000 false- and missed-detections (Figure 4) to obtain a
more representative training dataset.
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