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Abstract: Crystalline organic nanoparticles and their amorphous equivalents (ONP) have the poten-
tial to become a next-generation formulation technology for dissolution-rate limited biopharmaceuti-
cal classification system (BCS) class IIa molecules if the following requisites are met: (i) a quantitative
understanding of the bioavailability enhancement benefit versus established formulation technolo-
gies and a reliable track record of successful case studies are available; (ii) efficient experimentation
workflows with a minimum amount of active ingredient and a high degree of digitalization via,
e.g., automation and computer-based experimentation planning are implemented; (iii) the scalability
of the nanoparticle-based oral delivery formulation technology from the lab to manufacturing is
ensured. Modeling and simulation approaches informed by the pharmaceutical material science
paradigm can help to meet these requisites, especially if the entire value chain from formulation to
oral delivery is covered. Any comprehensive digitalization of drug formulation requires combining
pharmaceutical materials science with the adequate formulation and process technologies on the
one hand and quantitative pharmacokinetics and drug administration dynamics in the human body
on the other hand. Models for the technical realization of the drug production and the distribution
of the pharmaceutical compound in the human body are coupled via the central objective, namely
bioavailability. The underlying challenges can only be addressed by hierarchical approaches for
property and process design. The tools for multiscale modeling of the here-considered particle pro-
cesses (e.g., by coupled computational fluid dynamics, population balance models, Noyes–Whitney
dissolution kinetics) and physiologically based absorption modeling are available. Significant ad-
vances are being made in enhancing the bioavailability of hydrophobic compounds by applying
innovative solutions. As examples, the predictive modeling of anti-solvent precipitation is presented,
and options for the model development of comminution processes are discussed.

Keywords: nanocrystal; poorly soluble drug; precipitation; comminution; oral bioavailability; mod-
eling and simulation; product design; pharmaceutical material science

1. Introduction

Modeling and simulation of the full oral delivery process chain for drug formulations
can serve the ultimate task of accurately predicting in vivo pharmacokinetics of a new
potential drug [1] by providing a quantitative model for drug manufacturing and delivery.
This is of particular interest for the many new molecular entities identified by pharma-
ceutical industry screening programs exhibiting poor water solubility [2], which makes
their formulation difficult or even impossible. Applying a range of nano-based solutions to
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improve the drug dissolution and bioavailability of hydrophobic compounds is a promising
approach if specific conditions for the drug delivery challenges are met. For the purpose of
this article, organic drug nanoparticles (ONP) are defined as solid organic particles with a
mean diameter <1 µm having either a crystalline or amorphous character. Liposomes and
micelles as drug nanocarriers are here excluded from the terminology nanoparticle.

Any comprehensive digitalization of drug formulation requires the combination of
pharmaceutical material and formulation science coupled to adequate process technologies
on the one hand and quantitative pharmacokinetics and dynamics of drug administration
in the human body on the other side. The combination of process and material models in a
formulation process leads to the desired property function. Both approaches use process
models for the technical realization of the drug production and the distribution of the
pharmaceutical compound in the human body and are closely coupled via the central
objective, namely bioavailability; see Figure 1.

Figure 1. Long-term objective for quantitative prediction of bioavailability via the interplay of models
for process technologies of active pharmaceutical ingredients (API) production and whole-body
pharmacological modeling.

The process models for the property function can complement models for bioavailabil-
ity based on quantitative structure–property relationship (QSPR), physiologically based–
pharmacokinetic (PBPK) and rule-of-thumb (RoT) approaches [1,3,4]. These approaches
are currently being utilized independently. Future developments of promising tools could
be based on combining these process models with hybrid QSPR-PBPK approaches together
with the exploration of ensemble and deep-learning systems for QSPR modeling.

Sole machine learning or artificial intelligence-based algorithms are used in many
applications along the pharmaceutical development pipeline [5], whereas the prediction
of physical chemical properties of compounds such as distribution equilibria, solubility,
or melting point [6], as well as more complex tasks, for instance absorption, distribution,
metabolism, excretion, and toxicity [7] or retrosynthesis [8], the in silico prediction of
formulation performance is far less established. Nevertheless, such data-driven models
can be utilized to support formulation development in a wide range of different quanti-
ties, e.g., in vitro performance [9], stability [10], or disintegration time [11]. In particular,
for nanoformulations, the published data-driven methods range from a linear approach [12]
to a recent publication [13] that developed multiple machine learning models for the
prediction of the nanocrystal size and polydispersity index (PDI) for multiple different
manufacturing methods.

The objective of the current paper is to discuss the combination of absorption, distri-
bution, metabolism, and excretion (ADME) modeling with the modeling of ONP manufac-
turing processes. Digital pharmaceutics entails modeling of the manufacturing process,
e.g., the precipitation of ONP with a particle technology-based approach, as well as model-
ing of gastro-intestinal transit and absorption by a physiologically-based pharmacokinetic
(PBPK) model for gastro-intestinal transit and absorption combined with a mechanistic
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dissolution model of the Noyes–Whitney type. The entire modeling approach is based on
strategies established in product design and engineering, digital pharmaceutics, as well as
pharmaceutical materials science.

The outline of the paper is as follows. Section 2 discusses the state-of-the-art in poorly
soluble drug formulation routes to further clarify the requirements and the application
scope for nanoparticle-based oral delivery. Critical hurdles and objectives for drug for-
mulation are discussed. The application of the pharmaceutical material science paradigm
provides strategies to address these requirements. Fundamentals of drug distribution
modeling in the body via pharmacokinetics and dynamics as well as a highly encouraging
case study on nanoparticle-based oral delivery are presented in Section 3. Our main focus
will be on the process technologies for the formation of ONP by top–down and bottom–up
approaches as discussed in Section 4. We highlight the relevance of material and process
functions as key aspects in process and product design that lead to the desired product
properties, as depicted in Figure 1. In particular, we introduce a predictive model for
nanoparticle anti-solvent precipitation. We further shed light on the complex interaction of
size reduction and ripening during bead milling and discuss promising options to model
size reduction. Finally, Section 5 concludes the paper by pointing out areas for future
developments, leveraging hybrid approaches combining first principles-based models with
artificial intelligence.

2. Background

Nano-based solutions to improve drug solubility and bioavailability are a promising
approach if industrial requirements for the drug delivery challenge are met, as will be
pointed out in Section 2.1. It will become clear that the selection of nano-based solutions
still is heuristics-based and highly empirical due to the underlying scientific complexity and
to preference of the pharmaceutical industry for proven methods. The particle technology
approach in this paper—predicting the properties of novel materials from first principles
using advanced simulation techniques and modern computational techniques—is consis-
tent with the pharmaceutical material science paradigm as laid out in Section 2.2. This has
the advantages of being both quicker and cheaper than a trial-and-error experimentation
process, and it also yields detailed structural and dynamical information that can provide
a stringent test of theoretical models.

2.1. Poorly Soluble Drug Formulation Routes

In drug delivery, there are various possible administration routes, but none is as
popular and broadly accepted as the oral route owing to the multitude of advantages
that are associated with it. To realize the efficient bioavailability of orally administered
drugs, they must have enough aqueous solubility in order to get a therapeutic dose into
the bloodstream of a patient. Unfortunately, due to the tendency of increasing complexity
of the molecular structure of new drug compounds with their specific combination of
hydrophobic and hydrophilic components and their location in the molecular structure,
they often show neither global hydrophobic nor lipophilic properties and hence, they can-
not be formulated with standard techniques. Thus, already, today, 40% of the top 200 oral
drugs marketed in the US, 75% of compounds under development, and 90% of new chem-
ical entities are classified as poorly soluble [14]. In the Biopharmaceutical Classification
System (BCS), see Figure 2, many of these drugs are located either in class II, showing low
solubility and high permeability through biologic membranes [15].

The limitations of amorphous solid dispersions (ASD) as the current standard drug
formulation route for BCS II are related to the thermodynamic or kinetic stability of the
amorphous single phase with the risk of drug phase separation and crystallization upon
storage and/or limited solubility of the drug in pharmaceutically acceptable solvents
with the need for huge solvent amounts during production routes. In addition, ASD are
not applicable to drug forms for intravenous application. It is common to subdivide
the BCS class II drugs into two subclasses: (a) Subclass IIa, which includes dissolution
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rate limited drug substances with high permeability and moderate solubility and (b)
Subclass IIb, which includes solubility-limited drugs showing high permeability and low
solubility [16,17]. Subclass IIa drugs are candidates for a nanocrystal formulation route if
several industrial requirements are met.

Figure 2. Modified biopharmaceutical classification system (BCS) including the division of class II in
a dissolution rate limited partition for which nanotechnological approaches may be feasible (class IIa)
and one that is solubility limited for which amorphous solid dispersions are most promising as drug
delivery strategy (adapted with permission from [16], Springer Nature, 2015). Peff denotes average
human jejunal permeability.

Hence, more and more drug candidates are in the pipeline that cannot be treated
with standard formulation technologies. Many companies are intensively investigating
crystalline organic nanoparticles and their amorphous equivalents (ONP) process technolo-
gies that transfer the ONP benefits into tablets. To shorten the time for the formulation
development and to make it more reliable, the goal is to early derive appropriate process
parameters from distinct knowledge about material properties of the drug and excipients.
In addition to “classical” laboratory-based work, also machine learning and other digital
tools will increasingly accompany formulation development in order to achieve better
and faster results for established but even more for novel formulation routes. Now novel
formulation technologies such as nanotechnologies may be integrated into the standard
formulation toolbox in the foreseeable future.

ONP are increasingly gaining interest as an alternative tool even though there are
only few products on the market yet compared to ASDs [17]. Their advantage resides
mainly in their high specific surface area and, only to a minor extent, in drug nanoparticle
solubility increases. The drug nanoparticle solubility effect is small [18,19] even though the
curvature of particle surfaces and the dissolution pressure increases with smaller particle
size according to the Ostwald–Freundlich equation. For example, suppose the particle
size is 150 nm. In that case, the solubility increases typically by just 15% in comparison
to the bulk solubility. Consequently, particles must be considerably smaller than 100 nm,
rather 10 nm, in order to obtain a substantially increased solubility that is comparable to
that of ASDs [20]. As a positive side effect, it should be noted that the small differences
in solubility between differently sized ONP in this size regime are responsible for only a
little Ostwald-ripening with slow kinetics that is sometimes observed for nanosuspensions.
Thus, stability against particle growth by Ostwald ripening can be mostly neglected.

The available specific surface area of the drug substance is increased by reducing
particle size, thus improving the dissolution rate in a solvent. The relationship between
the dissolution rate and the size of drug particles is described by the well-known Noyes–
Whitney equation, which shows that the dissolution rater is proportional to the total surface
area of the solid particles. The fast depletion of free drug molecules in the lumen is avoided,
since a quick re-supply of them from the drug surface. An increase of the dissolution rate
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by a factor of 14 has been demonstrated for the drug Itraconazole when the particle size is
reduced to 300 nm [21].

An additional benefit of nano-based formulations compared to their micro-sized coun-
terparts is their strongly reduced food effect, meaning that the drug plasma concentration is
much less dependent on food intake when the drug is administered orally and is therefore
advantageous with respect to patient compliance [22]. The reduced food effect is well
understood and can even be simulated with pharmacokinetic models [23]. The nature of
the surface chemistry of the ONP is also important, which also influences their fate in the
small intestine [24].

The production of ONP can be accomplished by bottom–up and top–down approaches.
While top–down approaches involve comminution-based methods, bottom–up approaches
are comprised of precipitation methods by adding anti-solvents to the drug solution.
Crystalline and amorphous nanoparticles can be produced continuously by precipitation
with a very small average size of even below 100 nm and narrow size distribution at the
expense of low concentration of the obtained nanosuspension due to the limited solubility
in pharmaceutically acceptable solvents. A large control over the particle size distribution
for different solvents can be accomplished by the bottom–up approaches either in liquid [25]
or in gaseous phase [26] and with a high throughput if secondary particle formation steps
such as agglomeration and ripening are suppressed. The liquid phase must be removed
to obtain a dry, fully re-dispersible powder for use in a solid dosage form such as a tablet.
The numbering up of equipment is an elegant alternative to the challenging scale-up of
precipitation technology.

An important exception is the production of Abraxane® (Celgene, Summit, NJ, USA)
with the anti-cancer drug paclitaxel, which is one of very few particulate drugs that is
administered intravenously. However, it is not produced by a conventional anti-solvent
precipitation route but via a special process technology (nanoparticle-albumin-bound™
(nab™) technology). In short, hereby, the drug is first dissolved in an organic solvent; then,
it is emulsified in an aqueous phase that forms the continuous phase and contains human
serum albumin (HSA) as a stabilizing agent. A following nanonization and high-pressure
homogenization process comminutes the drug containing phase, which is then followed
by a solvent extraction and drying process. By doing this, a re-dispersible powder with
nanocrystals consisting of the drug and the stabilizer HSA only is obtained [27].

Top–down techniques such as wet media milling (WMM) and high-pressure homoge-
nization (HPH) technologies are amenable to industrial production and are already applied
for marketed products. While the HPH process relies on extreme shear forces and possi-
bly cavitation, which are realized by pressing a suspension through gaps or slits and are
applied to the drug crystals to disperse them [25], the process of WMM bases on forces
that were generated by the impact of small ceramic balls onto the drug crystals. WWM is
implemented by using planetary mills, but agitator bead mills are very common, because
the underlying design can also be used for large-scale application, and the milling energy
that acts on the material is much better controlled. Early development tests start with
milling screening procedures to select those drug excipient combinations that ensure a
stable suspension over a period of at least a few weeks. For this, planetary mills or other
milling equipment is used that only needs tiny amounts of drugs of a few mg per trial,
which is important due to its limited availability in the early stages [26,28]. Resonant
acoustic mixing technology was further proposed as a promising variation of ball milling
for which low-frequency acoustic waves are used for the size reduction of the drug particles
in the suspension [29]. WMM was broadly introduced for drug comminution in 1991 by
Sterling Winthrop [30]; since then, a huge number of papers discussing these technologies
followed, and there are already some products on the market [31,32].

For more widespread uses, a nano-based technology track record has to be built by
the community in addition to providing process understanding and ensuring scale up.
The pharmaceutical industry will only apply well understood and scalable technology and
continue to apply traditional formulation technologies as long as the dose of a specific drug
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for the needed therapeutic plasma level can be safely provided to the patient. More knowl-
edge on the correct handling of nanoformulations along the entire process chain from
the production of ONP suspensions to tableting of the dried powder on one hand and
on the fate of the tableted drug in the gastro-intestinal (GI) tract from disintegrating of
the tablet to absorption in the intestine on the other hand has to be built up to prevent
dropouts in early formulation screenings. The physical stability of nanosuspensions against
e.g., agglomeration in water and in biorelevant fluids (e.g., (e.g., fasted state simulated
intestinal (FaSSIF) and gastric fluid (FaSSGF)) should be ensured to demonstrate the advan-
tageous properties of nanocrystals in animal tests so that the drug can reach the absorbing
intestine membranes of the test animal. The performance may be fine-tuned by adding
further excipients such as ionic surfactants, disintegrants, or others. Very special attention
must be paid to intravenous administration routes since the usable types of stabilizing
excipients are very limited. Furthermore, not only agglomeration must be avoided but
also the ONP must even dissolve very rapidly after injection to avoid any blockage in the
bloodstream [33]. This was successfully achieved by EAGLE Pharmaceuticals, Inc. with
their marketed drug Ryanodex®.

The physical stability of ONP should be preserved in each processing step throughout
the whole process chain from drying, granulating, and mixing to tableting [34], even under
GMP conditions. The desired ONP structure should be preserved throughout the process
chain. Drying as the next step after milling means applying heat to the nanosuspension,
which will also impact the compound quality. Drying with too low heat will lead to a com-
pound with too high residual moisture load that has to be removed in an additional process
step, whereas drying with too much heat will alter the product and respect re-dispersibility
of the ONP embedded in the amorphous matrix [35]. Therefore, it is evident that each
process step could lead to adverse effects such as the formation of mixed morphologies,
e.g., crystalline parts consisting of mixed polymorphs or crystalline paired with amor-
phous proportions, which again lead to an undefined material with low reproducibility.
In most cases, the industrial use of pharmaceutical forms requires morphology in pure
form. This means that they must be either completely crystalline or amorphous but not a
mixture of both, as the latter is not considered reliable for storage and is difficult to repro-
duce. Therefore, maintaining well-defined drug morphology is essential not only during
production but also beyond, as the drug product must be storable for at least 3 years.

Regarding quality tests of a drug product, special attention must be paid to the
required dissolution tests that measure the dissolution kinetics. Here, the separation of
dissolved from undissolved drug in in vitro dissolution testing with conventional paddle
tests according to the United States Pharmacopeia (USP 2) is crucial. In case the pore size
of applied filters is not selected properly, undissolved ONP may pass. Filters with 20 nm
pore size should be used in order to achieve good separation of undissolved particles as
dissolved molecules and to avoid overestimating the performance of nanoformulations.

2.2. Particle Technology Applied to Drug Formulations

The application of particle technology concepts such as process and material models
to the modeling and simulation of nanotechnology-based drug formulations in consistent
with the pharmaceutical material science paradigm in pharmaceutical technology and
the product design and engineering paradigm in chemical engineering. The combination
of process and material models in a formulation process leads to the desired property
function. Property functions of particulate products (property–structure functions) describe
the desired property in dependence of the disperse properties, i.e., particle size, shape,
structure, surface, and composition and their respective distributions. (Equation (1)):

property = f (particle size, shape, structure, surface, composition) (1)

In general, property functions are related to properties of the final product during
application and to technological aspects, which include particle formation, formulation,
and handling. With respect to application in pharmaceutical science and technology,
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property functions describe the target function, here bioavailability (see also Figure 1)
and pharmacological efficacy, e.g., via solubility as function of particle size. In addition,
aspects of particle formation, powder handling, for instance with respect to powder flow,
or tableting in continuous production must be considered in any comprehensive approach.

The process function (process–structure functions) relates the process parameters to
the product property (Equation (2)):

dispersity = g (process parameters, educt concentrations) (2)

Process parameters are the type of unit operations, their interconnection in the process,
the process conditions under which the unit operations are operated (e.g., temperature,
pressure, mass flow rates, etc.) and the materials that are processed. Structure–property
as well as process–structure functions must be known in order to design optimal process
variables and to achieve the desired goal, i.e., to produce well-defined, often multifunctional
product properties. Usually, process chains (with or without recirculation loops) are
employed during which both handling and end-use properties have to be optimized.
The design of unit operations such as grinding, precipitation, granulation, or tableting
strongly depends on material properties. These are best summarized in a general sense by a
material function, which describes the influence of material properties on the performance
of the respective unit operations. Examples will be discussed below for the two exemplary
cases of grinding and precipitation.

Pharmaceutical Materials Science has been defined as follows [36–38]: The essence of
pharmaceutical materials science is the application of fundamental concepts in the physical
sciences to the challenges of understanding the behavior of soft, mostly organic, crystalline,
and amorphous materials of relevance to the pharmaceutical industry. With modern com-
putational techniques, it is now possible to predict the properties of novel materials from
first principles using advanced simulation techniques. A truly holistic strategy for drug
product development should focus on connecting solid form selection, particle engineering,
and formulation design to both exploit opportunities to access simpler manufacturing
operations and prevent failures [39].

The concept of materials science tetrahedron (MST, see Figure 3) concisely depicts the
inter-dependent relationship among the structure, properties, performance, and processing
of a drug [40]. It is proposed that a systematic implementation of MST can expedite the
transformation of pharmaceutical product development from an art to a science. By follow-
ing the principle of MST, an integration of research among different laboratories can be
attained. The pharmaceutical science community can conduct more efficient, collaborative,
and coherent research. Performance is determined by properties of the material that are in
turn determined by its structure. In fact, the understanding the structure–property relation-
ship is at the heart of materials science and process engineering. Once the relationship is
clear, material properties can be modified by changing the structure of the matter through
process engineering approaches and thereby delivering the desired performance.

Figure 3. The pharmaceutical materials science tetrahedron. Reproduced with permission from [40],
Elsevier, 2009.
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Understanding the properties and behavior of pharmaceutical materials is critical
to the design of a safe and effective dosage form [36]. In the future, product-process
modeling and optimization will increasingly contribute to pharmaceutical product-process
development [37]. First-principles and data-driven modeling approaches complement
each other in pharmaceutical product-process development, for example for property
prediction or for the formulation of a dynamic process model. However, a systematic
framework is needed to work efficiently with product-process models and to fully exploit
their potential benefits.

The concept of Pharmaceutical Materials Science in the pharmaceutical community
has strong inherent similarities to the concept of product design and engineering (PDE) in
the chemical engineering community. PDE is concerned with the definition of new and/or
improved products based on the inputs of customer needs and/or new technologies [38,41].
PDE is the chemical engineering contribution to the new product development (NPD)
workflow in the industrial sector such as the pharmaceutical industry. The fundamental
aspects of product design and engineering have been described based on the following key
terms: (i) the chemical product pyramid, (ii) a multi-faceted multiscale approach (nano,
micro, meso, macro, mega scale), (iii) product and process design integration, all supporting
(iv) chemical product design. The multifaceted multiscale approach enables the integrated
view from the nanoscopic (molecular) end-use property up to the macroscopic (plant)
level [42–44]. It is the beauty of the PDE concept that industrialization and manufacturing
are explicitly addressed; the discovery does not stop at the lab or bench scale.

3. Modeling Particle Size-Dependent Dissolution and Absorption

The rate and extent of oral drug absorption in vivo are two key properties that decide
the success of a drug development candidate. It is well known that a number of factors
influence drug absorption from the GI tract after administration as a solid oral dosage
form. The complex interplay between the events of drug release, dissolution, permeation
across the intestinal epithelium, and pre-systemic metabolism in the gut wall and liver
ultimately determines the rate and extent of systemic availability. In the pharmaceutical
industry, dissolution testing and physiologically based absorption modeling are widely
used to study this complex interplay.

Standardized in vitro dissolution test methods have been established to characterize
the rate and extent of the drug release and dissolution from oral solid dosage forms.
In combination with biorelevant dissolution media such as fasted (FaSSIF) or fed state
simulated intestinal fluid (FeSSIF), these tests can be used to predict the in vivo dissolution
behavior of orally administered dosage forms. The quantitative relationship between
in vitro dissolution data and in vivo pharmacokinetic data is often referred to as “in vitro–
in vivo correlation” (IVIVC). Several physiologically based models for GI transit and
absorption have been developed. These aim toward a prediction of the in vivo oral drug
absorption from a combination of a set of physiological properties such as dimensions
and transit times of the GI tract as well as a set of physicochemical parameters/in vitro
properties of the substance. Some of these models have become available in the form of
commercial software tools such as GastroPlusTM and open-source initiatives such as PK-
Sim® [45], which is developed as part of the open systems pharmacology community [46].

The trigger for the current study was previous work [23] on the development of a
mechanistic model that simulates the dissolution of a solid dosage form during GI transit
under physiological conditions. For the evaluation of the model, cilostazol, a BCS class II
(low solubility—high permeability) synthetic platelet inhibitor, was chosen because the
dissolution and absorption behavior of this drug has been intensively studied [47] in vitro
and in vivo. The authors measured the plasma kinetics of cilostazol after the administration
of three different suspensions containing cilostazol with varying particle size distributions
under fasted and fed conditions in beagle dogs. In addition, the in vitro dissolution profiles
of the three types of suspensions were reported in both water and biorelevant dissolution
media. Although the in vitro dissolution profiles showed an influence of particle size,
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the data were not able to quantitatively predict either the increase in bioavailability with
decreasing particle size or the food effect observed in vivo. The aim of the previous
work [23] was to demonstrate that the gap between the in vitro dissolution tests and the
in vivo PK behavior can efficiently be bridged with the help of mechanistic, physiologically
based pharmacokinetic simulations.

A previously developed physiologically-based pharmacokinetic (PBPK) model for
gastro-intestinal transit and absorption was combined with a mechanistic dissolution
model of the Noyes–Whitney type for spherical particles with a predefined particle size
distribution [42]. In the model, the particles are grouped into k particle size groups.
The number of particles in each group (Ni) is determined by the respective distribution
function and remains constant over time. The initial amount of solid drug in each particle
size group (Xo,i) is given by (Equation (3)):

Xo,i = Niρ
4
3

πr3
o,i i ∈ [1, . . . , k] (3)

[43], where r denotes the density of the drug material, and r denotes the initial radius of the
i-th particle size group. The sum of all initial drug amounts equals the total administered
drug mass (Xo) (Equation (4)):

k

∑
i=1

Xo,i = Xo (4)

The dissolution process is described by a differential equation of the Noyes–Whitney
type. The kinetics of the amount of solid (Xsolid,i) and dissolved (Xdissolved,i) drug material
are given by (Equation (5)):

∂Xsolid,i

∂t
= −ζiX

1/3
o,i X2/3

solid,i(Sint − Clumen) (5)

and Equation (6)

∂Xdissolved,i

∂t
= −ζiX

1
3
o,iX

2
3
solid,i(Sint − Clumen) i ∈ [1, . . . , k] (6)

with Equation (7):

ζi =
3 D

ρ h r0,i
i ∈ [1, . . . , k] (7)

as derived in [44].
In these equations, ζi denotes a dissolution parameter that is constant for a given

group of particles with radius r0,i, D is the aqueous diffusion coefficient of the drug, and h
is the thickness of the unstirred water layer. Sint is the solubility of the drug in the intestinal
fluid, and Clumen is the luminal concentration of the dissolved drug. Clumen is a function
of time and the spatial coordinate in the intestinal tract and the solubility, which in turn
can vary with the local pH in the intestinal lumen. This concentration is the driving force
for passive diffusion across the intestinal epithelium and, consequently, Clumen is also
dependent on the intestinal permeability, because absorption reduces the amount (and thus
the concentration) of the drug in the lumen.

In PK-Sim® [45], the description of oral ADME is fully integrated into one simulation
model, resulting in a complex model structure with the advantage that all processes can
be described realistically and ensuring comparability of simulation results with pharma-
cokinetic experiments (see Figure 4). In PK-Sim, oral absorption is simulated as a “plug
flow with dispersion model” which incorporates the small intestine as a single continuous
compartment with spatially varying properties. The passage of a substance is described
by a feeding-state-dependent, gastric-release function for the entrance into the gut and a
transit function describing the transfer of the substance-containing package through the gut.
At each point in time, the amount of substance absorbed into the portal vein is calculated.
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For solid formulations, the release of the substance into solution can be described according
to predefined release function e.g., Noyes–Whitney type dissolution kinetics. For realistic
simulation of the fate of the substance in subsequent ADME steps, the various organs are
represented with blood flow rates, cross membrane permeation into organ tissue, and well
as saturable metabolization processes.

Figure 4. Structure of the whole PK-Sim® simulation model with all organs (reprinted with permis-
sion from [48], Springer Nature, 2008). IV = intravenous, PO = oral.

To validate the combined model, the plasma concentration–time curves for cilostazol
obtained in beagle dogs using three different types of suspensions with varying particle
diameters were simulated (see particle size data in Figure 5a). In vitro dissolution informa-
tion was also available for the different formulations, but these data could only predict the
in vivo outcome qualitatively. The mechanistic PBPK model could predict the influence of
the particle size on the rate and extent of absorption under both fasted and fed conditions
accurately, and the gap between the in vitro dissolution data and the in vivo outcome
could successfully be explained (see Figure 5b). It was concluded that by integrating
the processes of particle dissolution, gastro-intestinal transit, and permeation across the
intestinal epithelium into a mechanistic model, oral drug absorption from suspensions
can be predicted quantitatively. The model can be applied readily to typical formulation
development data packages to better understand the relative importance of dissolution
and permeability and pave the way for successful formulation of solid dosage forms.

Figure 5. Cont.
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Figure 5. (a) Particle size distribution for the three cilostazol suspensions. Symbols represent the data
from [47] (reprinted with permission from [23], Elsevier, 2010), the lines show the fit to a log-normal
distribution function. (b) Comparison of the maximum concentration and bioavailability predicted
from the particle size with the experimentally obtained values (mean and s.d. reprinted with permis-
sion from [23], Elsevier, 2010) of the three suspensions under fasted and fed conditions. The error
bars represent the variability due to the inter-individual variability of the cilostazol clearance.

4. Process Chain for Particle Formation and Formulation

Within a collaboration between Bayer and the Erlangen cluster of Excellence “Engi-
neering of Advanced Materials”, located at the university of Erlangen (FAU), five inter-
connected sub-projects studied the process chain from particle formation (see Figure 6) by
top–down (nanomilling in a stirred media mill [49] and bottom–up nanoparticle formation
by precipitation [50]. Particle formation was coupled to post-processing by formulation-
supported spray drying and tablet formation [51] and comprehensive characterization
along the process chain [52]. The latter included in situ techniques by small-angle X-ray
(SAXS) and neuron scattering (SANS) to resolve nanoparticle formation even at short time
scales and a wide range of methods for nanoparticle material characterization all the way
up from formation to dissolution studies of formulated tablets.

Figure 6. Exemplary process chain.

4.1. Overview

The challenge of producing stable particulate dispersions in the smallest possible
nanometer range can be addressed with two fundamentally different approaches, i.e., either
by top–down or bottom–up methods as described in Section 2.1. Top–down approaches
such as media milling can be operated at high particle concentrations while continuous op-
eration and scale-up are possible. However, it is still difficult to reach particle sizes of a few
10 nm and narrow particle size distributions (PSDs). Furthermore, the risk of contaminating
the product by the attrition of milling media must be carefully considered. One promising
bottom–up approach is precipitation, which uses rather simple but continuous reactors.
Prediction of the evolution of the particle size was demonstrated for organic compounds
just recently; scale-up comes within reach and numbering-up by operating several reactors
in parallel is another option for industrial production. However, the particle concentra-
tions are so far rather low to avoid complications with particle stability and suspension
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rheology. In both cases, the formed nanoparticles must be stabilized sufficiently fast to
prevent agglomeration and Ostwald ripening. In formulation technology, electrostatic,
steric, or electrosteric stabilization is usually employed by applying polymeric additives,
surfactants, or a combination of the two. Nevertheless, in most published papers and
industry-oriented reports, the obtained particle sizes are larger than 100 nm. Furthermore,
such stabilizers can cause severe alterations of the fluid flow due to changes in the viscosity
and the dampening of turbulence and can impair the desired low solubility of the formed
small particles by inducing complexation or ripening.

Recently, we developed a mechanism based on multivalent metal cations, allow-
ing stabilizing various hydroxyl groups containing drug nanoparticles (ONP) far below
100 nm [53] (the ONPs were stable for more than three weeks); see Figure 7. In this
approach, no polymers or surfactants as stabilizing additives are needed, and hence no
alterations of the fluid flow are expected. Therefore, the approach is ideally suited for
comparison of experiments with precise simulations of the fluid mixing underlying the
precipitation process. The ONP were produced by liquid anti-solvent and pH-shift precip-
itation utilizing in-house build static mixers. The influence of the mixing conditions on
the final particle size distributions was studied by variation of the energy input during
precipitation. Multivalent cations of a non-toxic metal can be used to achieve superior
electrostatic stabilization of the precipitated ONP. For zirconium salts used as stabilizers in
particular, the dependency of the resulting particle size on the pH and the salt concentration
in the anti-solvent was investigated. Remarkably, our approach allows the continuous
production of down to a few 10 nm in diameter. The amorphous character of the ob-
tained particles was verified using X-ray diffraction and differential scanning calorimetry.
To further demonstrate the broad applicability of our approach, the solvent was varied
as well [53]. Remarkably, these particles are stable for at least several weeks. Currently,
this approach is extended for bead milling as well. While electrostatic stabilization is
rather well understood and predictable in the context of DLVO theory (named after Boris
Derjaguin and Lev Landau, Evert Verwey and Theodoor Overbeek), steric stabilization is
still largely developed empirically. Approaches driven by molecular simulations are still at
a too early state and therefore mostly used to improve the understanding of interactions at
model surfaces. In complex multi-component systems, which often are used in industry,
any quantitative approach based on the prediction of particle interactions is not applica-
ble. Artificial intelligence-based approaches in combination with high throughput and
even automated characterization might offer solutions in future. Semi-empirical Hansen
parameters are accessible and can used to classify the solubility of compounds according
the well-known principle of similarity. Recently, the Hansen concept was adapted to the
dispersibility of particles, which is accessible conveniently by sedimentation analysis [54].
These data are required for all methods for nanoparticle formation including anti-solvent
precipitation and or nanogrinding, which are discussed in the following sections.

4.2. Precipitation

The precipitation of amorphous and crystalline organic nanoparticles (ONP) is ap-
plied in various fields with a rising interest in the formulation of poorly soluble drugs.
Key to the formation of ONP is the formation of a sufficiently high supersaturation as a
thermodynamic driving force. Therefore, anti-solvent or pH-shift precipitation is employed
for the production of ONP. Comprehensive combined experimental–computational studies
in a simple T-shaped mixer for Reynolds numbers up to 4000 were conducted. In the
experiments, micromixing times tm were determined for water–water and water–ethanol
mixtures and compared to the measured mass median particle sizes x50,3 as shown in
Figure 8a. The micromixing time is mainly determined by the power input as assumed in
most mixing models. In particular, suitably manipulating the inflow conditions, the power
input necessary to achieve a given micromixing time can be reduced by an order of magni-
tude [55]. Clearly, a higher Re number leads to smaller particle size due to enhanced mixing,



Pharmaceutics 2021, 13, 22 13 of 25

which accelerates both nucleation and particle growth (Figure 8b). Particle sizes well below
100 nm can be achieved by proper stabilization against agglomeration and ripening.

Figure 7. (a) Four different sub-100 nm, quasi spherical, and uniform amorphous organic drug
nanoparticles (ONP) obtained by precipitation (SEM micrographs taken 3 weeks after production).
(b) Tyndall effect to demonstrate the small particle size for Ibuprofen by reduced light scattering,
particularly for the 33 nm particles.

Figure 8. (a) Correlation between the experimentally determined mixing time tm and the mean
particle as function of the Reynolds number Re. Reprinted with permission from [50], Wiley, 2019.
(b) Measured particle size distributions in dependence of Re. Both results are obtained for Ibuprofen.
Reprinted with permission from [50], Wiley, 2019.

In general, mass, momentum, and heat transfer processes coupled to chemical reac-
tions produce nucleating species. Their distribution in the reactor related to their equi-
librium concentration (or activity in the general sense) is defined as supersaturation S.
It is the thermodynamic driving force for the phase transition and thus for the formation
of a new particle phase. Depending on the spatial and temporal distribution of S in the
reactor, nuclei form with a size distribution. Noteworthy, in the view of classical nucleation
theory, the nucleation rate strongly depends on S. For instance, a high supersaturation
with narrow distribution in time and space would lead to small nuclei with narrow PSD
since all particles “experience a similar history”. After nucleation, several processes may
occur sequentially or in parallel. These are growth processes for the further reduction of S,
coagulation of the particles, their stabilization against coagulation, and eventually ripening
effects in the liquid phase. This quite general framework forms the basis of any modeling
approach for particle formation dynamics, which includes mixing, global reaction kinetics,
nucleation, growth, agglomeration, and stabilization and even ripening.
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The formation of ONP depends on the underlying phase diagrams and is controlled by
chemical thermodynamics. However, equilibrium solubilities of even simple compounds
are often unknown, in particular for complex molecules in pharmaceutical applications.
A clear need exists to develop predictive methods for the determination of phase equilibria
of particles. In other words, methods shall be developed to measure the material function
of precipitation and crystallization, which then can be coupled to a process function as
briefly discussed above.

Particle formation processes can further be subdivided in transport- and reaction-
controlled processes. In reaction-controlled systems, e.g., in systems where mixing is much
faster than the chemical reactions leading to precursor formation, the distribution of all
reactions and thus of the supersaturation is much more uniform. Therefore, the formation
of narrow PSDs will mostly occur in reaction-controlled systems. Firstly, particles form in
a uniformly distributed nucleation burst, which is quickly reduced due to the formation
of a new phase below the threshold value where homogeneous nucleation can occur. Sec-
ondly, the particles grow by the further reduction of the supersaturation until equilibrium
is reached.

Typically, mass transfer issues are very common in liquid phase synthesis. The mixing
intensity determines the local concentration fields and thus the supersaturation as driving
force [56].

The energy dissipation in case of a stirred tank as well as in a continuous mixer such
as a T- or Y-mixer is directly related to the volume-specific energy consumption. Higher
energy dissipation will lead to successively smaller eddies in the fluid until the smallest
eddy size (the Kolmogorov length scale) is reached. Mixing is shifted from macro- to
meso-mixing and finally to diffusion-controlled micro-mixing [57,58]. The reactor design
determines the residence time of particles and the local distribution of supersaturation.
Both effects will control the width of the obtained PSD, or in other words, the width of
the PSD is a measure of the mixing energy distribution. The full PSD can be modeled
(at least for well-understood precipitation reactions) by a combination of direct numerical
simulation (DNS) for complete resolution of the fluid flow coupled to an appropriate
mixing model for mass transfer at the subgrid level on the one hand. The combination
with a population balance model on the other hand [57,59–61] delivers the evolution of the
particle size distribution.

The key aspects for predictive simulations are a detailed description of the spatiotem-
poral mixing process, sufficiently accurate data for equilibrium solubility, and a sufficiently
large dataset to calibrate the nucleation kinetics by an estimation of the solid–liquid interfa-
cial energy. In view of a quantitative agreement, recent findings suggest that in particular,
the timescale ratio between the mixing process and solid formation, known as the Damköh-
ler number, needs to be well captured in the simulations. In what follows, a fundamental
concept to describe the anti-solvent precipitation on a macroscopic level is introduced,
which allows predicting very well the trend of the median particle size as well as the entire
shape of the particle size distribution at various process conditions for different mixing
devices and solvent/anti-solvent pairs. The mixing process is described by the governing
equations (in a Eulerian framework) for mass (Equation (8)):

∂tρ +∇·(ρu) = 0 (8)

the volume fraction φ of the solvent/antisolvent pair (Equation (9)):

∂tρφ +∇·(ρφu) = ∇·Dm∇φ (9)

and momentum (Equation (10)):

∂tρu +∇·(ρuu) = −∇p +∇·τ (10)
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where u is the velocity field, p is the pressure, and τ is the stress tensor including the
viscosity [62]. It is important to note that the density (φ), the viscosity µ(φ), and the
Diffusion coefficient Dm(φ) depend on the volume fraction φ in case of a water–alcohol
mixture [62]. The formation of the dispersed phase is governed by a population balance
equation (PBE), Equation (11):

∂tq
(
t, xp

)
+∇·(uq) + ∂x

(
q
(
t, xp

)
G[q]

(
t, xp, S

))
= V(t, φ)Bhom[q](t, S)qc

(
xp,c
)
+ B + D (11)

where q
(
t, xp

)
and qc

(
xp,c
)

is the number density of the dispersed phase xp and of the
critical nucleus size xp,c, respectively, V(t) is the reaction volume, Bhom is the homogeneous
nucleation rate, G is the particle growth rate by diffusion or reaction, and B and D refer to
birth and death terms due to aggregation, agglomeration, or ripening. The PBE is solved
along Lagrangian trajectories, Equation (12)):

∂tXi = u (12)

where Xi is the spatial position in Lagrangian space. The coupling between the flow and the
particle formation is accomplished by the mass balance Cl = φCAPI,ini − CS, whereby Cl is
the local concentration in the liquid, CAPI,ini is the initial concentration of the API, and CS is
the solid concentration calculated as Cs =

πρp
6

∫ ∞
0 x3

pq
(
xp
)
dxp with the particle density ρp.

In the most general way, the evolution of the whole particle property space can be
included by additional variables leading to multi-dimensional integro-differential equa-
tions [63]. Current research is directed toward the efficient coupling of PBE with computa-
tional fluid dynamics (CFD) simulations [61,63], to model increasingly complex reactions
networks [64], to take several particle coordinates into account (e.g., size and shape), and to
develop better kernels for agglomeration (e.g., complex fractal aggregates).

Figure 9a shows the flow field obtained from assumption-free DNS simulation in a
T-mixer at different Re-numbers up to 4000. The different flow regimes from laminar to
intermediate and fully turbulent flow regimes are clearly depicted. Figure 9b shows trajec-
tories of fluid parcels along which the population balance equation (Equation (11)) is solved.
Along each trajectory, particle evolution is tracked, at the outlet of the mixer, the populations
along each trajectory are mixed to compute the final particle size distribution.

Figure 9. (a) Snapshots of the flow field in a T-mixer with increasing Re. Reproduced with permission
from [55], Royal Society of Chemistry, 2019. (b) Lagrangian trajectories through the T-mixer, reprinted
with permission from [50], Wiley, 2019.

The impact of fluid mixing on the precipitation of ONP is analyzed in depth by
direct numerical simulations to determine the spatiotemporal evolution of the liquid
phase composition and to estimate the particle evolution along Lagrangian trajectories.
The revealed impact of mixing on precipitation enables a parameter-free estimation of the
mean particle sizes and the particle size distributions. The distributions of residence time,
supersaturation time, and particle size are self-similar in the turbulent regime and allow
the derivation of scale-up rules.

For the case of Ibuprofen for three different Reynolds numbers (Re) and thus mix-
ing times, a quantitative comparison of experimental and numerical results is shown in



Pharmaceutics 2021, 13, 22 16 of 25

Figure 10a. Figure 10b shows that the calculated particle size distributions are self-similar,
providing a sound basis for scale-up. These remarkable results shows that (i) the precipita-
tion of organic drug ONP in the range of a few 10 nm is possible by proper stabilization,
(ii) that the obtained particle size distributions can be predicted by a knowledge-based
quantification of mixing and particle formation and that (iii) the obtained size distributions
are self-similar, which is the basis for scale-up to large scale [50].

Figure 10. (a) Comparison of measured and calculated particle size distributions of Ibuprofen
precipitated at three Reynolds numbers Re. An initial ibuprofen concentration of Cibu = 30 mg mL−1

is used, and ibuprofen is dissolved in ethanol. (b) Self-similar size distributions depend on Reynolds
number Re. Reprinted with permission from [50], Wiley, 2019.

4.3. Stirred Media Milling

Particle formation by size reduction in stirred media mills allows the continuous and
scalable production of particles below 1 µm and even nanocrystals. Process parameters
(stirrer speed, temperature, bead size, and solvent) were systematically varied for var-
ious drug compounds and organic crystals. Grinding kinetics observed for batch and
continuous operation are comparable under similar stressing and formulation conditions.
Furthermore, it was found that the use of small grinding media, i.e., stress conditions
where moderate stress energies but high stress numbers apply, are advantageous with
respect to fast grinding kinetics and minimum energy consumption. Solubilization is an
important factor that occurs of organic systems and easily can impair nanoparticle stability.
Under such conditions, product characteristics are not only determined by pure breakage
or colloidal stability but also by dissolution and ripening phenomena: Minimum product
particle sizes at similar stressing conditions are observed under conditions where solubi-
lization and ripening are minimized. Larger product particles are observed in systems with
high solubilization capacities [65]. Then, the product particle size is rather determined
by the (temperature- and solvent-dependent) solid–liquid equilibrium, i.e., dissolution
and precipitation phenomena than by pure mechanical fracture. The complex interplay
between fracture, surface activation, dissolution and recrystallization, complex formation,
and stabilization is depicted in Figure 11.

Mechanochemical effects can be particularly pronounced in organic systems. An in-
creased solubility of stressed particles with respect to the equilibrium solubility of the solid
has been observed. By means of NMR and RAMAN spectroscopy and thermodynamic
considerations, solubility increases by chemical modification and isomerization of the solid
can be detected. In fact, mechanical activation leads to an increase in solubility of the
stressed solid, which was proven by solubility studies at different temperatures. The van’t
Hoff enthalpy of dissolution of the stressed solid decreased remarkably in comparison to
the enthalpy of the non-stressed solid as shown by the evaluation of van’t Hoff plots [49].
A positive effect of lowering the process temperature with respect to minimum product
particle size was observed. Remarkably, the smallest product particle sizes were found
for the lowest process temperature (251 K) at short process times (<30 min) and moderate
stressing conditions; see Figure 12. In contrast, for the same stressing conditions at room
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temperature (293 K), much larger particles are obtained. Solvents will lower solubility lead
to smaller particles, for instance, Naproxen in ethanol and dichloromethane.

Figure 11. Complex interplay between fracture, surface activation, dissolution, and recrystallization,
complex formation, and stabilization.

Figure 12. Naproxen particle ripening at varying temperatures in ethanol (upper row) and
dichloromethane (lower row).

Hence, the smallest product particle sizes were obtained using a polymeric stabilizer,
which exhibits a high affinity to the model drug compound and a low solubilization
capacity. A relationship between polymer affinity, solubilization capacity, and limiting
product particle size has been observed, which supports the hypothesis that the final
product particle sizes are rather determined by the solid–liquid equilibrium than by pure
mechanical fracture [66].

The many different types of grinding machines for operation in the gas or liquid phase
have in common that the design and the operational conditions determine the transport
of the particles of the grinding zone (i.e., the process function). The transport depends
on the mode of operation of the mill, i.e., flow rates, rotor speeds for instance, and the
particles’ size, density, and concentration. The type of stressing can be one-sided as in
impact mills or jet mills, or two-sided as in ball mills or roller mills operated in the gas
phase or in bead mills operated in the liquid phase. Upon stressing, energy is transferred
to the particles, which in turn deforms elastically and plastically. Only the elastically stored
energy is available for fracture. Fracture typically occurs at internal defects in the crystal
lattice of the particles. Once the elastically stored energy is larger than the energy required
for crack opening, fracture occurs. In a meaningful simplification, grinding is characterized
by just two variables, namely the stress energy (SE) per stress event and the number of
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stress events (SN) that a particle experiences in the mill [67]. Then, the supplied energy
per mass of product Em is given by Equation (13):

Em ∼ SE·SN (13)

In principle, the variables SE and SN can be determined for any specific mill by
proper simulation of the two-phase flow in the mill via CFD simulations. This approach is
straightforward for sieve or classifier hammer mills operated in the gas phase at particle
concentrations below a few 100 g/m3 [68]. The situation is more complex in (fluidized
bed opposed) jet mills in the gas phase or in bead mills in the liquid phase. In the former
case, high gas velocities are rather difficult to handle due to the compressibility of the gas;
in the latter case, the filling ratio of the beads of roughly 80 vol-% and the high particle
concentrations of several 10 vol-% induce a strong phase coupling between the two solid
phases (beads and product particles) and the liquid phase. Therefore, CFD models must be
coupled to discrete element method (DEM) simulations to account for the momentum trans-
fer between the fluid and the particle phase at elevated concentrations and to determine
SE and SN.

Recently, it was shown that the deformation of spherical probe particles can be used
to directly measure the absorbed stress energy from their plastic deformation detected
by image analysis. This approach is linked to SEM-based single particle stressing where
measured stress–strain curves of compressed probe particles, for instance ductile metal
particles, can be modeled by FEM simulation [69]. This combined experimental–theoretical
approach provides a direct link to the reaction of the stressed particles under the influence
of SE [70].

The reaction of a stressed particle can be condensed into a complex material function,
which depends on several material parameters such as Young’s modulus, Poisson ratio,
hardness, fracture toughness, or brittle–ductile transition. Since elastic and inelastic de-
formation as well as fracture strongly depend on the particle’s internal defect structure,
multiscale approaches such as molecular simulations coupled to continuum fracture me-
chanics are of fundamental interest [71] but cannot predict the outcome of a fracturing
event due to the largely unknown defect structures. However, the outcome of fracture can
be described by the breakage probability and the breakage function. Both depend on the
absorbed energy, the particle size, and the intrinsic material parameters.

The breakage probability S (Equation (14)) of many different types of particles includ-
ing organic crystals has been modeled for the one-sided impaction of particles by a unique
master curve [72], see Figure 13a:

S = 1− exp

(
− f ∗Mat

(
1 +

E
Etarget

)−1
kx
(

Wkin −
(

1 +
E

Etarget

)
W∗m,min

))
(14)

Figure 13. (a) Master curve for the breakage probability S by impaction (reprinted with permission
from [72], Elsevier, 2009). (b) Material parameter f ∗mat divided by the particle density as function of
hardness H and fracture toughness Kc (reprinted with permission from [72], Elsevier, 2009).
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For soft particles impacting on hard targets, the relative effects of the Young’s moduli
of particle E and target Etarget can be neglected. The breakage function can be described by
the superposition of at least two lognormal distributions. The mean sizes, the standard de-
viations of the two sub-distributions, and the coupling parameter between them all depend
on the parameters f ∗Mat and W∗m,min in (Equation (14)) [73]. Interestingly, both parameters
can be modeled as a function of fracture toughness KC and hardness H, i.e., in dependence
of the intrinsic material parameters (see Figure 13b). In principle, these parameters can be
determined by nanoindentation; however, this approach is rather tedious due to the high
number of measurements on single particles for statistically reliable data. More straightfor-
ward is the direct measurements of f ∗Mat and W∗m,min in single particle stressing events in
model mills. Taking these different approaches together, the grinding behavior of hammer
mills can be modeled very well [68].

4.4. Post-Processing and Modeling of Process Chains

An industrially feasible formulation approach combining media milling (or precipita-
tion) and spray-drying was applied to improve dissolution characteristics of the poorly
soluble drug mefenamic acid (MA), for instance (see Figure 14). The approach was studied
for two MA polymorphs at different stressing and pH conditions. It was found that the
final MA product particle sizes are rather determined by the solid–liquid equilibrium than
by mechanical fracture. Obtained drug particles are only composed of the most stable
polymorph. Direct compressed tablets containing MA nanocrystals exhibit a significant
improvement of in vitro dissolution kinetics as compared to tablets with micronized drug
particles [74].

Figure 14. Process chain from nanoparticle formation via spray drying and post processing to in vitro
dissolution testing.

The modeling of process chains with or without recirculation requires approaches
that are known in chemical engineering as flowsheet simulations. These are state-of-
the-art in fluids processing and are firmly based on phase equilibria and reaction rates
of fluids. Classical approaches on product design were mostly built on these concepts,
while distributed particle systems were widely neglected. The reasons can be seen in the
difficulties to handle distributed properties, to model unit operations of particle technology
such as size reduction, granulation, or tableting, and in the lack of available and reliable
material functions. The modeling and simulation of particle formation and formulation
must deal with highly complex and often transient two-phase flows and widely distributed
particle phases in turbulent flows. On the one hand, time scales for particle formation can
be very short in the order of milliseconds, while on the other hand, long-term stability
must be guaranteed over months, as in pharmaceutical applications. Despite impressive
progress in a few unit operations such as precipitation as shown above or fluidized bed
granulation for instance [75,76], comprehensive approaches to handle other unit operations
or their interconnection in complex processes are too often still missing.
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A recent book on Dynamic Flowsheet Simulation of Solids Processes [77] is based
on a six-years national German program of more than 20 groups and presents the latest
advances in flowsheet simulation of solids processes, focusing on the dynamic behavior of
systems with interconnected solids processing unit systems but also covering stationary
simulation. The book includes the modeling of unit operations for the production and
handling solids, for example by comminution, precipitation, classification, and granulation.
New approaches for the description of solids and their property distributions are included
as well. The mathematical treatment of flowsheets with multivariate population balances
is a particular focus [77].

5. Conclusions and Unmet Needs

The overall approach to combine rationally-based and mechanistically-based mod-
els to address the entire value chain, i.e., multiscale modeling of the particle processes
including computational fluid dynamics (CFD), discrete element method (DEM), popula-
tion balance modeling (PBE), flowsheet simulation, Noyes–Whitney), and physiologically
based absorption modeling (e.g., PBPK) will remain a long-term goal. Further improve-
ments of models for unit operations in particle formation and processing are steadily
becoming available by continuously improving and applying CFD-DEM-PBE models and
their combination (process function). While the tools are available and “just” need to
be further improved, their multiscale implementation for the predictive design of unit
operations strongly depends on available material parameters such as mechanical and
thermodynamic properties in dependence of particle size and shape (material function).
The systematic characterization of particle properties combined with model-informed ap-
proaches to extract material data from model experiments is required to feed the available
model “infrastructure”. High-throughput measurements and automated approaches might
help in the future to reduce time and costs.

Predictive approaches are already available for well-defined systems with few compo-
nents involved. However, their predictive power is so far limited to a few systems such
as the precipitation of stabilized ONP in continuous T-mixers or hammer mills, for in-
stance. One potential approach to overcome those limitations in data availability while
simultaneously utilizing the established mechanistic insights in the future are so-called
hybrid modeling approaches [78]. This might be realized in data-driven models combined
with additional mechanistic input, e.g., meaningful chemical descriptors originating from
quantum mechanical simulations or by directly coupling neural networks with mechanistic
equations [79]. An AI-based evaluation of data may be applied to tackle complex issues
of multi-component systems. The training of such systems can be based on data from
all sorts of test results and even production plants. We envision that such approaches
may lead to material property libraries. Once these are established, they are filled and
continuously improved over time. These libraries may also contribute to the empirical or
molecular property-based relations between the molecular structure and particle properties.
For instance, a priori predictions of solubility only from molecular properties are currently
beyond reach. Similar restrictions exist for the selection of molecular components for steric
or electrosteric particle stabilization.

Even though the results of machine learning or artificial intelligence-based algorithms
are promising, a key gap for a widespread usage seems to be having the data available to
inform such a model. Different formulations, or even different manufacturing processes
for the same formulation, often need completely separate descriptions, and each of them
has a high dimensional space of potential influence factors including the active ingredient
itself, often multiple excipients and manufacturing parameters that all would have to
be characterized. Inherently, increased amounts of data are necessary to describe such a
system with a sufficient generalization for future applications. This can be mitigated by
standardized screenings [29,80] with a high throughput or robotic laboratory automation
of such formulation assays. In those cases, established data-driven models can reduce the
future experimental effort for new active pharmaceutical ingredients (API). This challenge
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is even more pronounced for new or not regularly utilized formulations. An argument
for establishing standardized assays as early as possible for formulations is that many
data-driven approaches also allow gaining at least rudimentary insights, such as the
driving features for the formulation performance. This might give valuable insights in the
further development.

When finally trying to bridge the gap from formulation in vitro performance to in vivo
performance, we have to keep in mind that in this regard, in vivo measures also have an
inherent bias: naturally, only the formulations that showed the best in vitro performance en-
ter in vivo trials. This makes it hard for a data-driven model to learn from potentially poor
in vivo performances. The gap can be partially addressed by additional mechanistic mod-
eling, e.g., by physiologically based absorption models, as shown in Section 2.2, which in
turn can be coupled with data-driven models in a hybrid fashion to estimate the necessary
inputs from the chemical structure of the active pharmaceutical ingredients and the utilized
formulation. Figure 15 shows exemplary how, given sufficient data to inform the black-box
part, one might include potential excipients for the nanoformulation whose influence on
the dissolution profile via the Noyes–Whitney type kinetics Equations (5) and (6) might be
hard to characterize in a mechanistic way.

Figure 15. Exemplary model structure to integrate unknown excipients influence to the dissolu-
tion profile.

In this case, the data-driven output would modify the dissolution kinetics depending
on the chosen excipient. This is also an example where the data-driven model part might
be easier to be informed independently by a sufficient number of in vitro measurements of
dissolution kinetics in FaSSIF and FeSSIF contrary to few in vivo studies with a sufficient
number of different formulations.

In this overview, we presented the long-term vision to combine modeling of drug
administration with predictive models for product and process design. Nanoparticle-based
oral delivery has the potential to become a next-generation formulation technology for
dissolution-rate limited biopharmaceutical classification system (BCS) class IIa molecules
if the following requisites are met: (i) quantitative understanding of the bioavailability en-
hancement benefit versus established formulation technologies and a reliable track-record
of successful case studies are available; (ii) efficient experimentation workflows with mini-
mum amount of active ingredient and a high degree of digitalization via e.g., automation
and computer-based experimentation planning are implemented; (iii) scalability of the
nanoparticle-based oral delivery formulation technology from lab to manufacturing is
ensured.

By considering the whole process chain from the production of pharmaceutical ONP
and the prediction of their properties toward whole body pharmacology, we showed re-
markable progress at various levels but also identified considerable gaps and further needs.
Only continuous improvements at all levels together with step-changing breakthroughs
in predictive models will us bring closer to the long-term goal in pharmaceutical technol-
ogy, i.e., the rigorous model-based development of products and processes for optimized
bioavailability of a certain drug component.
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