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Abstract
Purpose of Review  This review focuses on describing the mechanisms and clinical manifestations that underlie accelerated 
aging associated with cancer and its treatment.
Recent Findings  The direct and indirect effects of cancer and its treatment are associated with late occurrence of comor-
bidities that happen earlier or more frequently in cancer survivors compared to cancer-free individuals, otherwise known as 
accelerated aging. Use of senolytics and dietary and exercise interventions including prehabilitation, caloric restriction, and 
rehabilitation are currently under investigation to reverse or decelerate the aging process and will be covered in this review.
Summary  Further research on how to decelerate or reverse aging changes associated with cancer and its treatment will be 
of paramount importance as the number of cancer survivors continues to grow.

Keywords  Cancer · Aging · Nutrition

Introduction

Advances in detection and therapeutics have dramatically 
increased survival after cancer over the last quarter of the 
century. In fact, 70% of cancer survivors will be alive 5 or 
more years from diagnosis, and nearly 18% will survive 
20 years or longer [1]. By 2030, it is estimated that the popu-
lation of cancer survivors will exceed 22 million [1].

Despite improvements in survival, over two-thirds of 
all cancer survivors will have at least one chronic health 

condition—some because of cancer therapy itself [2]. While 
age is a risk factor for the development of cancer, the treat-
ment of cancer, including chemotherapy, immunotherapy, 
surgery, and radiation therapy, can also accelerate biological 
aging processes. Furthermore, childhood cancer survivors 
are noted to develop twice the burden of disease by age of 
45 compared to non-cancer controls [3]. On average, they 
are found to have seven or more chronic diseases compared 
to the generalized population, two of which will be seriously 
disabling, life-threatening, or fatal [3].

Cancer survivors are thought to develop two kinds of 
comorbidities: early-onset conditions, or those associated 
with acute effects of cancer therapy; and late-occurring 
conditions, or those occurring at longer-term follow-up and 
typically increase with age, at a faster rate compared to the 
generalized population [3]. Examples of these late-occurring 
effects include frailty [4], sarcopenia [5], cardiac dysfunc-
tion [5], and mild cognitive impairment [7].

The late occurrence of these comorbidities that happen 
earlier or more frequently in cancer survivors compared to 
cancer-free individuals is cumulatively summed up as accel-
erated aging [8]. The mechanisms behind accelerated aging 
are likely multifactorial and remain to be clearly elucidated. 
However, cancer and aging are thought to share several 
hallmarks including genomic instability, telomere attri-
tion, and epigenetic alterations which may be implicated in 
accelerated aging [9]. Furthermore, treatment with cytotoxic 
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therapy can compound these changes potentially also con-
tributing to accelerated aging.

Herein, we aim to review the evidence to understand how 
and if cancer patients experience accelerated aging, the cel-
lular mechanisms which may contribute to this phenomenon, 
and possible interventions to reduce the rate of or to com-
pletely reverse the phenomenon in cancer survivors.

Hallmarks of Normal Aging

Normal aging represents the inevitable, time-dependent 
decline in physiologic organ function and is characterized 
by nine hallmarks [10]. These hallmarks are summarized in 
Table 1. Aggravation of these characteristics may accelerate 
normal aging while amelioration is thought to decelerate the 
aging process thereby increasing the healthy lifespan. To 
illustrate, exposures such as ultraviolet radiation or ionizing 
radiation can induce cellular DNA damage which cause cell 
senescence contributing to aging [11]. On the other hand, 
aerobic exercise can maintain genomic stability by augment-
ing DNA repair [12].

Shared Cellular Hallmarks Between Aging, 
Cancer, and Cancer Therapeutics

Over the last 10 years, treatments for hematologic and solid 
tumor malignancies have been revolutionized through tar-
geted therapies and immunotherapy. However, despite con-
tinued efforts to focus treatment in a manner that spares 
healthy cells and tissues, damage can still occur, contribut-
ing to the aging phenotype [13•]. The mechanisms by which 
this can happen are described in detail below and summa-
rized in Fig. 1.

1.	 Cellular senescence: defined as the stable arrest of the 
cell cycle. In addition to apoptosis, cellular senescence 
inhibits unchecked growth of cells. Senescent cells have 
a different “secretome” as described in Table 1 com-
pared to non-senescent cells that mirror inflammatory 
responses and are crucial for the induction and main-
tenance of senescence. Its impact on cancer develop-
ment is twofold: on one hand, this inflammatory cascade 
can prevent pre-malignant cells from realizing their full 
malignant potential by promoting its clearance. On the 
other hand, inflammatory cytokines and chemokines 
can also provide a cancer-promoting microenvironment 
for neighboring pre-malignant and malignant epithelial 
cells. Thus, the overall impact depends on the specific 
tissue, its genome, and external stimuli [14].

	   Chemotherapy, CDK4/6 inhibitors, and immunother-
apy aim to induce senescence in tumor cells, but they 

can also exert a similar cellular senescence in adjacent 
non-tumor tissues [15]. The associated inflammatory 
cascade associated with senescent cells in tumor-adja-
cent cells can itself lead to accelerated aging [16, 17].

2.	 Telomere attrition: telomerase is an enzyme which is 
associated with telomere lengthening and thereby cellu-
lar propagation. Inhibition of telomerase and the result-
ant short telomeres prevent uncontrolled cell prolifera-
tion. When telomere length reaches a critical size, DNA 
damage occurs, and replicative senescence is achieved. 
Cancer cells possess high telomerase activity and they 
are characterized by their infinite ability to replicate 
[18]. Cancer treatments such as azidothymidine (AZT) 
and tamoxifen can directly impair telomerase [19]. Indi-
rect effects of chemotherapy on shortening telomeres 
have also been described in patients with hematologic 
and solid tumor malignancies, thus accelerating aging 
in cancer survivors [20].

3.	 Genomic instability: defects in DNA surveillance mech-
anisms (DNA repair machinery, DNA damage check-
point) can result in genomic instability, thus predispos-
ing the cell to malignant transformation.

	   Radiation therapy can cause direct DNA damage [21]. 
In addition, chemotherapeutic agents such as cisplatin 
can generate reactive oxygen species as intermediates 
which can also cause DNA damage [22].

4.	 Epigenetic alterations: epigenetic phenomena such as 
histone modifications, DNA methylation, and micro-
RNAs can influence the formation of cancer in multi-
ple ways: (i) it can induce point mutations which can 
cause changes in the function of genes regulating the 
cell cycle; (ii) it can cause genomic instability, leading 
to chromosomal breaks, allelic loss, and translocations 
which is characteristic of many malignancies; and (iii) 
it can activate/deactivate gene transcription for example 
of proto-oncogenes and tumor suppressor genes.

	   Epigenetic age acceleration (EAA) is the deviation 
between the estimated epigenetic age and chronological 
age and represents the general health status or rate of 
physiologic aging. To ascertain such physiologic aging, 
several DNA-based “epigenetic clocks” have been pro-
posed and demonstrated strong associations with various 
age-related chronic health diseases [23].

	   Studies of childhood cancer survivors show that they 
have a higher annual change in EAA compared to non-
cancer controls, and this accelerated change persists 
throughout their lifetimes [24••]. Furthermore, expo-
sure to various cancer therapies can contribute to the 
heightened EAAs in cancer survivors. For example, 
alkylating agents, topoisomerase inhibitors, doxorubicin, 
methotrexate, and radiation therapy can lead to DNA 
hypermethylation and lead to accelerated aging pheno-
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type [24••, 25]. The mechanism for this phenomenon 
remains poorly understood.

5.	 Loss of proteostasis: due to a loss of ability to maintain 
correctly folded proteins, and degrade nonfunctional or 
unnecessary proteins, loss of proteostasis can lead to 
increased cellular apoptosis and is a mechanism lev-
eraged by some cancer therapeutics such as ixazomib 
which is used in the treatment for multiple myeloma 
[13•].

6.	 Deregulated nutrient sensing: everolimus is a mTOR 
inhibitor with multiple indications including in breast 
cancer, renal cell carcinoma, and neuroendocrine 
tumors. However, its use is also associated with the 
aging phenotype in mice models due to impaired wound 
healing, insulin resistance, cataracts, and testicular 
degeneration [26].

7.	 Altered intercellular communication: immunotherapy 
such as PD-1 blockade which has ever-broadening indi-
cations can stimulate intercellular communication, and 
is associated with a proinflammatory phenotype associ-
ated with aging [13•].

Indirect Impacts of Cancer and Its Therapy

Cancer patients experience worse quality of life, lost pro-
ductivity, and increased psychosocial distress and anxiety 
compared to non-cancer controls [27••, 28]. Furthermore, 
heightened levels of psychosocial stress are linked to the 
activation of the sympathetic nervous system and the hypo-
thalamic–pituitary–adrenal (HPA) axis which mediate the 
release of downstream catecholamines and cortisol. Higher 
circulating levels of these stress hormones increase the risk 
of biological aging in three ways: (i) increased cellular meta-
bolic activity, which increases the production of reactive 
oxygen species which can cause genomic instability as previ-
ously described; (ii) cellular damage, or the ability of gluco-
corticoids to decrease telomerase activity, leading to cellular 
senescence; and (iii) glucocorticoids are thought to impair 
DNA repair pathways. This damage can drive inflammatory 
changes in the nearby tissue microenvironment that is char-
acteristic of senescent cells. Furthermore, stress hormones 
themselves are associated with an increase in the production 
of proinflammatory cytokines by leading to the upregula-
tion of inflammation-promoting transcription factors such as 
NF-KB, AP1, and CREB. This cumulative upregulation in 
inflammation can result in accelerated aging [29•].

Cancer patients may also develop malnutrition due to 
adverse effects from chemotherapy and/or radiation due 
to altered sense of taste and smell, food aversions, nausea/
vomiting, mucositis, constipation, diarrhea, and early satiety, 
consequently leading to weight loss. In one retrospective 
study of 191 cancer patients aged 28–72 years old, weight 
loss was observed in 40–90% of cancer patients receiving Ta
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chemotherapy (depending on cancer location) [30]. In addi-
tion, chemotherapy has also been found to have a direct 
effect on muscle loss independent of weight. For exam-
ple, cisplatin, irinotecan, doxorubicin, and etoposide cause 
direct muscle loss by activating transcription factors such 
as NF-KB and tumor growth factor which upregulate pro-
teolysis and inflammatory cytokines, accelerating muscle 
catabolism [31].

Malnutrition is associated with early treatment discontin-
uation and heightened risk of chemotherapy toxicity, which 
can lead to accelerated aging as described above [32].

In one study of 114 patients with metastatic colorectal 
cancer, malnutrition was associated with more adverse 
effects after chemotherapy, especially hematologic and 
gastrointestinal side effects [33]. This may be partially 
explained by the dysbiosis of the gut microbiome, a dynamic 
endocrine entity that is highly receptive to changes in diet 
and other lifestyle factors. Chemotherapy has been shown 
to alter the microbiome, including reducing the diversity of 
microbes, which has been associated with intestinal inflam-
mation and characteristically found in obese or elderly 
patients [34]. However, the gut microbiome also regulates 
the metabolism of immunotherapy and many common chem-
otherapies (cisplatin, oxaliplatin, doxorubicin, cyclophos-
phamide), including the development of treatment-related 
toxicity [35]. Therefore, it can be imagined that the devel-
opment of malnutrition (likely multifactorial) may also lead 
to accelerated aging due to dysbiosis and which can further 
lead to treatment-associated toxicity (which thereby leads 

to a cycle of accelerated aging). On the other hand, modula-
tion of the gut microbiome by the use of probiotics has been 
associated with the prevention of treatment-related toxicity 
in colorectal cancer [36].

Unfortunately, the impact of chemoradiotherapy on nutri-
tion may not subside after the completion of treatment. Some 
studies suggest that chemotherapy and radiation treatments 
may also be associated with long-term sequelae leading to 
poor nutritional status. In 40 patients with stage III-IV head 
and neck cancer assessed at a median follow-up of 44 months 
post-chemoradiotherapy, 75% experienced dysphagia, and 
19% were at risk of malnutrition. All the participants were 
forced to implement dietary restrictions. Furthermore, their 
intake of a balanced diet of vitamins and minerals was found 
to be far below recommended levels [37].

Although a direct mechanism remains to be clearly eluci-
dated, by leading to weight loss, sarcopenia, and long-term 
nutritional deficits, cancer treatments such as chemoradio-
therapy certainly appear to add fuel to the fire that is aging.

Clinical Manifestations of Accelerated Aging

Frailty

Frailty is a state of reduced physiologic reserve which occurs 
as a result of normal aging. Clinically, frailty is used to 
identify cancer patients at high risk for poor outcomes, and 
after cancer therapy to identify survivors at risk for early 

Fig. 1   Normal aging versus accelerated aging
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morbidity and mortality, also known as Fried’s criteria [38]. 
However, there is no standard instrument to identify frailty; 
rather, its assessment spans multiple domains including 
physical performance (as delineated by performance on the 
6-min walk test, get up and go test, gait speed), strength 
(grip strength), nutritional status, and cognition and is char-
acterized by an accumulating deficit approach (e.g., totaling 
up the number of tasks or activities that a patient is not able 
to do). Furthermore, as it is a dynamic process, patients may 
move in and out of frail states throughout their lifetimes.

Between 9 and 59% of cancer survivors have been classi-
fied as frail in epidemiologic studies—nearly quadruple the 
rates of frailty compared to non-cancer survivors in analyses 
matched by age, sex, and race [39–42]. Female cancer survi-
vors are more likely to be frail [43], which may be partially 
attributable to their capacity to regenerate muscles [44]. 
Moreover, cancer treatments acting on hormonal axes (e.g., 
androgen deprivation therapy in prostate cancer, estrogen 
antagonists such as aromatase inhibitors) may exacerbate 
frailty [45]. Cancer treatment that involves operative proce-
dures can initiate a cascade of cytokine releases including 
IL-6 and C-reactive protein (CRP) which may induce proin-
flammatory changes conducive to aging [46].

Among childhood cancer survivors, those with malig-
nancies involving the brain, bone, or Hodgkin’s lymphoma 
were at the most risk of developing frailty [43, 47]. Cancer 
treatment–associated predictors of frailty in survivors are 
listed in Fig. 1.

Identifying Cancer Patients Most at Risk of Developing 
Frailty

P16ink4a is a biomarker whose expression increases with 
chronologic age, and it may serve as a robust biomarker 
of molecular aging [48]. In studies of patients receiving 
chemotherapy, p16ink4a expression increased exponen-
tially after treatment and remained elevated at 12 months 
post-treatment [49]. Some have considered this increase to 
represent a 10–15-year increase in chronologic age [50], and 
measuring levels of this biomarker pre- and post-treatment 
may help oncologists predict which patients may develop 
treatment-associated frailty. For example, Smitherman et al. 
[51] found that among children and young adult cancer sur-
vivors, chemotherapy was associated with higher p16ink4a 
levels. Frail survivors exhibited higher levels of p16ink4a 
levels compared to robust survivors; this higher expression 
of p16ink4a was found to represent an average 25-year age 
acceleration in frail survivors [51].

Interleukin (IL) 6 has been a well-studied inflammatory 
biomarker shown to be correlated with frailty [52], and 
has been shown to predict functional decline including the 
capacity to carry out activities of daily living and develop-
ment of poor mobility [53].

Inflammaging/Metaflammation

Aside from cancer therapy–related changes in left ventricu-
lar ejection fraction (for example, due to anthracyclines), 
cancer survivors living at least 5 years beyond diagnosis 
face up to a threefold higher risk of cardiovascular-specific 
mortality and up to an 18-fold increase in risk factors for 
cardiovascular disease such as hypertension, diabetes melli-
tus, and dyslipidemia compared to age-matched counterparts 
without a history of cancer [54, 55]. This is likely a result 
of both age coupled with direct (chemotherapy, radiation, 
targeted therapy) and indirect (frailty, weight gain) effects 
of cancer therapy [56, 57].

Indeed, studies of cardiorespiratory fitness (CRF), an 
integrative assessment of global cardiovascular function, 
demonstrate cancer treatment–associated decline and 
reduced recovery after treatment [58, 59]. To illustrate, 
patients with breast cancer have 30–32% lower mean CRF 
levels compared to age-matched, healthy, sedentary, con-
trol subjects [60]. Similar phenomena have been illustrated 
in young adult cancer survivors [61], and in patients with 
gynecologic cancers [59]. In fact, among cancer survivors, 
peak exercise capacity (V02 peak) is reduced by an average 
of 20% at mean follow-up after 34 months of chemotherapy 
[62]. Furthermore, cancer survivors have been shown to 
have low physical activity levels, with up to 75% of survi-
vors not achieving recommended guidelines [63]. Yet as few 
as 20% of oncologists routinely discuss lifestyle guidance 
in survivorship [64]. Thus, chronic low physical activity, 
coupled with increasing chronologic age, coupled with late 
effects of cancer treatment can all compound to lower CRF.

However, undergoing aerobic and resistance training in 
cancer survivors has been associated with improvement in 
CRF. Among 152 breast cancer survivors (most of whom 
had completed therapy), participation in a once-a-week, 
supervised exercise regimen focused on aerobic and resist-
ance training resulted in significant improvement in CRF, 
quality of life, and fatigue [65]. In another study of cancer 
survivors, participation in aerobic and resistance training 
was associated with improved 6-min walk duration, 1-repeti-
tion maximum leg press, and arm strength [66].

As a result, the American Society of Clinical Oncol-
ogy (ASCO) has issued a practice guideline to better iden-
tify cancer survivors who may benefit from cardiac rehab 
to reduce their risk of cardiac dysfunction. The follow-
ing patients should be considered for high risk of cardiac 
dysfunction and thus meriting a referral for cardiac rehab 
[67]: (1) treatment with high-dose anthracycline or high-
dose radiotherapy when the heart is in the treatment field or 
lower-dose anthracycline in combination with lower-dose 
radiotherapy; OR (2) treatment with lower-dose anthra-
cycline or trastuzumab alone plus the presence of ≥ 2 risk 
factors (smoking, hypertension, diabetes mellitus, obesity, 
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dyslipidemia), ≥ 60 years at cancer treatment, or compro-
mised cardiac function; OR (3) treatment with lower-dose 
anthracycline followed by trastuzumab.

Can Accelerated Aging Be Reversed or Decelerated?

Given that a higher number of cancer survivors are liv-
ing longer and aging into older adulthood, evidence-based 
strategies to mitigate the aging consequences of cancer and 
cancer treatment described above are desperately needed. 
However, there are limited data on how physical activity and 
dietary strategies may avert or ameliorate accelerated aging 
associated with cancer or its treatment. Furthermore, how 
diet and exercise may impact biomarkers associated with 
aging remains to be investigated [27••].

The Role of Diet

Animal models suggest that caloric restriction can slow bio-
logical aging and can not only delay the onset of cancer but 
also can delay the onset of cardiovascular disease, diabetes, 
and neurodegenerative disorders and prolong overall lifes-
pan [68, 69]. Furthermore, during the last decades, diet and 
nutrition have been implicated in cancer risk, progression, 
and treatment response through acting on shared aging path-
ways described above including telomerase activity, bioen-
ergetics, DNA repair, and oxidative stress [70]. To illustrate, 
it is estimated that 30–40% of cancers can be prevented by 
lifestyle choices including a healthy diet, improved physical 
activity, and prevention of obesity and overweight. Stud-
ies of immigrants suggest that migration is associated with 
altered cancer risk compared to the country of origin. For 
example, first-generation Japanese women in the USA have 
a threefold increase in breast cancer compared to women 
living in Japan [71]. Similarly, studies of European migrants 
to Australia showed a higher risk of colorectal cancer (simi-
lar to Australian-born population) but a diminished risk of 
stomach cancer (similar to Australian-born population), 
proportional to the migrants’ duration in the country [72]. 
It is thought that these alterations in cancer risk are at least 
partially due to dietary acculturation.

Furthermore, calorie restriction (CR), or reduction in die-
tary intake by 30% without causing malnutrition, has been 
postulated to curb excess adiposity and thus decrease the 
level of oxidative stress that promotes tumorigenesis [73]. 
In vitro studies suggest that CR can not only halt tumor 
progression but also increase lifespan in experimental ani-
mal models [74]. In a prostate cancer mouse model, calorie 
restriction decreased tumor weight and plasma insulin lev-
els as well as decreased IGF-1 signaling which was cor-
related with higher apoptosis levels [75]. In human studies, 
15% caloric reduction over 4 years showed a decrease in 
the growth factors cascade associated with increased risk 

of cancer [74]. Another study of calorie restriction over a 
2-year period in humans demonstrated a reduction in mark-
ers of oxidative stress associated with tumorigenesis [76].

Thus, diet and nutrition can alter both cancer and aging 
outcomes. Yet simply recommending dieting and/or fasting 
can be challenging in patients with malignancies due to the 
occurrence of sarcopenia and sarcopenic obesity associated 
with both cancer and its treatment [77]. Additionally, the 
relationship between diet, nutrition, aging, and the long-term 
effects of cancer and cancer treatment is not well understood.

Yet, there is evidence to suggest that diet modulation 
before cancer treatment may help reduce treatment-associ-
ated toxicity, improve treatment specificity for the tumor, 
and reduce treatment effect on non-cancerous healthy tissue, 
thereby improving survival [78–81]. For example, in a ran-
domized trial of patients with gynecologic cancer, patients 
who fasted 36 h prior to chemotherapy and 24 h post-chemo-
therapy demonstrated better chemotherapy tolerance, higher 
quality of life, and ability to participate in their activities of 
daily living, and less fatigue than control patients [82].

Furthermore, in particular, whey protein supplemen-
tation during cancer treatment has been associated with 
improved physical performance in cancer patients [83–85]. 
In one randomized double-controlled study, 40 mg of whey 
protein supplementation per week for 12 weeks between 
chemotherapy cycles for patients with non-metastatic solid 
tumor malignancies led to statistically significant increases 
in serum albumin levels compared to control, which are 
reflective of general nutritional status [83]. In another rand-
omized study of malnourished patients (> 10% unintentional 
weight loss over 6 months prior to the study) with a mix of 
advanced solid tumor malignancies, 20 mg of whey protein 
daily for 3 months led to statistically significant increases in 
muscle strength, body weight, and decreased risk of chemo-
therapy toxicity compared to the control arm [85].

The mechanism may be through improvement in lean 
body mass, sarcopenia, muscle strength, and functional 
capacity thereby attenuating frailty and preventing chem-
otherapy toxicity. However, there is also evidence of 
increased IGF-related signaling associated with an increase 
in protein intake in mouse models that could on the contrary 
increase tumor growth by inhibiting apoptosis which must 
be weighed against any positive supplementation effects, but 
this effect has not been observed in human studies and is of 
unknown significance [86].

The Role of Exercise

In addition to being safe and cost-effective, prior studies 
indicate exercise can mitigate several hallmarks of aging [87] 
and can prevent diet-induced cellular senescence [88]. Fur-
thermore, studies of exercise “prehabilitation” (e.g., exercise 
before cancer surgery or adjuvant treatment) demonstrates 
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that it can not only improve cardiorespiratory fitness [89], 
but can also lower post-operative complications [90], and 
support recovery post-treatment, thereby attenuating a frail 
state. Furthermore, exercise during and after cancer treat-
ment is associated with a reduction in functional decline 
because of improved cardiovascular health and maintenance 
of lean muscle mass [91, 92].

Moreover, it may also modulate tumor biology to increase 
delivery to the receptiveness of chemotherapy as was seen 
in patients with pancreatic cancer who participated in a pilot 
exercise program and went on to demonstrate a differen-
tial tumor vascular remodeling which was associated with 
increased chemotherapy efficacy in the experimental group 
[91]. In addition to pancreatic cancer, there is evidence of 
similar exercise-associated tumor remodeling in prostrate 
[93], breast [94], melanoma [95], and Ewing sarcoma 
tumors [96]. In the murine model of Ewing Sarcoma, mod-
erate aerobic exercise was associated with increased delivery 
of chemotherapy to the tumor but not to other organs sug-
gesting that exercise may increase chemotherapy specificity 
for the tumor and may mitigate the toxicity to non-cancerous 
tissue thereby reducing the propensity of age-associated 
changes in healthy tissues as has been described above.

Senolytics

One area of ongoing research centers on developing phar-
macologic models to selectively reduce senescent cells. 
Senolysis has gained traction in recent years as a potential 
method to reverse age-related changes. Among the agents 
being studied are dasatinib and quercetin, whose senolytic 
effect is thought to be related to the selective clearance of 
senescent cells in the bone marrow by induction of apoptosis 
[97]. In addition, studies of an anti-inflammatory agent, fise-
tin, are also being conducted in childhood cancer survivors 
to understand if they can lower frailty and other markers of 
inflammation including insulin resistance and bone resorp-
tion [98].

Conclusion

In summary, this review summarizes both the direct and 
indirect mechanisms by which cancer and its treatment can 
accelerate aging. In essence, cancer treatment including 
chemotherapy and immunotherapy can induce senescence 
in adjacent non-malignant cells which can propagate an 
inflammatory cascade associated with aging. In addition, 
radiation and chemotherapy can lead to genomic insta-
bility due to either direct DNA damage (radiation) or the 
creation of intermediary reactive oxygen species which can 
subsequently also induce replicative senescence as cellular 
DNA damage accumulates. Indirectly, patients with cancer 

experience an upregulated HPA axis which leads to down-
stream production of catecholamines and cortisol which can 
further amplify the risk of accelerated aging due to increased 
metabolic activity, induction of cellular damage, and impair-
ment of DNA repair pathways. However, modulation of diet 
and exercise, including caloric restriction, whey protein sup-
plementation, and aerobic exercise are just a few of the inter-
ventions being studied to reverse or mitigate the accelerated 
aging seen in patients with cancer.
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