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This paper aims to describe and evaluate the proposed calibration model based on a neural network 
for post-processing of two essential meteorological parameters, namely near-surface air temperature 
(2 m) and 24 h accumulated precipitation. The main idea behind this work is to improve short-term (up 
to 3 days) forecasts delivered by a global numerical weather prediction (NWP) model called ECMWF 
(European Centre for Medium-Range Weather Forecasts). In comparison to the existing local weather 
models that typically provide weather forecasts for limited geographic areas (e.g., within one country 
but they are more accurate), ECMWF offers a prediction of the weather phenomena across the world. 
Another significant benefit of this global NWP model includes the fact, that by using it in several well-
known online applications, forecasts are freely available while local models outputs are often paid. 
Our proposed ECMWF-enhancing model uses a combination of raw ECMWF data and additional input 
parameters we have identified as useful for ECMWF error estimation and its subsequent correction. 
The ground truth data used for the training phase of our model consists of real observations from 
weather stations located in 10 cities across two European countries. The results obtained from 
cross-validation indicate that our parametric model outperforms the accuracy of a standard ECMWF 
prediction and gets closer to the forecast precision of the local NWP models.

Atmospheric conditions have a significant impact on humans everyday activities. Natural events, such as heavy 
rains, extreme wind or high temperature, can interrupt air and public transportation services, destroy crops or, 
even worse, be responsible for fatalities and injuries. To avoid this, the weather forecast is an essential part of 
many early warning systems aiming at disaster risk reduction. Numerical weather prediction (NWP) models are 
based on mathematical equations representing the physical behaviour of the atmosphere. The atmosphere can be 
described in terms of its properties such as temperature, humidity, or precipitation rate. Atmospheric modelling 
uses physical parameterization, which means that many complex processes in the atmosphere, such as radiative 
and cloud processes or atmospheric turbulence, are represented in the model by simple and computationally 
inexpensive methods. Evaporation, vegetation cover, or reflection/absorption of solar radiation at the Earths 
surface represent examples of processes that are often parametrized (the main purpose is modelling the effects 
of these processes). These processes affect too a small area to be predicted in full detail by NWP models. The 
major reason lies in the limited computing power that still does not allow us to calculate the above-mentioned 
processes for any place on Earth. As a result of this, the climate model (mathematical simulation of the Earth’s 
climate system) is divided into a three-dimensional set of points a grid characterizing the horizontal and vertical 
resolution of the NWP model. Grid-spacing has an impact on complex spatial modelling of surface terrain (see 
Fig. 1), as well as on representation of the atmosphere (number of layers across the height of the atmosphere). 
Based on the grid spacing and forecast period, NWP models can be divided as follows:

•	 Global NWP models resolution of 9 km (ECMWF) or of 13 km like Global Forecast System (run by the United 
States National Weather Service,), more than 10 days of prediction.
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•	 Local NWP models less than 5 km resolution, the forecast horizon is 3 days. Some of the well-known European 
models comprise ALADIN (operated in 16 countries) or HIRLAM (operated in 10 countries). As for local 
NWP models, the data from global models supply the data for the lateral boundary conditions.

The greater the distance between the grid points, the less likely the model will be capable of discovering small-
scale variations in the temperature and moisture fields. The lack of resolution reduces the amount of detail and 
increases the prediction error.

As for local (regional) NWP models, it is characteristic that each country (represented by the national weather 
service) calculates the weather forecast individually according to its own computational capacity and needs (e.g., 
some countries can use the ALADIN horizontal resolution 11 km, others have applied the improved version of 
resolution of 4.5 km)1. We have identified two major disadvantages of this approach:

•	 Ineffective searching of weather information from the user’s perspective. There is no common website col-
lecting data from local NWP models. Not all countries make this data open access, so the potential users 
must pay for it.

•	 The national weather agencies must invest a large amount of money to keep their high computing infrastruc-
ture up to date.

On the other hand, several popular web applications collect and visualize data from global models, therefore, 
they allow users to find information about the weather conditions for any place. Consequently, we have decided 
to calibrate the ECMWF global model by a neural network (hereinafter referred to as NN) to bring 3-day weather 
forecast accuracy as close as possible to the selected reference local model ALADIN. Because the 72-hour forecast 
period is a standard setting for the ALADIN model, our main objective is to improve ECMWF forecasts to this 
time window.

Horizontal resolution can be considered as a major weakness of the ECMWF model. The grid spacing of 
9 km means that a geographic area of 81 square kilometres is approximated only by one grid point approaching 
the average of the observed values within the grid cell. The region of Central and East Europe consists of several 
small countries with a population of less or around 10 million (Slovakia, Czechia, Austria, Slovenia, Hungary, 
or Croatia). Due to this fact, the whole area of small and mid-sized cities dominating the settlement structure 
of these countries is geographically approximated by one or two topographic points of the ECMWF grid. As a 
result of that, the model poorly approximates the terrain and local micro-climate parameters we have recognised 
as important weather features, such as green infrastructure or local pollution. These features either exist in the 
model initial conditions, but are weakly represented, or are barely incorporated into the model initial condi-
tions. Both situations will impact the forecast. Therefore, after the comprehensive study of the works published, 
as well as thanks to the knowledge received from the previous work2, we have identified key features that should 
effectively replace the main advantage of local NWPs higher resolution. Appropriate features selection helped us 
adequately incorporate the influence of small-scale phenomena into the ECMWF forecast, especially in urban 
areas.

The main contributions of this paper include the following:

•	 We describe our approach on improving the accuracy of the ECMWF model based on machine learning 
(ML). ML is used for post-processing raw ECMWF data.

•	 We present a novel perspective of selecting small-scale phenomena that are able to correct a 2 m air tempera-
ture and a 24 h accumulated precipitation forecast error.

•	 The proposed model can be easily incorporated (open source) into potential online forecast web services; 
due to simple model topology, it is robust to overfitting.

Figure 1.   Comparison of NWP horizontal resolution model topography of Slovakia: (a) ECMWF; (b) 
ALADIN.
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The rest of the paper is organised as follows: Section State of the Art reviews some important works in this 
research topic. In section Methodology, the details of our hybrid NWP-ML model are presented. Section Results 
describes model performance analyses and comparison with the reference local model ALADIN. The benefits 
and limitations of the proposed approach are discussed in section Discussion. Summary and future work plans 
are presented in section Conclusion.

State of the art
Modern weather prediction systems strongly rely on massive mathematical modelling and simulations which 
require high-performance computing. Although we witness a fast increase in computing power, there are still 
various challenges in NWP. Regional NWP models need to have accurate information for all forecast variables 
and along each model boundary (secured by selected global models), but, due to the unpredictable events in 
the atmosphere, even a small change in the initial stage can lead to a huge impact on weather forecast3. Lower 
resolution of global NWP models can take into account even micro-climates such as soil moisture or vegeta-
tion cover, but in a very limited manner. Our suggestion that these parameters are relevant for improving the 
accuracy of the forecasts has also been confirmed in the study by Srivastava and Blond4 and Dirmeyer, P. A., and 
Halder, S.5, where the authors proved that the aerosols distribution/concentration and accurate initialization of 
soil moisture are both important indicators that can improve air temperature and rainfalls forecasts delivered 
by global NWP models. Jhun et al.6, Li et al.7, Perrone et al.8, Requia et al.9, Manso et al.10, Tomson et al.11, Zhao 
et al.12, and Schwaab et al.13 have investigated the influence of air pollution as well as the green infrastructure 
on weather changes too. Seasonal temperature or precipitation frequency correlates especially on the level of 
particulate matter (especially PM2.5). An investigation of the so-called urban heat islands effect brought impor-
tant information on how to improve thermal comfort in urban areas. Green, or sometimes called blue-green, 
infrastructure (parks, green walls, wetlands, city forests) help capture pollution and mitigate climate change 
(cooling effect, water retention).

The deep neural network is a kind of NN consisting of several layers called hidden layers interconnecting the 
vector of input features with the output layer. More layers allow resolving more complex fitting issues and provide 
good generalization over the selected dataset. A set of input parameters (features) has to be chosen carefully; 
individual parameters should not be cross-correlated. If the NN topology contains many layers and neurons on 
each layer, there is a potential risk of overfitting and additional methods for overfitting reduction must be applied. 
In the last years, research teams have been increasingly aware of deep learning and trying to use a benefit of it 
to improve numerical modelling or apply it for additional post-processing of the delivered NWP forecasts. In 
studies by Rasp and Lerch14, Yonekura et al.15, Wang et al.16, Ren et al.17, and Schultz et al.18, the authors tested 
the possibility of replacing the traditional forecast model completely by NN or using it for post-processing of 
the delivered forecast. While some promising results, that can compete with NWP, have been identified in pilot 
models, the research is still in the beginning. A much better situation is in the area of a hybrid approach where 
the NWP data are post-processed by NN. Many of the works mentioned focused their attention on the improve-
ment of nowcasting (up to several hours ahead) or a one-day lead. As for heavy rainfalls forecast, in particular, 
the authors reached significant accuracy improvement.

We have also contributed to this research. In our pilot work2, we proposed the initial version of our hybrid 
model for ECMWF accuracy improvement. We verified that our idea is correct and NN can help improve predic-
tion accuracy. Now, the weather data collected contain three times more samples than we previously used for the 
training. We also increased the model’s minimum and maximum forecast range for both the hourly temperature 
and the daily precipitations. With respect to the contributions of the above-mentioned works and our knowledge 
gained, we changed the NN architecture and replaced two input features. The results obtained are found to be 
superior compared to our previous work; and to our best, we have not discovered any model published that 
offers ECMWF model accuracy improvement for the 3-day forecasts for both the 2 m air temperature and the 
daily precipitation concurrently.

Methodology
At first, we needed to create a large database containing the predicted values of the NWP models selected and 
the values measured by weather stations (ground truth). More than one year was spent on collecting the data. 
We interrupted gathering the data by the end of February 2020 due to the new coronavirus COVID-19 spreading 
across the world. The lockdowns imposed in many countries caused the weather forecasts to be less accurate due 
to reduction in aircraft weather reports19. Had we not interrupted the data collection, we would have received 
noisy data. For the short-term forecast, we used open-access data from several web services, namely windy.com 
(which uses raw ECMWF data with a 3-hourly step that allows producing forecasts up to 144 h ahead), Yr.no 
(operated by Norwegian Meteorological Institute MET; raw ECMWF data with a 1-hour step frequency that 
allows a forecast of approximately 60 h ahead; for a longer period forecast, the step increases to 6 h which can 
influence total precipitation forecast accuracy for 3rd day) and, finally, the Czech and Slovak Hydrometeorologi-
cal Institutes (both use the ALADIN regional model that is run on their supercomputers)20–23. Weather services in 
Czechia and Slovakia also served as sources of real measured values obtained from surface weather observation 
stations. All weather stations selected are located near the centre of the following cities (see Table 1 and Fig. 2)

The whole database is composed of 3,679 unique samples. The database was randomly divided into a set 
dedicated to the training procedure (90% of samples) and a cross-validation set (10% 368 samples). The data-
base reflects the limitations of the models, such as 3-hour resolution (ECMWF) and maximal 72-hour lead time 
(ALADIN). We collected forecasts from all NWP models delivered by forecast run at 00:00 UTC (Coordinated 
Universal Time). In the dataset, each date of forecast run (denoted as d) of a particular city is associated with its 
Air Quality Index (AQI) of the previous day (d-1) from the website (AQI24).
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PM2.5 AQI is calculated according to the PM2.5 level in the air. These matters of size of less than 2.5 µ m are 
recognized as a major air pollutant with an impact on weather conditions as is stated in section State of the Art.

Green infrastructure has been incorporated in our model via two components, namely the urban water area 
surface and the Mean Effective Green Infrastructure (MEGI)25 . The MEGI indicator shows the spatial distribu-
tion of Effective GI, which can be explained as the probability of finding a GI element in a selected urban area. 
It is based on circular regions (the distance between two circles is 1 km) around the city centre. Since we col-
lected data from weather stations situated close to the city centres, each city in our database is associated with 
the MEGI value reflecting a 5 km distance to the city centre. The list of all dataset variables is shown in Table 2.

Architecture of hybrid NWP/ML prediction model.  A neural network based on error back-propaga-
tion comprised an input layer, a hidden layer (one or more) and, finally, an output layer. This topology is inspired 
by the learning process of the human brain (creation of new neural connections leads to storing new informa-

Table 1.   List of selected cities.

City Population Area [km2]

Prague the capital city of Czechia 1.335 million 496

Brno 382,400 230

Ostrava 285,000 214

Olomouc 100,500 103

Pilsen 175,200 138

Bratislava: Capital city of Slovakia 475,600 368

Zilina 81,900 80

Kosice 227,500 243

Presov 83,900 70

Trencin 54,500 82

Figure 2.   The geographical location of selected cities.

Table 2.   List of dataset variables.

Parameter type Description

Climatic variables Hourly surface air temperature, daily precipitation

Weather forecast models ECMWF, ALADIN, Yr.no

Target data Meteorological data from weather stations

Day of forecast 1st, 2nd or 3rd day

Microclimate attributes MEGI, AQI, water area surface
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tion). The input layer is represented by one or more elements of the input vector called features. The whole 
process of NN training and testing is shown in Fig. 3.

Back-propagation neural network is not the only type of neural network. Other well-known types are the 
Long Short-Term Memory (LSTM) network or the Convolution Neural Network (CNN). LSTM works with 
sequence data such as time series or speech recognition data because the network can store past important 
information due to its recurrent connection on the hidden state. Another network CNN applies filters (kernels) 
that, by using the convolution operation, allow extracting spatial features e.g., from an image. Therefore, CNN 
is good for classification. Because we have tabular data (and create regression model) and, we do not use radar 
images or try to predict weather from its previous state, a back-propagation neural network seems to be the best 
solution. An example of the input vector x of n-th data sample can be expressed as follows:

We tested many topologies, starting from simple networks containing one hidden layer to more sophisticated 
topologies consisting of 3 hidden layers, wherein each of them had tens of neurons. To prevent network overfit-
ting, we applied the following techniques:

•	 Bias Variance Trade-Off: a compromise between the model size and accuracy. A simpler model topology is 
preferred.

•	 Early stopping: training will stop when the preferred performance indicator stops improving on the valida-
tion data subset.

•	 Bayesian regularization: this method minimizes a combination of squared errors and weights, and then 
decides the best combination to create NN that generalizes well.

A model error is considered as a Mean squared error (MSE) defined as follows:

where n denotes the number of samples and MSE represents the difference between target value yi and output 
value (obtained from a trained model) ỹi i. The root of MSE (RMSE) is a common metric that shows the standard 
deviation of residuals (prediction errors) for a particular variable.

A prediction model was implemented in the MATLAB workspace (version 2021a) by using Neural Network 
Toolbox which allowed to create testing scripts as well as the so-called MATLAB function of the final version 
for further deployment. As an activation function, we used a predefined hyperbolic tangent sigmoid transfer 
function (tan-sig). The activation function of each neuron indicates the activation potential of the neuron that 
is responsible for the decision whether the node will be fired or not. Tan-sig is an S-shaped curve function that 
produces outputs in a scale of [− 1,1]. The non-linearity of this function helps the model to generalize or adjust 
better to data diversity.

Results
After the collection of all data, we performed a basic statistical investigation. At first, we analyzed the relative 
accuracy of each model prediction outputs. Relative accuracy RA (expressed as a percentage) specifies how 
accurate a prediction is when compared to the target value. The formula is expressed as follows:

xn =




Day of forecast
AQI
MEGI

Water area
ECMWF forecast


 =



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66

15.22

1.8

14


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(
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,

Figure 3.   The architecture of the proposed model.
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where vt denotes the target value and vp represents the predicted value.
Table 3 shows that, in terms of relative accuracy, ECMWF has achieved the worst results of temperature 

forecasts, while ALADIN and Yr.no performed equally well (for both models, the RMSE oscillates between 1.25 
and 1.5 for the 2 m air temperature). The calculated RA dedicated to the ECMWF 3-day projection is close to 
the declared accuracy promoted by ECMWF itself (for year 2019 98%) (ECMWF26).

An interesting situation occurred when we compared the daily precipitations forecast accuracy, where the 
ECMWF model surpassed its two competitors. A detailed analysis related to whether the models overvalue or 
undervalue their predictions is another curious fact that we have extracted from the dataset. As it can be seen in 
Table 4, in comparison with the other two models, the ECMWF model typically undervalued the temperature 
prediction and slightly overvalued the number of daily precipitations.

We can verify this assumption from another point of view. The total number of real measured hourly tem-
peratures above 30 ◦ C is 224. While ALADIN and Yr.no models predicted this warm temperature more than 200 
times (concretely ALADIN: 210 and Yr.no: 208), ECMWF estimated that this extreme value would be reached 
only 183 times. A relatively high portion of correct predictions of total daily precipitation (more than 60%) can 
be explained by a huge number of zero precipitation forecasts that were truly predicted.

Neural network modelling.  During the modelling phase, MATLAB allows us to randomly divide the 
training set into three subsets, namely a training subset, a validation subset and a testing subset (we chose the 
following ratio: 80-10-10). We have applied early stopping which stops the training procedure when the valida-
tion error begins to rise but the training error still decreases in the followings iterations. This event indicates that 
the network starts to overfit the data. The trained network is then evaluated on testing data. In case the trained 
model performance is adequate for all three subsets, we can use a cross-validation dataset (sometimes referred 
to as a holdout) that contains samples not participating in model training.

Figure 4 shows a correlation diagram with the Pearson’s coefficient R for the best-rated topologies, concretely 
a hidden layers topology of 7-5-2 for the hourly temperature prediction and an 11-4 for the prediction of total 
daily precipitations. Figure 5 compares the proposed model temperature predictions with the raw ECMWF 
predictions and with the data observed from weather stations.

Based on the results shown in Table 5, we can say that our proposed hybrid model outperformed raw ECMWF 
predictions. For the cross-validation set, by using the RMSE criterion, we have improved the forecast accuracy 
by 13% (hourly temperature) and by 45% (daily precipitations).

Comparing the performance of different machine learning algorithms.  Although NN has been a 
trendy ML algorithm in recent days, evaluation of other ML techniques is important to come out with the best-
suited algorithm for a particular issue. MATLAB contains Statistics, and Machine Learning Toolbox allows us to 
compare various ML algorithms and build predictive models by automatic training of different regression mod-
els on our data. All available data were used for the training. We set 5-fold cross-validation (good compromise 
that saves time and computational complexity (Marcot and Hanea27) to check the models accuracy. Figures 6 
and 7 show the results obtained by selected ML algorithms.

As it can be seen in the above-stated figures, performance indicators related to the surface temperature 
reach the best values in case of using the Gaussian Process Regression (GPR) model (non-parametric Bayesian 
approach). For the total precipitation forecast, Stepwise linear regression becomes the best-assessed model. Based 
on these performance measurements, we can say that our proposed ML model outperformed the GPR model (in 

RA =

[
vt −

(
vt − vp

)]

vt
× 100

Table 3.   Overview of relative accuracies (RA) of weather prediction models produced for both countries.

Weather model Surface temperature % Daily precipitation %

ALADIN (SHMU and CHMI) 99.7 89.5

Yr (MET) 99.1 86.9

ECMWF (Windy) 97.6 90.8

Table 4.   Comparison of ratios that determine whether the models’ predictions are overvalued or undervalued. 
Note: sign + represents overvaluing,- undervaluing, and = correct prediction.

Weather model

Surface temperature Daily precipitation

− = + − =  +

ALADIN (SHMU and CHMI) 42.1% 18.2% 39.7% 15.6% 61.5% 22.9%

Yr (MET) 40.5% 18.3% 41.2% 16.3% 61.2% 22.5%

ECMWF (Windy) 48.3% 18.3% 33.4% 15.7% 60.1% 24.2%
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a form of R as well as RMSE for both cases training and cross-validation). In total daily precipitation prediction, 
our model achieved better results on the training data (and significantly better R value in cross-validation). The 
RMSE metric in cross-validation where we received slightly worse outcome (4.26 vs 4.05, 5% difference between 
the models performance) was the only exception. On the other hand, it needs to be considered that these ML 
techniques used all available data; before NN training, the dataset was divided into training and cross-validation 
(independent) data subsets.

Therefore, we have enough information to assess our model truly. Based on these measurements, we can 
say that the back-propagation neural network selected is the best fit model (for non-linear mapping) with the 
highest prediction accuracy.

Figure 4.   Scatter plot with the Pearsons correlation coefficient R and MSE of hourly temperature prediction in 
the left part and daily precipitation prediction in the right part.

Figure 5.   Comparison of predicted surface temperature from the proposed model and ECMWF, and reference 
temperature from weather stations.
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Discussion
We have prepared a hybrid deep learning model able to correct ECMWF short-time forecasts (up to 3 days 
ahead). The proposed model significantly extends the pilot study published in 2019 (an increase of forecast 
ranges from 15 °C − 35 °C to −5 °C − 35 °C; and 24 h precipitation forecast modelling starts from 0 mm instead 
of 2 mm). The key performance indicator RMSE is also better compared to the pilot study (2.06 C and 3.68 mm 
the training set of the pilot model). We also acquired three times more unique data samples available for train-
ing and testing. As shown in Table 5, the proposed model improved the prediction ability of the raw ECMWF 
model. The proposed model is comprised of simple NN architecture which implies good generalizing ability 
and robustness to overfitting. The model is easy to integrate as a post-processing approach for ECMWF outputs. 
Table 5 also shows that the results obtained for the model during the training and cross-validation are generally 
consistent and MSE falls close to the values represented by the local NWP model. A combination of deep learn-
ing and global NWP outcome can offer similar prediction accuracy as the local model.

We should consider and discuss the limitations of this study. Zero precipitation rate accounts for more than 
66% of all data. There is a noticeable imbalance in the data, and all papers mentioned here had to find methods 
to effectively handle imbalanced datasets. An imbalanced dataset may have a negative impact on the performance 
of machine learning, especially as for classification models. Thus, our primary goal was to adapt the model itself 
by hyper-parameter tuning and monitoring feedback from metrics. We also adopted a strategy described by Liu 
et al.28 to deal with this issue. The precipitation training dataset was a combination of randomly chosen data 
from a non-rainfall subset as well as from a rainfall data subset. The proportion of occurrence of data extracted 

Table 5.   Proposed model performance evaluation.

Weather model

Surface 
temperature

Daily 
precipitation

MSE RMSE MSE RMSE

ECMWF 4.44 2.11 °C 42.28 6.5 mm

Proposed model 3.73 1.93 °C 11.49 3.39 mm

Cross-validation set

ECMWF 4.09 2.02 °C 38.17 6.18 mm

Proposed model 3.22 1.79 °C 18.14 4.26 mm

Figure 6.   Correlation diagram of selected ML models (RMSE and Pearsons correlation coefficient R) for hourly 
temperature prediction.
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from these two subsets is 1:1. This special training dataset was used for the training NN (we used only 1,129 
data samples in this case).

Another fact that we must consider is that the daily precipitation summary is valid for a period from midnight 
to midnight. A situation may occur when rain is expected e.g., at 22:00, but the rainfall starts after midnight. Only 
a few hours delay will affect the predictive accuracy for the actual and following days of the forecast. Finally, the 
temperature prediction range represents a drawback of the proposed model. Due to the relatively warm winter, 
we have recorded hourly temperatures below minus 5 degrees of Celsius only a few times. There is no doubt that, 
in many countries, the lowest temperature during winter is much lower than the actual model offers. Unfortu-
nately, we must wait until the situation with air traffic returns to its pre-COVID levels, and, then, we can focus 
on gathering data with low surface temperature to improve the prediction range of our model.

It is not easy to find research papers for comparison. Many authors have turned their attention to improve-
ment of the prediction accuracy for nowcasting (up to next 12 h) or extreme weather phenomena such as rainfalls 
or monsoons. Nevertheless, we have found several interesting articles. Li et al29 tested linear and Random Forest 
algorithms to improve the ECMWF forecast in the Beijing area. They gathered data during the period between 
2012 and 2016. The proposed model increases accuracy by 9.61% compared to the ECMWF for surface tempera-
ture prediction. Another group of Chinese researchers in Kong et al.30 created a model for a weather conditions 
forecast for the upcoming 3 days. They gathered historical observational data from 226 weather stations across 
Beijing between 2015 and 2017. The proposed model was based on the convolutional neural network containing 
44 forecast predictors. While the ECMWF model reached RMSE of 2.94, their trained model reduced the error to 
2.41 in temperature forecasting. In Thi Kieu Tran et al.31, the authors tested three machine learning algorithms. In 
addition to NN, they also used the recurrent neural network (RNN) and LSTM. According to the season of the 
year, RMSE oscillated between 2.52 and 3.65 ◦ C in the data test of the daily maximum temperature prediction 
for the upcoming 3 days. Error comparison with the data observed is missing.

In ECMWF technical memorandum number 89632, authors analyzed three machine learning algorithms 
(linear regression, random forests, and NN) for statistical modelling of 2 m temperature and 10 m wind speed 
forecast errors. Compared to our model, their corrected model produced a forecast with a lead time up to only 
48 h and their models’ configurations often used more than 10 predictors (features). RMSE was reduced by 
around 10%. NN model outputs were slightly better than the other two mentioned methods, its RMSE oscillates 
between 1.9 and 2.4 ◦ for 48 h forecast lead time.

Better short-term precipitation prediction from radar echo images was the main contribution of the paper 
by Niu et al.33, where the authors used a combination of multi-channel ConvLSTM and 3D-CNN algorithms. 
Based on the data collected between 2017 and 2018, their model achieved an RMSE value of 7.18 mm. The 
preprint paper by Chen and Wang34 describes an application of DL in a short-term precipitation prediction (fol-
lowing 24 h). The proposed model reached smaller RMSE (4.16 mm/24 h) than the ERA-Interim 24 h forecast 
(4.78 mm/24 h) that estimates the global atmospheric state based on the data from ECMWF. Saminathan et al.35 
calibrated the delivered precipitation forecast provided by Global Ensemble Forecast System (GEFS) over the 

Figure 7.   Correlation diagram of selected ML models (RMSE and Pearsons correlation coefficient R) of daily 
precipitation prediction.
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Indian region. They used NN as a post-processing technique for forecast enhancement. The prediction error 
represented by RMSE was improved from 9.8 to 9.1 for a 3-day lead. Finally, Rasel et al.36 tested ML models based 
on Support Vector Regression (SVR) and NN for weather forecast accuracy improvement for a time period of one 
week. In terms of RMSE, the best models with a low error rate included SVR (with its value of 21.68 mm/24 h) 
and NN (with an error rate of 7.89 ◦C).

Based on the above-mentioned papers published, it is obvious that the combination of temperature and 
precipitation forecast accuracy improvement is unique in this research field. In addition, our paper brings a 
calibration model that can be easily incorporated into popular online weather services.

Conclusions
This paper proposes ECMWF model calibration based on DL. The novelty of this approach lies in prediction 
accuracy improvement for both 2 m air temperature and daily precipitation in a 3-day lead. Performance analysis 
of our model pointed out an error (RMSE) reduction by 13% (2 m air temperature) and 45% (24 h precipita-
tion) respectively. In comparison to regional NWP models, the global model ECMWF has no geographical 
restrictions in forecasts provided, thus it is more attractive for both professionals and basic users. It is also worth 
mentioning that our approach could potentially reduce the acquisition costs of supercomputers. For example, 
in 2018, the Czech hydrometeorological institute bought a supercomputer with a theoretical peak performance 
of 270 Teraflops (NEC LX-Series x86 with 320 nodes). On the other hand, we tested our model on PC Intel(R) 
Core(TM) i7-9700 CPU @ 3.00 GHz with 16 GB RAM, and the corrected ECMWF predictions were calculated 
in the MATLAB environment almost immediately (CHMI21). In future work, we plan to extend the calibrated 
forecast period and incorporate another weather phenomenon the wind speed.

Data availability
 The data sets source code of proposed models are available online in Zenodo repository (https://doi.org/10.5281/
zenodo.5862250). The air quality and meteorological data used in this work are public and freely available from 
ECMWF, Yr.no, SHMU, CHMI, and AQI.
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