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ABSTRACT Human scleroderma serum 5051, which is known to recognize the amorphous pericen- 
triolar microtubule organizing center material of a variety of vertebrate cells, was found to immuno- 
stain spindle poles of meristematic higher plants from pre-prophase to late anaphase. Subsequently, 
during cytokinesis, staining was redistributed around the reforming telophase nuclei, but was not 
evident in the cytokinetic phragmoplast. At the transition between telophase and interphase, before 
the typical cortical interphase microtubule array was established, short microtubules radiated from 
the nucleus and in such cells the material recognized by 5051 was located around the daughter 
nuclei and not the cortex. 

These observations have led us to propose that the perinuclear region, or the nuclear surface, may 
function as a nucleation center for both spindle and interphase microtubules in higher plant cells. 

Four successive microtubule arrays are present during the cell 
cycle in meristematic higher plant cells: the interphase cortical 
array (which is involved in orienting fibrils in the wall), the 
pre-prophase band (which predicts the division plane), the 
spindle, and, finally, the cytokinetic phragmoplast (12, 20, 
23). The functions of these arrays and the control of their 
rearrangements are fundamental to tissue patterning and mor- 
phogenesis (7); very little is known, however, about the nature 
or location of the components which nucleate and/or organize 
microtubules in plant cells. It is not known, for example, 
whether each array has its own nucleating sites or whether 
common sites successively nucleate all arrays (16). 

The origins of the cortical interphase array are not clear. 
Concentrations of electron-dense material, thought to be mi- 
crotubule nucleating sites, have been observed in the cell 
cortex, and this has led to the idea that this microtubule array 
may be generated by sites at cell edges (8). However, it is not 
known whether this concept applies generally to higher plant 
cells, nor is it known if these putative interphase sites are 
related to those active during cell division. 

In most animal cells, a pair ofcentrioles serves as a conven- 
ient marker for the associated amorphous pericentriolar ma- 
terial (PCM) ~ which functions as the microtubule nucleating 
site both in interphase and at mitosis (6, 18). Higher plant 
cells do not contain centrioles, but osmiophilic material re- 
sembling PCM has been observed at the poles of plant spindles 
(l 9). This led Pickett-Heaps (19) to propose the term "micro- 
tubule organising centres" for similar material in both plants 
and animals. 

1 Abbreviations used in this paper: PCM, pericentriolar material. 

Recently, a human auto-antibody has been described (1) 
which recognizes PCM in a variety of vertebrate cells, but also 
immunostains the spindle poles of mouse eggs which, like 
plant cells, do not possess a centriole. The ability to detect 
PCM in the absence of centrioles has led us to investigate the 
staining pattern of this serum in plant cells, and we report 
here that the serum recognizes material at the spindle poles 
of Allium root-tip cells, and we have followed its distribution 
during the cell cycle. 

MATERIALS AND METHODS 

Imrnunofluorescence Procedures: seeds ofAllium cepa Linnaeus 
were germinated on moist filter paper at 20°C; the terminal 1 mm of 3-d-old 
radicles was prepared for immunofluorescence staining using a modification of 
the method of Wick et al. (23) as described in detail elsewhere (2). Fixed cells 
were released from the root-tip onto the wells of multitest slides (Flow Labo- 
ratories Ltd.) by gentle squashing with a plastic rod, and air dried. These cells 
retained their shape, as in the intact root tip, and were permeable to antibodies 
without further treatment. Detergent extraction, with 0.1% Nonidet P-40, did 
not significantly alter the pattern of staining. Incubations with antibodies were 
performed at 37°C for 45 min. Where required, nuclei were stained with 1 t,g/ 
ml propidium iodide (Sigma Chemical Co., Poole, UK) after the antibody 
treatments. 

Antibodies: Human scleroderma serum 5051 was the generous girl of 
Drs. T. Mitchison and M. Kirschner, University of California Medical Center, 
San Francisco). The serum was used diluted 1[100 (vol]vol) in phosphate- 
buffered saline (PBS) or PBS containing I% bovine serum albumin. Sclero- 
derma sera were initially tested by immunofluorescence staining of PtK2 cells 
prepared by fixation at -20°C in methanol followed by acetone. Cells were 
rehydrated at room temperature in PBS containing 2% (wt/vol) bovine serum 
albumin. 

Microtubules were stained using a monoclonal antibody raised against yeast 
tubulin ( 11 ). FITC-conjugated goat anti-human lgG and rhodamine-conjugated 
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rabbit anti-rat IgG were obtained from Miles Laboratories Ltd. and used at 
dilutions of 1/150 and 1/100, respectively. 

A/licroscopy: Slides were examined using a Zeiss Universal II micro- 
scope equipped with an HBO 50 high pressure mercury vapor lamp for 
epifluorescence illumination, and filter sets for rhodamine and FITC fluores- 
cence detection. A planapo 40x objective numerical aperture 1.0 was used, and 
photographs were recorded on Ilford FP4 or XPI 35-ram film. 

RESULTS 

Squashes of fixed root tips contain representative cells from 
all stages of the cell cycle. Preservation of the microtubule 
arrays in these cells was good and double staining with anti- 
tubulin was used to compare microtubule distribution and 
5051 staining in most preparations. 

The earliest stage of mitosis where material could be de- 
tected with 5051 was in cells where a preprophase band was 
present--recognized by double staining with anti-tubulin, or 
by the characteristic chromatin condensation pattern in these 
cells, visualized with propidium iodide (Fig. 1, a and b). Cells 
in this stage invariably possess microtubules at the nuclear 
surface, focused upon the forming spindle poles (22, 23). The 
5051 staining material was present close to the nucleus, 
marking the incipient poles (Fig. I a). The immunostaining 
at this stage was not so intense as it appeared during stages of 
mitosis, particularly at prophase (Fig. 1, c and d) where 
brightly staining material is clearly present at the two broad 
poles. No 5051 staining material was detected in the cortical 
zone marked by the pre-prophase band microtubules. 

At metaphase the polar staining was spread over the broad, 
typically "barrel-shaped" spindle (Fig. 2, a-d). In particular, 
the micrograph pair that shows the double staining with anti- 
tubulin (c and d) reinforces the impression of many small 
concentrations of material contributing to the spindle pole. 
During anaphase, especially in later stages (e and f ) ,  staining 
was still present at the pole but also showed some redistribu- 

tion around the outside of the spindle and chromosomes. 
At tdophase--when the cytokinetic phragmoplast is pres- 

en t - th i s  redistribution was more marked; the poles no longer 
showed bright staining, whereas clusters of material appeared 
at the edges of the re-forming telophase nucleus facing the 
phragmoplast (Fig. 3, a and b). In double-stained prepara- 
tions, the phragmoplast microtubules often appeared to end 
in close proximity to concentrations of 5051 staining (Fig. 3, 
a and b). No staining of the mid-zone of the phragmoplast 
with 5051 was observed. 

Later in cytokinesis, when the phragmoplast microtubule 
army had almost disappeared and the cell plate was nearly 
complete, a new microtubule army was apparent in the daugh- 
ter cells. We termed this array "early interphase"; it was 
comprised of short microtubules, or bundles of microtubules, 
apparently radiating from the nuclear surface (Fig. 3e). No 
pattern intermediate between this and the fully developed 
cortical interphase array could be detected in our prepara- 
tions; this suggests that this transition is relatively rapid, and/ 
or unstable to fixation. In cells at this stage, 5051 staining was 
distributed around the surface of the daughter nuclei (Fig. 
3 c); chromatin in these cells demonstrated stages of decon- 
densation (Fig. 3d). Fig. 3fshows the complete cortical mi- 
crotubule array; no 5051 staining could be detected in inter- 
phase cells possessing such a mature microtubule configura- 
tion. The use of auto-antisera such as 5051 has the disadvan- 
tage that it is not possible to compare staining patterns with 
those of pre-immune control sera. However, we have used 
non-scleroderma human serum on Allium cells in order to 
confirm that the staining we observed in 5051 was not due to 
components generally present in human serum (data not 
shown). In addition, we have screened a range of human 
scleroderma sera for reaction with centrosomes and kineto- 
chores. None of those staining animal cell kinetochores cross- 
reacted with plant nuclear components; one serum, however, 

FIGURE 1 Allium root tip cells stained with anti-centrosome serum 5051; chromatin was counterstained with propidium iodide. 
(a) Pre-prophase: stained material is present close to the nucleus at polar locations (arrowed); (b) counterstaining of cells in a 
with chromatin condensation pattern; (c) prophase spindle poles are brightly stained with 5051; (d) chromatin condensation 
pattern in c. × 1,100. 

320 RAPID COMMUNICATIONS 



FIGURE 2 (a and b) Micrograph pair showing a cell in metaphase stained with (a) 5051 and (b) propidium. The spindle poles 
are broad and flat compared with the "cap-shaped" poles in prophase (cf. Fig. 1 c). (c and d) Metaphase cell double-stained with 
(c) 5051 and (d) anti-tubulin. Spindle poles appear to consist of numerous small foci. (e and f) Anaphase cell stained with (e) 
5051 and (f) propidium, x 1,100. 

(designated WMH/JI.01) which stained animal centrosomes 
demonstrated a similar pattern of staining of Allium cells to 
that shown by 5051 (Fig. 4). 

The precise biochemical nature of the antigen reacting with 
these antibodies is unknown, but may range from a nucleic 
acid, protein, or a protein modification, such as a phosphor- 
ylation (21). The staining data presented here, using two 
independent antisera which recognize centrosomal material, 
strongly suggest that animal and plant mitotic microtubule 
organizing centers possess one or more common antigenic 
components. 

D I S C U S S I O N  

A major difference between higher plant cells and most animal 
cells is the absence from the former of a conspicuous centro- 
some. In animal cells, this consists of a pair of centrioles with 
associated amorphous material, and it is this PCM that nu- 
cleates microtubules both during interphase and mitosis (15). 
The centrioles are not essential for spindle formation but they 
"probably help the proper distribution and organization of 
the 1oericentriolar cloud" (14). At a practical level, centrioles 

provide an obvious landmark for locating the PCM. 
The scleroderma serum, 5051, stains the poles of vertebrate 

cells lacking centrioles (1), and it is shown here that it also 
stains plant spindle poles. The presence of common antigenic 
sites supports Pickett-Heap's prediction (16) that plant and 
animal spindle poles should have similarities. 

The staining pattern throughout the cell cycle of onion cells 
shows close parallels to that seen in the earliest stages of 
mouse development, where PCM-like material is only detect- 
able with serum 5051 in dividing or recently divided cells. 

Preparation for mitosis is often indicated in plant cells by 
the formation of a pre-prophase band of microtubules (which 
predicts the plane of division). At this stage microtubules may 
be seen focused on the forming poles using anti-tubulin 
staining (22, 23). It is in such cells that staining of the poles 
with 5051 is first detected. The stained material then under- 
goes several re-arrangements during mitosis: resembling "po- 
lar caps" at prophase, flat plates at metaphase, leading to a 
more dispersed arrangement surrounding the half-spindle and 
the chromatin by late anaphase. Such a pattern is consistent 
with Mazia's idea (17) of a flexible centrosome in which the 
microtubule organizing centers may take different forms in- 
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FIGURE 3 Cytokinesis and early interphase in Allium cells. (a and b) A cell double-stained with (a) 5051 and (b) anti-tubulin 
showing the re-distribution of 5051 staining around the telophase nuclei--particularly the region facing the phragmoplast. (c and 
d) Daughter cells in early interphase--5051 staining (c) is present around the reforming nuclei (d). (e) Anti-tubulin staining of 
cells in early interphase demonstrates microtubules that radiate from the nucleus. In this cell the remnants of the phragmoplast 
are visible at one edge of the cell plate. (f) Anti-tubulin staining of cells later in interphase, with a mature cortical microtubule 
array, x 1,100. 

dependent of the centrioles; the pattern is also consistent with 
the idea that spindle and interphase microtubules are formed 
as the mutually exclusive activities of a common set of micro- 
tubule nucleating sites (13). 

During late telophase/early interphase, the 5051 staining 
surrounds the nucleus, concomitant with the appearance of 
short microtubules which radiate from the nuclear surface. 
This implies that the nucleating sites for the interphase array 
are located around the nucleus and not (as has been suggested 
by Gunning et al. [8] and Hardham et al. [9]) at the cell edges. 
It is of course possible that cortical microtubule nucleating 
sites are present in Allium but go unrecognized by the two 
sera used here. However, if the present observations concern- 
ing perinuclear microtubule nucleating sites are correct, then 
the subsequent development of mature, transverse cortical 
arrays from an initially radial array may be independent of 
cortical sites and depend instead upon the interaction of long 
and growing microtubules with each other and with the 
plasma membrane (15). This concept of microtubules winding 
around the cortex is supported by recent immunofluorescence 
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studies showing interphase microtubule arrays to be helices 
(14)--a conformation not easily constructed from microtu- 
bule organizing centers aligning the vertical cell edges. Other 
workers have also reported a perinuclear origin for interphase 
microtubules in endosperm (3) and lilly pollen meiocytes (4), 
although in these cases there is no typical higher plant cell 
wall and the later organization of microtubules around the 
cortex was not seen. 

The origin of the phragmoplast microtubules remains more 
problematical in that no immunostaining of the mid-zone 
was observed with 5051, despite the reported presence there 
of amorphous, electron-dense material presumed to be the 
nucleating sites (10). However, 5051 staining was present 
around the phragrnoplast-facing edges of the re-forming telo- 
phase nuclei, suggesting a perinuclear origin for these micro- 
tubules also. Such a model is consistent with the microtubule 
polarity data from Haemanthus phragmoplasts (5) which 
showed the plus ends of each set of microtubules directed 
away from the nuclei and towards the cell plate. In all systems 
examined so far, the plus ends are distal to the nucleating site. 



FIGURE 4 (a) PtK2 cells stained with serum 5051 show bright staining of the centrosome. (b) PtK2 cells at interphase, stained 
with WMH/JI01. (c and d) Mitotic PtK2 cell viewed from one spindle pole. (c) Immunofluorescence staining with WMH/JI.01. 
Arrow points to centrosome. {d) Chromosomes stained with propidium iodide WMH/JI.01 stains the centrosomes and also the 
kinetochores of animal cells but does not appear to recognize plant kinetochores (G. Creissen, personal communication), x 830. 
(e and f) Allium cells in (e) metaphase and (t') prometaphase stained with WMH/JI.01 demonstrate staining of the mitotic poles 
similar to that shown by 5051. x 1,100. 

The problem is, however, more complex as a perinuclear 
origin does not easily explain the centrifugal spread of  the 
phragmoplast to meet side walls often far from the nucleus 
and the original field of  the mitotic apparatus. 

Similarly, 5051 does not stain the preprophase band and 
from the present data its origins are not clear. A separate 
nucleating site for this array need not be invoked if it is 
formed, as suggested by Pickett-Heaps (20), by a contracting 
or "bunching together" of  the existing interphase microtu- 
bules before division. 
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