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Detecting chemical compounds using electronic noses is important in many gas sensing
related applications. A gas detection system is supposed to indicate a significant event,
such as the presence of new chemical compounds or a noteworthy change of
concentration levels. Existing gas detection methods typically rely on prior knowledge
of target analytes to prepare a dedicated, supervised learning model. However, in some
scenarios, such as emergency response, not all the analytes of concern are a priori
known and their presence are unlikely to be controlled. In this paper, we take a step
towards addressing this issue by proposing an ensemble learning based approach
(ELBA) that integrates several one-class classifiers and learns online. The proposed
approach is initialized by training several one-class models using clean air only. During
the sampling process, the initialized system detects the presence of chemicals, allowing
to learn another one-class model and update existing models with self-labelled data. We
validated the proposed approach with real-world experiments, in which a mobile robot
equipped with an e-nose was remotely controlled to interact with different chemical
analytes in an uncontrolled environment. We demonstrated that the ELBA algorithm not
only can detect gas exposures but also recognize baseline responses under a suspect
short-term sensor drift condition. Depending on the problem setups in practical
applications, the present work can be easily hybridized to integrate other supervised
learning models when the prior knowledge of target analytes is partially available.

Keywords: electronic nose, metal oxide semiconductor sensor, gas detection, gas sensing, open sampling systems,
ensemble learning, robotic olfaction

1 INTRODUCTION

Portable, low-cost electronic noses (e-noses) based on an array of partially selective MOX sensors are
widely used for gas sensing in many applications, including but not limited to landfill (Perera et al.,
2001; De Vito et al., 2011; Gębicki et al., 2014) and ship emission monitoring (Yuan et al., 2020),
chemical leakage detection in industrial sites (Capelli et al., 2014; Bourne et al., 2020), early fire
detection (Young et al., 2003; Scorsone et al., 2006; Joseph et al., 2015), exploration of interested areas
for emergency response or environmental monitoring (He et al., 2019; Anyfantis et al., 2021), etc
(Monroy and Gonzalez-Jimenez, 2019; Burgués and Marco, 2020a). In many real-world gas sensing
related applications, gas detection comes as a fundamental task that recognizes the presence of gases
by monitoring their concentration levels exceeding pre-defined thresholds. Furthermore, gas
detection can also indicate significant events, such as the presence of new chemical compounds
or a noteworthy change of concentration levels.
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Due to the need for rapid, continuous sampling at varying
locations in some application scenarios, gas detection is
performed with open sampling systems (OSS), in which gas
sensors are directly exposed to the uncontrolled environment.
For example, ground robots or drones equipped with e-noses
are increasingly used to carry out environmental monitoring
tasks with no control over the sensing conditions (Bennetts
et al., 2016; Fan et al., 2019b; Palacín et al., 2019). Some of the
real-world applications, e.g., emergency responses to
hazardous chemicals, are particularly complex and
demanding for open sampling systems as they might deal
with unknown analytes. In addition, although gas detection
can be a standalone use to provide information about the
presence of different analytes, it might be required to support
further analysis on the identities, quantities and locations of
detected chemicals. Consequently, gas detection should be
integrated with gas discrimination or/and gas distribution
mapping in an integrated pipeline instead of being a
standalone task. In such cases, gas detection typically is
followed by a subsequent gas discrimination task, which not
only determines the presence of chemicals but also extracts
recognizable measurements. Put another way, the gas

detection task concerned here is performed without a
known limit of detection (LOD) (Currie, 1995). Below we
explain that this problem set-up leads to a few challenges.

It is often the case that the data sets of gas sensor responses in
uncontrolled environments are unbalanced in terms of
concentration levels. Figure 1A is a visualization of data
points acquired by an open sampling system in 3D feature
space. The concentration distributions of both classes are
shown in Figure 1B. In the feature space plot, relatively high-
concentration measurements have good separability for further
gas identification or discrimination, but they are sparsely
sampled, whereas low-concentration measurements are densely
sampled. Such observation is also reflected in the concentration
distributions shown in Figure 1B. Measurements of lower
concentration levels are diluted with a large amount of clean
air, making their responses pattern close to that of baseline
responses. In the feature space, diluted measurements overlap
for different compounds, showing poor separability, and
therefore are less recognizable for gas discrimination than
high-concentration measurements.

In other words, real-world working environments pose a series
of challenges to gas detection using an e-nose. For the detection

FIGURE 1 | Feature space plot and the gas concentration histograms of measurements of propanol (green) and ethanol (red) collected in an uncontrolled
environment with three E2V manufactured metal oxide (MOX) gas sensors (MICS-2710, MICS-5121, MICS-5521). (A) Feature space plot. Each data point is an
instantaneous sensor response. (B)Concentration levels shown in the histogramswere obtained by a photoionization detector (PID). The nested figures are the zoomed-
in histograms at high concentrations. Both data of propanol and ethanol are clearly unbalanced with respect to the gas concentration.
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and extraction of recognizable measurements, the issue becomes
critical in the two following aspects:

• a gas exposure reflected by gas sensor responses is not trivial
to be captured as clearly segmented rising, steady-state and
recovery phases, making the conventional three-phase
sampling strategy (Trincavelli et al., 2009) inapplicable;

• gas detection solutions based on setting up thresholds for
sensor responses become inaccurate.

The former is due to uncontrolled environmental conditions,
and the latter is concerning as the possible presence of
compounds is not a priori known.

Regarding the first aspect, uncontrolled conditions in open
environments introduce gas concentration changes with fast
dynamics, which prevent the use of the three-phase sampling
strategy (Trincavelli et al., 2009) that is well established in
laboratory-based applications, e.g., in food & beverage
industry. In a three-phase sampling process, the sensors are
first exposed to a reference gas (e.g., clean air) to establish a

known baseline response level for the sensor array. Then, the
sensors interact with injected gas samples under largely
constant conditions over a prolonged time until a steady
response state is reached. The sampling process concludes
as the sensors recover to their baseline levels when the gas
sample is flushed away. Figure 2A shows an example of sensor
responses in a clear three-phase profile. In this case, the gas
sensors inside a chamber have been exposed to the gas sample
for a considerable amount of time. The closed chamber ensures
that humidity, temperature, airflow, and gas exposure patterns
are tightly controlled. Contrary to laboratory conditions, in
uncontrolled environments, e-noses are typically directly
exposed to dynamically changing conditions. These complex
ambient conditions, as well as the turbulence and advection in
gas dispersal or the movement of the sensing platform, cause
fluctuating gas concentration levels, and the sensor responses
show intermittent and transient behaviour instead of well-
defined three-phase patterns. Figure 2B is an example in
which the measurements are taken by sensors mounted on
a mobile robot exploring in a large room with an e-nose. An

FIGURE 2 | Responses patterns acquired with MOX sensor arrays with different sampling processes. (A) An example of the three-phase sampling process. The
numbers in the figure indicate the stages of the sensor responses, namely 0-baseline response, 1-rising edge, 2-steady state, 3-recovery edge. The shaded area
denotes the period of time during which the sensors are exposed to the chemical analyte, and each color represents the response of a single sensor. (B) Response
pattern acquired with an open sampling system. Both images are adapted from (Trincavelli et al., 2009) with the author’s permission. (C) An example of baseline
drift of a MOX sensor response of an open sampling system. The red segments represent the observed baseline offsets that correspond to the sensor response level
under clean air. The baseline offsets in the periods B1 and B2 are higher than the initial baseline offset in the period B0.
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obvious difference between Figures 2A,B is that, the sensor
responses in Figure 2B never reached a steady state.

Second, it is challenging to perform gas detection on diluted
measurements by thresholding. This is because if the gas identity
is unknown, it is difficult to accurately determine its
concentration levels from MOX sensor responses in absolute
gas concentration units, e.g., ppm. When sensors are calibrated
with several specific gases, the typical procedure is to define
corresponding thresholds based on the known dose-response
relationship to discriminate recognizable gas responses and
baseline responses. However, these thresholds are not
referential for unidentified measurements. Besides, the baseline
responses of MOX sensors might drift over time during the
sampling process. When sensor drift occurs, diluted
measurements present a different pattern that is not identical
with previously observed clean air, which creates an issue for the
essential signal processing procedure on the instantaneous sensor
responses, i.e. baseline correction. As suggested in (Hines et al.,
1999), differential baseline correction can compensate for noise
and inherently large or small signals of MOX gas sensor
responses. In this correction method, the mean value of the
baseline responses is extracted as the baseline offset. However,
in uncontrolled environments, this offset may not remain
constant due to the effects of temperature, humidity
(Rudnitskaya, 2018), and short-term sensor drift. Such short-
term drift is produced by the alteration of theMOX sensitive layer
caused by molecule adsorption or fluctuations of the temperature
and humidity during the gas exposition phase. The most effective
solution to compensate for short-term drift is to have a time-
consuming (tens of minutes) cleaning process after each gas
exposure (Ahmadou et al., 2017), which is equivalent to
repeated re-calibration. Since a continuous and rapid sampling
process is often desired for open sampling systems, an alternative
countermeasure is necessary. An example of short-term drift is
shown in Figure 2C. In this exemplary data set, a MOX sensor
was exposed to two chemical compounds separately in the period
E1, E2 and was exposed to clean air in the period B0, B1, B2. As is
shown, the initial baseline observed in the beginning (B0) was not
recovered in B1 or B2, so the actual baseline offset drifted. In
consequence, gas detection relying on the initial baseline offset is
prone to declare diluted measurements as gas exposure. For
applications where open sampling systems are deployed, the
short-term drift is arguably a more critical issue than the
long-term sensor drift due to contamination or ageing of the
sensors. Although both drift behaviours affect the response
patterns and increase the difficulty of accurate concentration
quantification and gas discrimination, long-term drift is easier to
be minimized by off-field procedures, such as periodic calibration
and sensor replacement.

Previous works on gas detection using an e-nose typically take
the strategy of modelling the MOX sensor responses to target
gases. The modelling focus can be on the dynamic analysis for
change point detection (Bordignon and Scagliarini, 2000;
Pashami et al., 2012; Alavi-Shoshtari et al., 2018) or on the
regression between the gas concentrations and sensor
responses (Khalaf et al., 2009; Lentka et al., 2015). The
applicability and quality of these supervised models rely on

the availability of representative training data, which
themselves must be free from sensor drift. (Perera et al.,
2006), (Liu et al., 2018) and (Martinelli et al., 2013) addressed
gas detection under sensor drift. An important common feature
of these works is that their models are updated with new, self-
labelled measurements so that the drifted sensor responses can be
included. The idea of having an adaptive learning model by
retraining with new data is also taken in the proposed approach.

To sum up, a critical challenge for gas detection in unknown
and uncontrolled environments is to overcome the lack of a
predefined, fixed determination threshold, and to identify which
measurements are recognizable for the subsequent discriminative
process in the meantime. In this paper, we propose an Ensemble
Learning-Based Approach (ELBA) for gas detection to address
this issue. This approach does not assume that the response
patterns of the target analytes are known. Instead, it is initialized
with a set of clean air measurements and then creates an ensemble
of models learning from clean air and gas exposure based on
different principles. The method has been validated with real-
world MRO data sets that are affected by short-term sensor drift.

2 METHODS

2.1 Overview of theModel Learning Process
The proposed ELBA is an ensemble learning system that
comprises several one-class models to detect gas exposure
events and learn the baseline response pattern. Using an
ensemble of diverse models aims to improve the detection of
recognizable measurements and, therefore, to benefit a
subsequent gas discrimination stage (Kuncheva, 2014).

Figure 3 depicts an overview of the proposed ELBA algorithm.
Briefly, two model learning phases take place successively to
create an ensemble composed of several base different models.
Phase 1 deals with three one-class models targeting on baseline
responses and phase 2 deals with a one-class model learning from
gas responses. The models learned in both phases are combined
as an ensemble for final prediction on unknown measurements.
The two-phase learning process of the ELBA algorithm does not
require training data of all possible target chemical analytes for
initialization, and short-term drift is particularly addressed by
performing online adaptive updates with self-labelled
measurements during model learning or after the ensemble is
complete.

The model learning process shown in Figure 3 is decomposed
into three steps, namely phase 1 learning, phase 2 learning and
ensemble creation. Below each step is described in order:

1. Phase 1 learning At the beginning of a gas sensing task,
phase 1 model learning is performed first. In this phase, three
one-class models are learned as descriptors of baseline responses,
which are a One-Class Gaussian model (OC-Gaussian), a
Mahalanobis-based One-Class model (OC-Mahalanobis), and
a Bout-Count Detection (BCD) model. As shown in
Figure 4A, the OC-Mahalanobis and the OC-Gaussian models
are trained with baseline responses A0. In practice, the initial
training data A0 can be prepared as follows: before the sensor
array is deployed into the target field, the sensor array is ensured
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to interact with clean air for a period of time TB. During TB, the
collected measurements are considered as the A0.

Once the OC-Gaussian and the OC-Mahalanobis model
estimate the distribution of baseline responses from A0, they
are used as predictive models to indicate the likelihoods of being
clean air for new measurements. Based on these indices, the
identities of the considered measurements are decided. The
determinations are made with corresponding likelihood
thresholds (one for the OC-Mahalanobis model and one for
the OC-Gaussian model) that are learned from likelihood
indices of A0.

In parallel, the bout-count detection model learns the baseline
response pattern based on extracting latent information from the
particular type of transient signals called bouts (Schmuker et al.,
2016), which are the rising edges in the first derivatives of the
sensor responses. The BCD model aims to catch the difference in
the transient signals between baseline responses and gas
responses. The BCD model aggregates the bout detection
results from several signal sources under clean air conditions,
which are assumed to be distinct from bouts induced by
approaching gas exposures. The input signals of the BCD
model are raw gas sensor responses, and the outputs of the
OC-Mahalanobis and the OC-Gaussian models. These signals
acquired in TB are processed to decode underlying bouts, whose
amplitudes are considered as a representative distribution of
bouts in clean air conditions.

Before the phase 2 learning is conducted, new measurements
are acquired as the gas sensing task is ongoing. The
measurements acquired after phase 1 learning and before
phase 2 learning are denoted as X1. Unknown measurements
X1 will be processed by the previously learned three models. As a
result, the recognized baseline responsesA1 are used to update the
baseline models, and the detection of gas responses C1 will induce
phase 2 learning.

2. Phase 2 learning When the e-nose is exposed to an analyte
for the first time, the correspondingmeasurements are detected as
outliers by the three models learned in phase 1. Consequently,
phase 2 model learning is triggered once an amount of gas
responses are acquired. As shown in Figure 4B, the
measurements C1, which are detected and labelled as gas
responses, are used to train the One-Class Nearest Neighbour
(OC-NN) model.

3. Ensemble creation Once both phase 1 and phase 2 learning
are complete, the one-class models are fused to form the ensemble
learning-based gas detection system. Specifically, the learned
models are combined using the majority voting scheme, while
the OC-NN model has one vote veto for determining baseline
responses.

In the rest of gas sensing task, the built model ensemble
makes predictions on the new test measurements, recognizing
them as gas responses or baseline responses (i.e., performing
gas detection). The labeled measurements can be used to
retain the models online and to adapt to the drifted
baseline offset.

2.2 The Base One-Class Classifiers
This section describes each base one-class model in detail, namely
the One-Class Gaussian, One-Class Mahalanobis, and Bout-
Detection models learned in phase 1 and the One-Class
Nearest Neighbours learned in phase 2.

2.2.1 One-Class Gaussian Model
The One-Class Gaussian model and the One-Class Mahalanobis
model compensate each other in this ensemble learning-based
approach. The considered one-class Gaussian treats each sensor
response as independent variables, whereas the OC-Mahalanobis
model assumes that the responses of each sensor are correlated. A
typical one-class Gaussian classifier is a density-based model that

FIGURE 3 | Schematic diagram of the ELBA algorithm. More detailed illustrations for the model learning phase 1 and 2 are in shown Figures 4A,B, respectively.
(For interpretation of the references to color in this figure legend, please refer to the colour version of this article.)
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assumes the data of the target class form a multivariate Gaussian
distribution (Tax, 2002).

For a given n − dimensional measurement r as an input, its
probability of belonging to the target class can be estimated with
the probability density function (PDF) of a unimodal Gaussian
distribution. Such a multivariate Gaussian model assumes that
the cross-sensitivity of the MOX sensors is reflected by the
covariance matrix of the variables. Since this assumption is
already considered in the OC-Mahalanobis model with more
robust covariance estimation, we propose a dedicated model for
situations where this assumption does not hold. The baseline
responses are modeled as a linear combination of several equally

weighted single Gaussians (Tax, 2002), where the parameters of
each Gaussian are learned from the initial sensor responses
individually. This one-class Gaussian model yields the
likelihood indicator of a test measurement, sGM, as follows:

sGM ri( ) � 1
n
∑n
j�1

1 − 1
n
∫r
j

0

P r( )dr⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (1a)

P rj( ) � 1���������
2π α · σj( )2

√ e
− rj−μj( )2
2 α·σj( )2 (1b)

A

B

FIGURE 4 | Phase 1 and phase 2model learning of the ELBA algorithm. Please refer to phase 1 learning, phase 2 learning and Ensemble creation in Section 2.1 for
corresponding details of this diagram. (A) In the phase 1model learning, the e-nose is exposed to clean air to train the OC-Gaussian and the OC-Mahalanobis model, and
the BCDmodel. Before phase 2 learning, these three models make predictions on newmeasurements with labels indicating them as baseline or gas responses. The self-
labelled measurements are also used to update the models (when baseline responses are identified) or trigger phase 2 learning (when gas responses are detected).
(B) In the phase 2 model learning, a One-Class Nearest Neighbour (OC-NN) model is trained from self-labeled non-air measurements with the models previously learned
in phase 1. The models learned in phase 1 and phase 2 are combined to form the one-class ensemble for gas detection. The models can be future updated online with
new self-labelled measurements.
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where μj is the mean of jth sensor responses of all measurements
in A, and P(rj) is the PDF of the distribution estimated by the jth
sensor response of the baseline training samples. α is a free
parameter that scales the estimated variance of the each sensor
responses. α · σj determines the boundaries of the Gaussian model
for the jth sensor.

The output of the OC-Gaussian modle, sGM, is further
processed by the BCD model as one of the input signals
(along with the output of the OC-Mahalanobi model and raw
sensor responses). The prediction by the OC-Gaussian model
depends on a predefined decision function with a learned
threshold, such that the test measurement is clean air if sGM <
= λGM. Given the learned OC-Gaussian model and the set of
baseline responses A, we let

λGM � max
ri∈A

sGM ri( ){ } + kGM · σA (2)

where kGM is a free parameter empirically set to 3.

2.2.2 The Mahalanobi Distance-Based One-Class
Model
The Mahalanobis-based one-class model (OC-Mahalanobis) is
selected to learn the pattern of baseline responses, taking the
correlation between the sensors (cross-sensitivity) into
consideration. The OC-Mahalanobis is a distance criterion
approach that distinguishes a measurement from baseline
responses based on their similarity expressed by the
Mahalanobis distance. The Mahalanobis distance is a distance
metric between a data point and a distribution, which has been
considered as an indicator of class separability between chemical
analytes, for example, in (Bennetts et al., 2014). Here we use dMD

as a metric to quantify the degree of similarity between an
observed measurement and the baseline response distribution.
The output of the model dMD will be used an index to reflect the
likelihood of being air for the input, i.e., an instantaneous
measurement.

The calculation of the Mahalanobis distance requires to
estimate the covariance of the underlying distribution.
However, using the covariance maximum likelihood estimate
could be sensitive to possible outliers in the data set. To improve
the robustness of Mahalanobis distance, the Minimum
Covariance Determinant estimator (MCD) has been applied as
a robust estimator of covariance to make the estimation resistant
to outliers (Rousseeuw, 1984), and therefore the associatedMCD-
based Mahalanobis distances can accurately reflect the
separability against the inliers.

Given a set of representative measurements of baseline
responses, A, the robust MCD-based Mahalanobis distance
between a measurement r and A is given by

dMD r,A( ) �
������������������������
ri − μ̂MCD( )TΣ̂MCD ri − μ̂MCD( )√

(3)
where μ̂MCD is the MCD estimate of the mean of A, and Σ̂MCD is
the MCD covariance estimate, both of which rely on an off-the-
shelf Scikit-Learn implementation (Pedregosa et al., 2011).

Similar to the previous OC-Gaussian model, the output of the
OC-Mahalanobis model, dMD, is fed into the Bout-Count

Detection (BCD) model. The corresponding pipeline structure
will be described in Section 2.2.3. Besides, the obtained dMD is
also used to derive a measure for being an outlier with the
Mahalanobis-based one-class classifier.

This one-class predictive model requires to set a threshold λMD

to represent the decision boundary of the baseline responses. The
decision function of the OC-Mahalanobis model considers the
test measurement as clean air if its dMD is greater than this
threshold, i.e., dMD < λMD (Nader et al., 2014). The value of λMD is
determined by Eq. 4, as follows:

λMD � max
ri∈A

dMD ri,A( ){ } + kMD · σA (4)

where σB is the standard deviation of the pairwise Mahalanobis
distances within the group of baseline responses ({dMD(ri, A)|ri ∈
A}). The purpose of adding the term kMD · σB is to extend the
boundary of the baseline responses distribution to account for
possible sensor drift. The parameter kMD scales with the variance
of the distribution of baseline responses. kMD is a free parameter
that is set empirically in the range from 3 to 5. The advantage of
using a one-class model is that it only requires exposing the
sensor to clean air for a predefined period.

2.2.3 Bout-Count Detection Model
Significant changes caused by gas exposures are reflected in the
transient signals of sensor responses. Different types of features
based on transient signals have been proposed to extract
relevant information regarding an analyte (Gutierrez-Osuna
et al., 1999; Carmel et al., 2003; Muezzinoglu et al., 2009).
Recently, it has been found that the number and frequency
of a transient feature called bout are highly associated with the
distance towards a gas source (Schmuker et al., 2016; Burgués
and Marco, 2020b). The correlation between bouts and the
distance to a gas source implies that bouts have the potential to
indicate gas detection events. In the previous related works that
utilize bouts to indicate gas source distances, bout is referred to
as a transient feature defined as the rising edges in the
considered sensor response or the first derivatives of the
sensor response. Compared the instantaneous sensor
responses processed by the OC-Gaussian and the OC-
Mahalanobis models, the derivative-based bout has the
advantage of making small changes more noticeable. In
addition, it has a potential in detecting peaks in sensor
response that are superimposed on and obscured by stronger
but broader background (O’Haver, 1997). The latter property
might be important for gas detection with mixtures, although
target analytes in the form of mixture are not in the scope of
this work.

In the proposed Bout-Count Detection (BCD) model, we
further integrate the ensemble learning technique stacking to
increase the diversity of the signal sources from which bouts are
extracted: in addition to the raw sensor responses, the outputs of
the OC-Gaussian and the OC-Mahalanobis models (i.e., sGM and
dMD, respectively), are considered as stacked signal sources for
bout count detection. This means, both bouts from the sensor
responses but also from the stacked signals are detected and
analyzed to determine gas detection events. We assume that use
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stacking can enhance model diversity because the signals sGM and
dMD are calculated by different predictive models, and both of
them are supposed to be more comprehensive than a single raw
sensor response.

Figure 5A depicts the learning pipeline of the Bout-Count
Detection Model. As is shown, the structure of the BCD model is
stacked, where the outputs of the OC-Gaussian and the OC-
Mahalanobis model are used as input features to respective bout
detectors. According to previous studies, a stacked ensemble
tends to provide improved performance than using the
considered models individually or using the single best model
(Wolpert, 1992; Smyth and Wolpert, 1999).

The final prediction of the BCDmodel is made from a voted
ensemble of the base bout detection models. The bout
extraction algorithm used in each base bout detection
model is adopted from (Schmuker et al., 2016). As
illustrated in Figure 5B, the detection of the bouts consists
of the following consequent steps:

1) The derivative xs′ of the smoothed signal xs is computed. First,
high-frequency noise in the raw signal x is smoothed using
convolution with a Gaussian kernel (low-pass filtering).

2) Bouts of rising amplitude are searched in the derivative of
the smoothed signal. A bout is found when x″

s > 0, and it
terminates as x″

s turns back to 0. The bout amplitude is
defined as the difference between the values of x′

s at the
beginning and the end of the respective bout. Here, the use
of the second derivative is similar to the discrete Laplace

operator for edge detection in image analysis (Mlsna and
Rodríguez, 2009). Using x″

s is supposed to be more
sensitive to significant small changes as well as noise.
Since the signal has been smoothed in the previous step,
the sensitivity to noise should not be an issue. Otherwise,
using the first derivative directly is an option for this step
(Burgués and Marco, 2020b).

3) The bouts are further processed to exclude those of low
amplitude. According to (Schmuker et al., 2016) and
(Burgués and Marco, 2020b), the bouts of low amplitude
are considered to be produced by noise and therefore are
filtered out by thresholding. For simplicity, the thresholding is
also adopted to the BCD model for the final bout declaration.
As a trade-off between detection sensitivity and false-positive
reduction, the three-sigma criterion is utilized, which has been
empirically demonstrated to be sufficient for extracting
informative bouts in (Schmuker et al., 2016). Relying on
the assumption that the distribution of bout amplitudes
detected from baseline responses can be approximated by a
Gaussian distribution, a fixed amplitude threshold can be set
with the three-sigma rule as follows:

θBD � μBD + 3 · σBD (5)
where μBD and σBD are the sampled mean and standard deviation
of the bout amplitude distribution whose bouts are extracted from
baseline responses. These bouts are supposed to have smaller
amplitudes than bouts extracted from gas responses, and such a
difference in amplitude is the key to identify baseline responses.

FIGURE 5 | Diagram of the Bout-Count Detection (BCD) model and the algorithm used for each base bout detection model. (A) Pipeline of the BCD model. (B)
Diagram of the bout detection algorithm used in the BCD model. A raw signal will be filtered to remove high-frequency noise first. From the filtered signal xs, bout
segments that fit the definition x″s > 0 in are be identified, which are indicated by the red curves. The bouts passing a three-sigma threshold are further selected as they are
considered to be useful for gas detection. The amplitudes of the detected and filtered bouts are for illustration purpose.
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2.2.4 One-Class Nearest Neighbour Classifier
The One-Class Nearest Neighbour classifier (OC-NN) learned on
gas responses contributes to the ensemble model. One of the key
factors attributing to the effectiveness of ensemble learning is
ensemble diversity (Zhou, 2012; Löfström, 2015). Diversity of
models can be achieved by combining models of different
working principles or/and allowing the models to learn from
different training data (Zhou, 2012). Both strategies are utilized
here. The OC-NN model is trained with self-labelled gas responses,
which differs from the OC-Mahalanobis and the OC-Gaussian
models that are learned from baseline responses. In addition, the
basic principle of the OC-NN model is based on a different
assumption from that of the OC-Mahalanobis and the OC-
Gaussian models. The OC-NN model assumes that
measurements within the target class are closer to each other in
the feature space than to outliers. The training of the OC-NNmodel
takes place in phase 2 model learning, which requires the one-class
models learned in phase 1 recognize gas responses as the training
data. Once the OC-Mahalanobis, the OC-Gaussian, and the BCD
models are constructed, phase 1 model learning is complete. Gas
detection can be performed to recognize the measurements that
significantly deviate from clean air using the ensemble of these three
one-class classifiers. The detected measurements, which can be
assumed to be caused by exposure to chemical analytes, trigger
the subsequent phase 2 model learning. In phase 2, a One-Class
Nearest Neighbour (OC-NN) model of gas responses is learned
during exposure of the e-nose. The OC-NN used in this work is
based on the two-layer-neighbourhood one-class model proposed in
(Khan and Ahmad, 2018).

The measurements detected by the models of the OC-
Mahalanobis and the OC-Gaussian are self-labelled as gas
responses, as an opposite class of clean air. These
measurements are used as the target class to train the OC-NN
model. We assume that the inter-class distances between gas
responses of different analytes are comparatively smaller than the
inter-class distance between gas responses (of an analyte) and
baseline responses. According to our previous study (Fan et al.,
2019a), this assumption holds, which is the basis of the OC-NN
model to perform gas detection onmultiple analytes as long as the
e-nose is sensitive to them.

The OC-NN model used in the ELBA algorithm is coupled
with a binary probabilistic classifier, which allows to produce a
prediction score over the class of clean air, given a test
measurement. The prediction scores are estimated using Platt
scaling (Niculescu-Mizil and Caruana, 2005), which is
implemented by fitting a logistic regression with the initial
baseline responses A and self-labelled gas responses. The input
of ad hoc logistic regression is a distance-based feature extracted
with the aforementioned two-layer-neighbourhood structure,
which is expected to better characterize the boundary between
the two classes.

The learning procedure of the OC-NN model is as follows:

1) The non-air measurements detected by the OC-Gaussian and
the OC-Mahaalanobis models are taken as the representative

data of the gas responses, which is also the target class of the
OC-NN model.

2) The OC-NN model is used to transform the instantaneous
sensor response of a test measurement into a feature dNN
using Algorithm 1. The value of dNN reflects how much a
test measurement deviates from the class of gas responses.
The higher value dNN is, the greater chance that the
corresponding test measurement is different from
known gas responses.

3) Measurements of both the target class X and the initial
baseline A are processed by Algorithm 1, resulting in a
training set of two classes. A binary logistic regressor LR is
trained with this training set, taking dNN of a test
measurement as input and outputting a prediction score
sNN. The value of sNN reflects how much a test
measurement deviates from the class of gas responses.
The higher value sNN is, the greater chance that the
corresponding test measurement is distant from known
gas responses.

4) In order to obtain a decision boundary, the sNN scores of
baseline responses in A are calculated to find their mean μNN
and standard deviation σNN. The decision threshold of OC-
NN is defined as λNN = μNN − 3σNN. Test measurements are
identified as a baseline response if sNN > λNN.

Algorithm 1.

Once the OC-NN model is learned, the next step is to create
the model ensemble for gas detection. For a test measurement, its
label (gas response or baseline response) is determined on the
following principles:

• The majority vote of the BCD, the OC-Mahalanobis, the
OC-Gaussian, and the OC-NN model first determines if a
test measurement is a gas response or not.

• The prediction of the OC-NN model is assigned to have
“one vote veto”: a test measurement will not be recognized
as a gas response if sNN > λNN.

The reason for allowing the OC-NN to have a “one vote
veto” is to reduce false alarm (i.e. identifying clean air
measurements as gas responses) (Khan and Ahmad, 2018).
suggest that the original two-layer-neighbourhood model
adopted by OC-NN might accept more non-targets as
members of the target class. As a possible consequence, the
OC-NN could have a tendency to be conservative in declaring
gas detection (given that its target class is gas responses). This
means, when the OC-NN detect gas responses, it is not likely to
a false alarm.
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2.3 Measures of Diversity in Ensemble
Learning
The ELBA algorithm consists of several diverse models. As is
known, diversity among the base models is deemed to be an
important factor in ensemble construction (Zenobi and
Cunningham, 2001; Kuncheva and Whitaker, 2003; Tang
et al., 2006). In the proposed ensemble, the diversity among
the individual models is generated by using different working
principles or/and training data. For evaluation purpose, we will
use several diversity measures to quantify the difference in
diversity between using an ensemble and using the base
models individually.

In the scope of the proposed approach, diversity is referred to
as the extent to which the outputs of the models agree on gas
detection given the same sensor responses. The degree of
agreement among prediction results can be quantified with
diversity measures. Existing methods are categorized into
pairwise and non-pairwise diversity measures (Kuncheva and
Whitaker, 2003). The pairwise measures quantify diversity
between two models based on their predictions. To quantify
the overall diversity for an ensemble requires calculating the
average of the pairwise diversity for all combinations of two
distinct models. Non-pairwise measures allow an assessment of
the overall diversity of more than two models directly.

In this paper, three non-pairwise measures are adopted: Fleiss’
Kappa, entropy measure, and Kohavi-Wolpert variance. In the
calculation of these diversity measures, the binary outputs (clean
air or gas response) of the predictive models are considered.

2.3.1 Kohavi-Wolpert Variance
(Kohavi and Wolpert, 1996) introduced the following expression
to quantify the variability of the predicted class label given input
data ri using a model.

var ri( ) � 1
2

1 − P clean air | ri( )2 + P gas response | ri( )2( )[ ]
(6)

By averaging over the variance of each individual model, the
Kohavi-Wolpert variance that reflects the overall diversity is
defined as:

KW � 1
nM2

∑n
i�1

∏K
j�1

m ri, j( ) (7)

where M is the number of considered models and K denotes the
number of possible labels. The term m(ri, j) denotes the number
of models that assign the measurement ri with label j. In this way,
m(ri, clean air/gas response)/M approximates the probability
P(gas response|ri) or P(clean air|ri).

Identical models will result in KW = 0, and higher Kohavi-
Wolpert variance indicates an increased degree of diversity.

2.3.2 Entropy Measure
The use of entropy to measure ensemble diversity was first
introduced by Cunningham and Carney (Cunningham and
Carney, 2000). In this work, we take Kuncheva and Whitaker’s

definition in (Kuncheva and Whitaker, 2003), and adopt it as
follows

H � 1
n
∑n
i�1

1
M − M + 1( )/2min m ri, gas response( ), m ri, clean air( ){ }

(8)
where n, M and m(ri, j) share the same denotations as in Eq. 7.

The entropy measure H is between 0 and 1. H = 0 is observed
when the considered models give identical predictions, while H =
1 indicates that the models are perfectly diverse.

2.3.3 Fleiss’ Kappa
Fleiss’s Kappa KF is also referred to as the interrater agreement. It
is a statistical measure of the reliability of agreement between a
number of raters (Fleiss et al., 1981). In the context of this paper, a
rater would be a predictive model that labels input data as clean
air or gas responses. Intuitively, KF calculates the degree of
agreement between models in prediction occurring by chance.
It is defined as follows:

KF � Po − Pe

1 − Pe
(9)

where Po gives the degree of agreement among models that is
actually observed and Pe corresponds to the degree of
agreement that is attainable by chance (Randolph, 2005).
Again, the notations are the same as in Eqs. 7 and 8: n
denotes the total number of measurements, M denotes the
number of considered models, K denotes the number of
possible labels (in this case, K = 2), and m(ri, j) denotes the
number of models that assign the measurement ri with label j.
Po is given by

Po � 1
nM M − 1( ) ∑n

i�1
∑K
j�1

m ri, j( )2 − nM⎛⎝ ⎞⎠ (10)

and Pe is given by

Pe � ∑K
j�1

1
nM

∑n
i�1

m ri, j( )⎛⎝ ⎞⎠2

(11)

KF ∈ (0, 1] between 0 and 1 indicate that the degree of
agreement is achieved above chance, and KF = 0 indicates a
level of agreement that could be expected by chance. KF ∈ (0, −1]
indicates that there is no agreement among the models (other
than what would be expected by chance). The smaller the KF is,
the more diverse the models are.

3 DATA SET AND EXPERIMENTAL SET-UP

In order to evaluate the proposed algorithmic set-up of the gas
sensing system, it was implemented on a search and rescue
robot. The robot has been tested in a basement of a public
building (Figure 6A). In Section 4, we present the results of
two experiment trials conducted in this basement
environment.
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3.1 Robotic Platform
The robotic platform used is a Taurob tracker (Biegl et al., 2014)
(shown in Figure 6B), which is built to help CBRN (Chemical,
Biological, Radiological and Nuclear) first responders, EOD
(explosive ordnance disposal) teams, fire-fighters and search &
rescue teams to gain first-hand information for emergency
response. The Taurob tracker can be equipped with a novel
3D radar camera, a 3D laser scanning sensor and a thermal
camera that allow for robust mapping and navigation under low
visibility conditions (Fritsche et al., 2018). The unknown and
uncontrolled sensing conditions assumed in this work are
possibly shared with the target environments of Taurob
robots. However, the capability of the robot platform
operating in harsh environments is out of the scope of
this paper.

3.2 Electronic Noses
As shown in Figure 6B, the robotic platform was equipped with
two different gas sensor units, namely a commercial MOX sensor
array (ORU nose) and a prototype FireNose composed of several
gas sensors developed by (Wei et al., 2016).

The FireNose incorporates three MOX sensors coated with tin
oxide (SnO2), tungsten oxide (WO3) and nickel oxide (NiO),
respectively. During the sampling process, the ambient air is
drawn into the sensor chamber through a pipe by a micro air
pump. An airflow rate sensor is employed to monitor the
volumetric flow rate, which is used as a reference measure to
control the pump speed. The measurements are filtered by a
physical filter to eliminate smoke particles and further moved
into a measurement chamber to interact with the MOX gas
sensors. The raw sensor responses are generated at 100 Hz,

FIGURE 6 | The experimental setup. (A) The basement environment of the field experiment reported in this paper. (B) A Taurob tracker is used as the platform to
carry the gas sensing payload, namely the FireNose and ORU nose. (C) and (D) Schematic drawings of the 2-source trials and the 3-source trial, respectively. (E) A
simple gas source set-up used in the early trials of the experiment. (F) Standardized gas source used in later trials, which that consists of a fan and an air pump bubbler
covered by a 3D printed case.
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and they are pre-processed by an on-board micro controller in
real-time with digital filters, peak detection, and fast Fourier
transform. After these signal processing procedures, the
responses are sampled at 2 Hz as the sensor output.

The ORU nose includes six commercial MOX sensors fabricated
by SGX Sensortech, namely, MICS-2614, MICS-5524, MICS-5914,
MICS-2714 and two MICS-4514. According to the manufacturer,
they are highly sensitive to volatile organic compounds. Contrary to
FireNose, the sensors are not housed inside a chamber. Instead, they
are directly exposed to the environment in what is commonly
referred to as an open sampling configuration. The responses are
sampled at 2 Hz. The ELBA approach uses responses of the MICS-
2614 (referred to as s 1), the MICS-5914 (referred to as s 3) and one
of the MICS-4514 (referred to as s 6) as the input. The selection of
the sensors is as same as the setup used in (Xing et al., 2019). This
setup was confirmed to be sensitive to ethanol, propanol and acetone
and sufficient to support an unsupervised gas discrimination task,
but it is not optimized for a gas detection purpose.

3.3 Experimental Set-Up
Two experiment trials of different set-ups were conducted to
validate the presented approach (see Table 1). The experimental
environment is a basement with a narrow corridor connecting
two rooms, which is a typical open environment. The large space
allows gas exposures to be separated temporally and spatially, so
that gases can distribute with minimal interference with each
other. Alternative setup that allows gases from different sources to
evolve into a mixture, for example studied in (Maho et al., 2021),
will be considered in future work.

We made no explicit effort to regulate the environmental
conditions, such as temperature, airflow, and pressure. Since the
regulations did not allow the release of toxic gases into the
environment, we use three kinds of commercially available
liquids as analytes: ethanol (95% pure), 1-propanol (99.5% pure)
and acetone (100% pure). In a previous study, FireNose showed
sensitivity to these chemical compounds (Xing et al., 2017).

In the Exp. 2-source trial, two sources were placed at corners of
two basement rooms, marked on Figure 6C as “A” (first gas source)
and “B” (second gas source). Each gas source comprised a bubbler
system, in which propanol and ethanol VOCs (in liquid form) were
bubbled to facilitate their evaporation into the environment. A small
pump was used to generate a constant air supply at each source (see
Figure 6E for example). In the later trials, a standardized gas releasing
device was used (Figure 6F). Before the start of each experimental
trial, the sensor arrays were allowed to pre-heat for a period between
10 and 30min, which is a standard warm-up time for MOX sensors.

A trial began with the robot transported to the basement via a lift,
which was treated as a clean area free from any chemical analytes
released in the experiments. The robot stayed in this area to obtain
baseline readings at the beginning of the experiment and after each
gas exposure. A period of 5min, i.e., TB (Section 2), was allowed for
the gas sensors to be exposed to clean air and therefore to generate a
amount of stable baseline readings. The robot then travelled towards
the first gas source “A” (path ), where the robot stayed stationary for
2–3min (at approx. 1 m distance) to sample measurements before
travelling back to the lift area to possibly collect further baseline
readings (path ). Then the robot travelled to the second gas source
“B” for the detection of another type of gas (path ). Again, the robot
remained stationary for 2–3min before returning to the ‘clean area’
(path ). The Exp. 3-source trial was set with three sources, namely two
ethanol sources and an acetone source, respectively. In this trial, the
robot approached the first and the second ethanol source one at a
time and thenmoved on to the acetone source marked on Figure 6D
as “C” following path. Similar to the 2-source trials, the robot
returned to the clean air dominated area between each exposure.

4 RESULTS

The ELBA algorithm is evaluated with in-field experiments
described in the last section. As a negative effects of
uncontrolled environmental conditions, the three-phase
sampling strategy was inapplicable. Also, the baseline does not
reach its initial value after recovery. As mentioned in Section 1,
these issues pose challenges for a gas detection task.

The rest of this section presents a twofold evaluation of the one-
class models with real-world experimental trials. First, the bout-
detection basedmodel is assessed in terms of its detection behaviours
and ensemble diversity. Second, we perform a similar evaluation for
the one-class models using direct instantaneous measurements. In
both evaluations, we have observed differences among the one-class
models in their reactions to sensor response changes and
improvements in ensemble diversity from using the models
individually to using them as an ensemble. The observations
tentatively support the proposed ensemble learning scheme and
the choice of the one-class models.

4.1 Evaluation of the Bout Detection-Based
Model
The BCD model detects changes related to gas exposures with
an analysis of bout-based features. Figures 7, 8 show the

TABLE 1 | Summary of the set-ups of the field experiments for the ELBA algorithm evaluation.

Experimental Trial Gas Sources Distance
Between the Sources

Time Interval Between
exposuresaSource 1 Source 2

Exp. 2-source Ethanol propanol 14.24 m 7 min 44 s
Exp. 3-source ethanol (1a)

ethanol (1b){ Acetone 1a Vs. 1b : 1.98m
1a Vs. 2: 6.91m
1bVs. 2: 8.36m

⎧⎪⎨⎪⎩
1a to 1b : 17min 45s
1b to 2: 5min 40s{

aA time interval between exposures is counted on the condition that the robot is at least 3 m away from the closest gas source.
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overall bout detection results in Exp. 3-source (the details of
the data set can be found in Section 3). Figure 7 corresponds
to the data set collected with FireNose and Figure 7
corresponds to the data set collected with ORU nose. From
the time series of the sensor responses in both figures, one can
observe that the e-nose using ELBA was exposed to gas three
times, when the robot paused in front of two ethanol and one
acetone sources, respectively. The overall output of the BCD
model, i.e. the indications of gas detection events, comes from
an ensemble prediction based on five individual bout detection
results from bGM, bMD, bMOX1, bMOX2 and bMOX3. Blue impulses
in the time series of the sensor responses visualize the time
points that indicates the detected bouts.

From the overall bout detection results in Figures 7, 8, we can
observe that these impulses approximately overlap with the
duration of the three gas exposures in both data sets. Note
that merely using bout detection of one single source might

not be sufficient to catch all significant changes of the sensor
responses. For example, from Figure 7 one can notice that, during
the third gas exposure, the bouts detected from the sensor signal
MOX1 are of small amplitudes compared with the bouts from the
same source detected in the first and second gas exposure. While
the models based on bMOX2, bMOX3, bMD or bGM exhibit significant
bouts that exceed corresponding thresholds, the model based on
bMOX1 does not contribute to the detection of the third gas
exposure. The differences in the bout detection behaviours
reflect diversity among the models using different signals. In
the BCD model, this diversity is exploited by using a voting
ensemble (previously illustrated in Figure 5A). Figure 9 provides
a close look at how the voting ensemble makes the final prediction
based on the bout analysis of each signal source. In the shown
period from 487 to 500 s, there are two separate segments of blue
impulses, which correspond to the overall bout detection results
determined by the BCD model. In the first segment spotted, the

FIGURE 7 | Bout analysis and the prediction result of the Bout-Count Detection (BCD) model using FireNose on the Exp. 3-source trial. The overall bout detection
made by the BCDmodel is visualized in the top subfigure, where time steps within the duration of a found bout aremarkedwith red vertical lines. The detected and filtered
bouts in each signal are highlighted in red in the rest subfigures. A zoomed-in snapshot of this prediction result, shown in Figure 9, will illustrates the association between
the overall bout detection and the individual bout detection on each signal.
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signal bGM, bMOX1, and bMOX2 (3 out of 5 votes) contributed to the
overall bout detection. In the second segment that occurred a few
seconds later, it is the signal bGM, bMD, and bMOX3 that contribute
the wining votes instead.

The performance of the BCDmodel on the Exp. 2-source trial,
e.g., as shown in Figure 10, is similar to what we have observed
from the 3-source trial. In this shown case, approximately at t =
600 s, there was an signal increase in s 1, which is highly likely to
correspond to a potential gas exposure. This change was caught
by bGM, bMD and bs1 but not bs2 or bs3, demonstrating the benefit
of using an ensemble for the detection.

The diversity among the base models is of interest since it is a
key factor of ensemble learning-based approaches in general. In
this work, diversity is quantified with the measures described in
Section 2.3, namely Fleiss’ Kappa, entropy measure and Kohavi-
Wolpert variance. We thus set up three base model combinations
and calculated the diversity measures for the three selected
combinations. The first combination includes models that
detect bouts from raw sensor signals, or in other words, based

on bMOX1, bMOX2, and bMOX3. The second combination is
extended from the first combination with another model based
on bMD (i.e. bouts detected from the output of the OC-
Mahalanobis model dMD). The third combination includes
models in the second combination and another model based
on bGM (i.e., bouts detected from the output of the OC-Gaussian
model sGM). In summary, the three combinations are as follows:

• the models are based on bMOX1, bMOX2, and bMOX3;
• the models are based on bMOX1, bMOX2, bMOX3 and bMD;
• the models are based on bMOX1, bMOX2, bMOX3, bMD and bGM.

The diversity measures of the three selected base model
combinations are reported in Figures 11A,C,E for the Exp. 3-
source trial using FireNose and ORU nose. With all three
considered diversity measures, one can observe that the
models in the third combination have smaller Fleiss’s Kappa
KF, larger entropy measure H and larger Kohavi-Wolpert
variance KW compared to the first and the second

FIGURE 8 | Bout analysis and the prediction result of the Bout-Count Detection (BCD) model using ORU nose on the Exp. 3-source trial. The overall bout detection
made by the BCDmodel is visualized in the top subfigure, where time steps within the duration of a found bout aremarkedwith red vertical lines. The detected and filtered
bouts in each signal are highlighted in red in the rest subfigures.
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combinations is gained by using an ensemble of individual base
models. The observations on the comparisons of KF, H and KW
indicate a higher degree of diversity. Given this result, we
demonstrate that stacking the signals of dMD and sGM and
integrating them with the raw sensor responses into the
ensemble model brings an improvement to the overall diversity.

4.2 Evaluation of the Individual One-Class
Models
In the last subsection, we demonstrated that the Bout-Count
Detection (BCD) model allows the detection of the presence of
target analytes when there are significant changes in the raw
sensor responses or in the output signals of the OC-Gaussian and

the OC-Mahalanobis models. For the overall performance of the
ensemble model, it is important to reliably distinguish between
gas responses and baseline responses in case the sensor responses
do not generate significant bouts. This situation might occur
when sensor responses are at a steady-state. Although open
sampling systems are likely to deal with fluctuating
concentration levels, steady-state signals are still possible when
gas sensors are exposed to concentration levels that are higher
than the upper limits of the sensor sensing ranges. In this
condition, sensor responses are only weakly dependent on gas
concentrations and therefore exhibit a saturation behaviour in the
form of steady-state signals (Satterthwaite et al., 2019). In
practice, we also spotted that significant bouts did not appear
even though sensor responses were not at a steady-state. For

FIGURE 9 | Bout analysis and prediction result of the period from 487 to 500 s of the time series shown in Figure 7. The ovals in the top subplot indicate the overall
bout detection results, while the ovals in the other subplots correspond to the detected bouts contributed from each signal source.

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 86383815

Fan et al. Ensemble Learning-Based Gas Detection

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


example, as shown in zoomed-in Figures 9, 14, between two
detected overall bouts, there are segments of responses whose
amplitude values are not significantly lower, which means
these sensor responses probably correspond to gas
exposures that should not be identified as clean air. In
order to compensate for the BCD model, the OC-Gaussian,
the OC-Mahalanobis models, trained on baseline responses,
and the OC-NN model trained on the self-labelled gas
responses, are introduced to process instantaneous
measurements without relying on bout detection. This sub-
section shows the diversity among these three predictive
models from their outputs.

First of all, we show that the OC-NN model is an important
contribution to improve ensemble diversity. We set up four base
one-class model combinations and calculate Fleiss’ Kappa,
entropy measure and Kohavi-Wolpert variance for each
combination. The compositions of the four combinations are
as follows:

• the OC-Gaussian model and the OC-Mahalanobis model
are included;

• the OC-NN model and the OC-Mahalanobis model are
included;

• the OC-NN model and the OC-Gaussian model are
included;

• all the three one-class models are included.

We expected that the combinations that include the OC-NN
model result in higher diversity measures. This hypothesis is
validated in Figures 11B,D,F, which present the resulting
diversity measures of the four model combinations with Exp.
3-source using the FireNose and the ORU nose. In each subplot,
the corresponding diversity measure indicates that the OC-
Gaussian model and the OC-Mahalanobis model lack diversity
among each other. However, as long as the combination includes
the OC-NNmodel, all the considered measures, i.e. Fleiss’ Kappa,
entropy and Kohavi-Wolpert variance, indicate higher diversity.
This result shows that the OC-NN model creates significant
diversity for the one-class ensemble and matches our
expectation on the OC-NN model since it is based on a
different working principle and is learned from different
training data. Although the three-model ensemble does not

FIGURE 10 | Bout analysis and the prediction result of the Bout-Count Detection (BCD) model using ORU nose on the Exp. 2-source trial. The overall bout
detection made by the BCDmodel is visualized in the top subfigure, where time steps within the duration of a found bout are marked with red vertical lines. The detected
and filtered bouts in each signal are highlighted in red in the rest subfigures.
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outperform the two-model ensemble (the OC-NN + the OC-
Gaussian or OC-Mahalanobis), it is rather hard to exclude either
the OC-GM model or OC-Mahalanobis model, because an
exclusion requires prior knowledge on the target analytes. The
OC-Mahalanobis model takes into the correlations between the
sensor responses, whereas the OC-Gaussian model assumes gas
sensors are independent with each other. However, given a priori
unknown target analyte, we do not know to what extent the
sensor responses are correlated. We are also aware of the risk that
a poorly-learned OC-NN model might negatively affect the
ensemble. This concern is addressed with a sensitivity analysis
of the OC-NN model presented in the Supplementary Material.

Next, we demonstrate that the ensemble of the three
individual models can perform gas detection without bout
detection. Figure 12 presents an example prediction result on
the same experimental trial as reported in Figure 7 (the Exp. 3-
source trial using FireNose). The figure shows that how the
individual models contribute to the final prediction. The
overall output of the ensemble model for all three sensors is
visualized in the subplot at the top in Figure 12, where sensor
responses overlapping the periods shaded in red are
recognized as significantly different from baseline responses.
The respective predictions made from the sGM, dMD and sNN
dynamics are shown below. As the e-nose started to be exposed
to a target gas the first time, the output of the OC-Gaussian,

sGM, began to decrease. At the same time, the output of the OC-
Mahalanobis model, dMD, began to increase. According to the
intersections between the thresholds λGM and λMD and the
curves of sGM and sMD, a first gas exposure is detected. The joint
detection is marked as E1 in the figure. Provided gas responses
are detected, the phase 2 model learning for the OC-NN model
was then triggered. The OC-NN model is trained when a
predefined number of gas responses are collected. In the
shown case, learning of the OC-NN model lasted
approximately 160 s, starting from around t = 473 s and
ending at t = 633 s.

Once the OC-NN is finished learning (marked with a blue
vertical line), its output sNN score then began to indicate the
likelihood of being clean air. sNN first stayed at a low level because
the gas exposure, from which it learned, was not finished yet.
When the sensors did not exhibit significant responses, the OC-
NN model successfully declared the sensor responses as clean air
until the second gas exposure led to an increase of sNN. Note that
the OC-NN model has “one vote veto”, and here the overall
determination was made by the OC-NN (marked as B1) even
though the OC-Gaussian and the OC-Mahalanobis models did
not recognize clean air yet.When the sensors became exposed to a
target analyte again (i.e. the second gas exposure), the sGM and
dMD exceeded their corresponding thresholds, which determined
the second gas detection (marked as E2). At around t = 1700 s, sNN

FIGURE 11 | The change of the diversity before and after using model ensemble. The diversity is estimated with the Exp. 3-source trial using FireNose and ORU
nose. Each bar corresponds to the diversity measure of a model combination. The composition of each combination can be found in the main text. (A, C, E) The values of
Fleiss’KappaKF, entropymeasureH and Kohavi-Wolpert variance KW of each base bout detectionmodel combination for the FireNose and the ORU nose. (B, D, F) The
values of Fleiss’ Kappa KF, entropy measure H and Kohavi-Wolpert variance KW of each one-class model combination for the FireNose and the ORU nose. The
improvements of ensemble diversity are indicated by lower KF, higher H and higher KW.
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FIGURE 12 | The output changes of the OC-Gaussian, the OC-Mahalanobis, and the OC-NNmodels using FireNose in the Exp. 3-source trial. The gas responses
recognized by the ensemble model are in red shade in the sub-figure at the top. The meanings of E1, B1, E2, B2 and E3 are explained in the text.

FIGURE 13 | The outputs changes of the OC-Gaussian, the OC-Mahalanobis, and the OC-NN models using ORU nose in the Exp. 3-source trial. The gas
responses recognized by the ensemble model are in red shade in the sub-figure at the top.
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also fell below the decision threshold. At the end of the second gas
exposure, the baseline responses were recognized by the OC-NN
since sNN went back to above λNN (marked as B2). Once again, the
“one vote veto” by the OC-NNmodel is critical because the values
of sGM and dMD still indicated gas responses at that time. At the
beginning of the third gas exposure, all three models reacted as
the sensor responses increase. sGM, dMD and sNN turned over their
corresponding thresholds at a similar time. The detections made
by the OC-Gaussian and the OC–Mahalanobis models are
sufficient to declare the third gas exposure (marked as E3).
Similar performances of the three models can be found in
Figure 13, where the sensor responses of ORU nose are used.

In both results, the behaviour of the OC-NN model agrees
with our previous investigation on the model diversity. The
output sNN is not highly correlated with sGM and dMD, since the
OC-NN model is learned on gas responses instead of baseline
responses, whereas the corresponding models of sGM and dMD

are trained with baseline responses. The diversity among models

is supposed to be beneficial for an ensemble model. An observed
benefit is that the OC-NNmodel recognizes clean air faster than
the OC-Gaussian and the OC-Mahalanobis models. In other
words, in the presented trial, the short-term sensor drift between
gas exposures, likely caused by the long recovery time of the
sensors (e.g., shown in Figure 2C), is addressed by the ensemble
modelling, mainly owing to the comparatively robust prediction
from the OC-NN. In this trial, compared to the performance of
the OC-Gaussian and OC-Mahalanobis models, the OC-NN
model seems to be less sensitive to the precise value of the
selected threshold.

The ensemble learning-based gas detection system aims to
recognize gas responses suitable for the consequent
discriminative process rather than aiming for the fastest
possible detection. One can observe that before the
beginning of the first gas exposure in Figure 14, a short
range of the rising phase in the sensor response of s 1,
between t = 475 s to t = 490 s, has not been caught by any

FIGURE 14 | The changes of ORU nose sensor responses, sGM, dMD and the BCD model output towards the first gas exposure in the Exp. 3-source trial. The
vertical purple dashed line locates the time point where sGM and dMD presented significant indications of gas detection (as pointed by corresponding arrows) when
sensor responses of s 2 and s 3 are still below their baseline offset values. One can clearly observe that at t = 492 s, sGM and dMD are their thresholds while the values of s
2 and s 3 are below their corresponding baseline offsets.

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 86383819

Fan et al. Ensemble Learning-Based Gas Detection

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


proposed one-class models. During this period, the sensors
were likely in contact with gas patches released from the
source. However, since the response amplitudes of s 3 and
s 6 are lower than the corresponding baseline offsets in this
period, it makes sense to discard these onset periods. The
fingerprints of these instantaneous measurements in the
feature space are not informative enough to be
distinguished by models based on one-class Gaussian (OC-
Gaussian), Mahalanobis distance (OC-Mahalanobis), or
proximity between nearest neighbours (OC-NN).
Accordingly, such measurements are prone to have poor
class separability for gas discrimination.

We observed similar results for the Exp. 2-source trial, which
are reported in the Supplementary Material.

5 CONCLUSION AND FUTURE WORK

This paper proposes an ensemble learning-based gas detection
approach that reduces the need for prior knowledge about the
target analytes. The proposed approach consists of two model
learning phases. The first phase allows a one-class Gaussian
(OC-Gaussian) model and a one-class Mahalanobis distance-
based (OC-Mahalanobis) model to be trained with baseline
responses. In a parallel manner, a bout-count detection (BCD)
model extracts bouts from raw sensor responses as well as the
outputs of the OC-Gaussian and the OC-Mahalanobis models,
and learns a one-class model based on bout detection of these
five signals (two model outputs and three sensor responses).
Gas responses recognized by the OC-Gaussian, the OC-
Mahalanobis, and the BCD models trigger phase 2 model
learning. A one-class nearest neighbour (OC-NN) model is
trained with self-labelled gas responses in phase 2 learning. We
presented a diversity evaluation on the used models and
demonstrated how ELBA performs gas detection with the
data sets produced by real-world experiments.

The proposed approach is not optimized to overcome the
long recovery time (recognize clean air measurements before
the responses are fully recovered), which is a limitation
compared to sensor modelling approaches that aim to
address this issue, e.g. (Monroy et al., 2012), and (Eu and
Yap, 2014).

Regarding the future work, the ELBA algorithm could be
improved in two aspects as follows:

• We will have a thorough investigation to validate the BCD
model. The original idea of including the bout-detection
models is to consider the situations where the one-class
models might learn their corresponding thresholds too
high. When these situations occur, the one-class models
might be unable to recognize gas responses from sGM, dMD,
sNN values. The BCD model is supposed to compensate for
such situations with the assumption that gas responses
come with transient signals in the form of bouts. However,
the presented experimental trials did not replicate the
above situations, so the potential value of the BCD
model is not demonstrated well. A future evaluation will

base on data sets that are challenging for the other one-
class models to learn appropriate thresholds and,
therefore, verify the contribution of the BCD model to
the final prediction.

• Since the ELBA approach includes several free parameters
that need to be determined empirically, sensitivity to the
parameter selection should be fully tested. The detection
performance will be further evaluated the measures such
as true alarm rate, false alarm rate, and delay of detection.
The experiments will consider more types of gases, and
the experimental parameters such as sensor heating time,
the time and distance of the interaction between the gas
source and the e-nose strictly controlled. In particular, a
photoionization detector should be applied to provide
calibrated concentration values as ground-truth. In the
current presented work, we can only assess how the ELBA
behaves on the sensor responses, which does not allow
accurate evaluation in terms of true/false alarm rate. With
calibrated ground-truth, we can address the potential
performance degrade when the later exposure(s) is
different from the first exposure in gas identity. As
proof of the concept, we demonstrate that the OC-NN
models can learn from the first gas exposure and handle
exposures of other gases. In the future, gas classes will be
considered for detection. For example, a gas
discrimination algorithm can be coupled with the
ELBA approach, which allows to learn a dedicated
threshold for each appeared gas class. In this way, the
gas detection procedure can further declare the presence
of new, unseen gas classes, which is not addressed in the
current work.

• For applications requiring fast detection, we can modify the
voting scheme to reacts faster to changes in instantaneous
responses and adjust the BCDmodel to be more sensitive to
small bouts. The improvement in this direction will allow
the ELBA algorithm to be used as an early exposure
detector.

• The proposed approach could be extended to include a
dedicated model for drift elimination. For example, the
methods introduced in (Martinelli et al., 2013) and
(Magna et al., 2018) can be coupled to the modes for
baseline responses in the ensemble. The idea of adding a
model for drift elimination is to particularly learn the
pattern of the drift responses and, therefore, to allow
adaptive drift compensation.

• The ensemble structure of the ELAB approach allows an
adaption to integrate supervised learning models in order to
better tackle problems where not all gases are a priori
unknown. In practice, depending on the availability of
the prior knowledge on the target analytes, the restriction
to using one-class learning for gas detection can be relaxed.
This type of problem setup opens the possibility to consider
hybrid supervised and unsupervised learning for gas
detection. A hybrid system seeks to balance the need for
accurate detection of known gases and the adaptivity
enabled by retrieving new information from acquired
measurements.
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