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Abstract: Cardiac macrophages are known from various activities, therefore we presume that microR-
NAs (miRNAs) produced or released by macrophages in cardiac tissue have impact on myocardial
remodeling in individuals with metabolic syndrome (MetS). We aim to assess the cardiac macrophage
miRNA profile by selecting those miRNA molecules that potentially exhibit regulatory functions
in MetS-related cardiac remodeling. Cardiac tissue macrophages from control and db/db mice (an
animal model of MetS) were counted and sorted with flow cytometry, which yielded two popula-
tions: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Total RNA was then isolated,
and miRNA expression profiles were evaluated with Next Generation Sequencing. We success-
fully sequenced 1400 miRNAs in both macrophage populations: CD45+CD11b+CD64+Ly6Chi and
CD45+CD11b+CD64+Ly6Clow. Among the 1400 miRNAs, about 150 showed different expression
levels in control and db/db mice and between these two subpopulations. At least 15 miRNAs are
possibly associated with MetS pathology in cardiac tissue due to direct or indirect regulation of
the expression of miRNAs for proteins involved in angiogenesis, fibrosis, or inflammation. In this
paper, for the first time we describe the miRNA transcription profile in two distinct macrophage
populations in MetS-affected cardiac tissue. Although the results are preliminary, the presented data
provide a foundation for further studies on intercellular cross-talk/molecular mechanism(s) involved
in the regulation of MetS-related cardiac remodeling.

Keywords: cardiac macrophages; miRNA; metabolic syndrome; myocardial remodeling

1. Introduction

The diagnostic criteria for metabolic syndrome (MetS) have been modified since 1998,
when they were first established by the WHO [1]. According to the latest data, MetS is

Int. J. Mol. Sci. 2021, 22, 2197. https://doi.org/10.3390/ijms22042197 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-2588-4282
https://doi.org/10.3390/ijms22042197
https://doi.org/10.3390/ijms22042197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22042197
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/4/2197?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 2197 2 of 22

defined as a set of metabolic abnormalities that include at least three of the following risk
factors: insulin resistance, type 2 diabetes (T2D), obesity, elevated triglycerides, hyperten-
sion and hyperglycemia [2]. The prevalence of MetS is reported to be approximately 30%
within the human population. Metabolic abnormalities, especially obesity, hyperglycemia,
and hyperlipidemia consequently lead to the development of T2D, atherosclerosis, and
finally cardiovascular disease (CVD) leading to heart failure (HF). Abnormal myocardial
remodeling in MetS-affected individuals involves microvascular dysfunction, followed by
impaired blood flow, prolonged chronic inflammation, tissue fibrosis, increased myocardial
wall stiffness causing diastolic dysfunction, repeated episodes of vasoconstriction, and
reperfusion injury [3–5]. The current knowledge on the molecular, structural, and cellular
interaction in myocardial tissue of MetS individuals and on specific treatments for patients
suffering from HF and MetS is still incomplete. Various MetS-mimicking animal models,
including db/db mice, facilitate research in this field. Recently, cardiac tissue macrophages
have been reported to play diverse roles in maintaining cardiac tissue homeostasis in
steady-state [6,7] and disease [8–10], and may contribute to CVD progression by their
involvement in diastolic myocardial dysfunction [6,11]. Several macrophage subpopula-
tions selected on the basis of their cell surface markers, including F4/80+, CD11b+, CD64+,
MerTK+, and CCR2+ are involved in the regulation of fibrosis, hypertrophy, inflammation,
angiogenesis, lymphangiogenesis, endothelial cell regeneration, respiratory burst, in ad-
dition to classical function in the innate and adaptive immune responses [12]. Recently,
single-cell transcriptomic analysis was used for macrophage population selection and
revealed the existence of various phenotypic subsets among macrophages in a healthy my-
ocardium. Moreover, genetic profile analyses would help select other cardiac macrophage
populations and illustrate the potentially beneficial or detrimental effects of macrophages
on heart function in CVD [13]. We therefore aimed to test the hypothesis that cardiac
macrophages might promote adverse myocardial remodeling in MetS.

MicroRNAs (miRNAs) are small, non-coding RNAs, which negatively regulate gene
expression by translational inhibition or mRNA decay. The miRNA sequence is often not
perfectly complementary to the target sequence and thus a single miRNA can affect the
expression of multiple mRNAs. Additionally miRNAs can be secreted to the extracellular
space encapsulated in extracellular vesicles and can be taken up by neighboring or distant
cells [14]. Recently, numerous miRNAs were described as involved in the pathogenesis of
HF in MetS. In vitro and in vivo studies state that abnormal expression of miRNAs may
cause endothelial cell dysfunction and impair angiogenesis. Some miRNAs can also be
diagnostic biomarkers of MetS and microvascular complications, as they are secreted from
cells, and their concentration in the serum is altered [15]. Additionally, miRNAs can be
potential targets for MetS and HF therapy [16,17].

The possible genetic targets and functions of the miRNAs expressed by cardiac
macrophages in MetS are still unexplored. In the present study, we investigated miRNA
expression profiles in two distinct populations of macrophages isolated from the cardiac
tissue of db/db mice via Next Generation Sequencing. Db/db mice are an animal model
of MetS, established by a genetic mutation of the leptin receptor, and presenting obesity,
insulin resistance, and T2D [18]. The goal of this study was to identify changes in miRNA
expression in myocardial macrophages from MetS and healthy control mice and to de-
termine miRNAs of interest for further studies. Our results show that the expression of
numerous miRNAs involved in angiogenesis, fibrosis, and inflammation is altered in the
MetS heart, shedding a new light on possible molecular implications in cardiac remodeling
in MetS patients and opening new pathways for further studies in this field.

2. Results
2.1. Db/db Mice Exhibit Obesity and Hyperglycemia

The body weight of both control and db/db mice rose gradually, with db/db mouse
body weight significantly higher and reaching about 50 g in week 21. Body weight exhibited
a higher variability in db/db mice compared with that in control animals (Figure 1a). Blood
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glucose levels were also increased in db/db mice, although the difference was not always
statistically significant due to high inter-individual diversity of results in the db/db group
(Figure 1b). On the other hand, heart weight values in week 21 were significantly lower in
the db/db group, when normalized for tibia length (Figure 1c). We also observed more
abundant pericardial and abdominal adipose tissue in db/db mice compared with those
parameters in control mice (Figure 1d).
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Figure 1. The development of MetS symptoms in db/db mice. (a) body weight gain; (b) blood glucose level; (c) normalized
heart weight; (d) pericardial adipose tissue in control and db/db mice. Values are mean ± S.E. (n = 6); *, p < 0.05 versus
control group as determined by Wilcoxon signed-rank test.

2.2. The Significant Decrease in Macrophage Numbers in db/db vs. Control Mouse Hearts

Evaluation of CD68-positive macrophage locations on myocardial cryosections from
healthy and db/db mice in a confocal microscope revealed that these cells were evenly
distributed within the myocardial wall (Figure 2a–f), although the number of macrophages
was lower in db/db group when whole hearts were analyzed (Figure 2g). Detailed analysis
of specified areas of db/db mouse hearts showed a statistically significant reduction in the
macrophage number in the left and right ventricular walls compared with the macrophage
number in these areas of control myocardia. The density of CD68-positive cells in the inter-
ventricular septum was lower in db/db mice compared with that in control mice, but the
difference was not statistically significant (Figure 2h). Flow cytometry analysis confirmed
these observations (Figure 3a,b). Two macrophage populations were separated in control
and db/db mice: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. The
CD45+CD11b+CD64+Ly6Chi population contained a lower number of macrophages than
the CD45+CD11b+CD64+Ly6Clow population both in control and db/db mice (Figure 3b).
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Macrophages were visualized with anti-CD68 antibody. WGA (wheat germ agglutinin) was used to mark microvessels 
and cardiac myocyte boundaries. Figures were chosen among at least three independent stainings; the number of CD68 
positive macrophages per mm2 in whole (g) and in specific areas of heart (h) was calculated. Data are expressed as mean 
number of cells per area (mm2), calculated within three independent stainings and 10 randomly selected regions of interest 
per staining; RV—right ventricle, LV—left ventricle, S—interventricular septum. * p < 0.05, ** p < 0.01. 

Figure 2. Confocal microscope analysis of macrophage density in the LV of control (a–c) and db/db (d–f) mice. Macrophages
were visualized with anti-CD68 antibody. WGA (wheat germ agglutinin) was used to mark microvessels and cardiac
myocyte boundaries. Figures were chosen among at least three independent stainings; the number of CD68 positive
macrophages per mm2 in whole (g) and in specific areas of heart (h) was calculated. Data are expressed as mean number
of cells per area (mm2), calculated within three independent stainings and 10 randomly selected regions of interest per
staining; RV—right ventricle, LV—left ventricle, S—interventricular septum. * p < 0.05, ** p < 0.01.
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Figure 3. Sorting strategy (a) and macrophage subpopulations count in db/db and control mice (b). Gates: P1—
whole cell count after enzymatic digestion of cardiac tissue; P2—viable cells; P3 and P4—doublet exclusion; P5—
CD45+; P6—CD45+CD11b+CD64+. Finally, two populations were gated: P7—CD45+CD63+CD11b+Ly6C+/hi and P8—
CD45+CD63+CD11b+Ly6C+/low. Values are mean ± S.E. (n = 6); *, p < 0.05 versus control group as determined by Wilcoxon
signed-rank test.

2.3. miRNA Expression Profile Changes in db/db Mouse Cardiac Macrophages but Not in Cardiac
Tissue

We successfully sequenced 1400 miRNAs in both evaluated macrophage popula-
tions: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow (Supplementary
Table S1). Out of the analyzed 1400 miRNAs, about 150 miRNAs significantly differed
in db/db mice from those in control animals and also some of them were differentially
expressed among two distinct macrophage populations—CD45+CD11b+CD64+Ly6Chi

and CD45+CD11b+CD64+Ly6Clow. Interestingly differences between CD45+CD11b+CD64+

Ly6Chi and CD45+CD11b+CD64+Ly6Clow were more prominent in control mouse
macrophages than in db/db animals (Figure 4). A manual search through the PubMed
database showed at least 15 of these miRNAs to be possibly associated with MetS patho-
genesis in cardiac tissue due to direct or indirect regulation of expression of mRNAs for
proteins involved in angiogenesis (VEGF-A, Tie-2, AKT-3, SEMA6A, Sprouty2, IGF-1,
KLF2, KLF4, endoglin, angiopoietin-2), fibrosis/extracellular matrix deposition (TGFβR2,
SMAD4, Wnt, elastin, collagen, fibronectin, Snail1), inflammation (PPARα, IL-1, IL-6, TNFα,
VCAM-1, NFκB), or lymphangiogenesis (Prox-1) (Table 1). Additionally, selected miRNAs
can also affect macrophage function due to their influence on macrophage phenotype.
Selected miRNAs, according to the literature data, may downregulate the expression of
mRNA for proteins involved in anti-inflammatory (TNIP2, TNFAIP3, PTEN, KLF4, Cab39,
IL10) or pro-inflammatory (JAK2, PDC4, CTFG, MIP-1β, SOCS3, ATF3, ATP1B1, ATP9A,
RAIl4, Notch1, Nox2, Nlrp3, Pknox, Rasal, Nfat5 and Chi3l1) pathways, as well as angio-
genesis (HIF-2α), phagocytosis (DNMTs) or lipid uptake (Chi3l1) (Table 2). We compared
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fold change in expression of selected miRNAs between CD45+CD11b+CD64+Ly6Chi and
CD45+CD11b+CD64+Ly6Clow macrophage populations, for both control and db/db mouse.
There were no significant differences in miRNA levels between CD45+CD11b+CD64+Ly6Chi

and CD45+CD11b+CD64+Ly6Clow population in control mouse, except for miR-31-5p,
which was upregulated in CD45+CD11b+CD64+Ly6Chi population (although the difference
was not statistically significant), and in db/db mouse except for miR-126a-3p which was
also upregulated in CD45+CD11b+CD64+Ly6Chi macrophages. All selected miRNAs, ex-
cept for miR-31, were downregulated in db/db mouse cardiac tissue-derived CD45+CD11b+

CD64+Ly6Clow macrophages compared with the miRNA levels in CD45+CD11b+CD64+

Ly6Clow macrophage populations isolated from control hearts. All the differences were
statistically significant. Interestingly, we did not observe significant differences in miRNA
expression levels between CD45+CD11b+CD64+Ly6Chi macrophages isolated from control
hearts versus the same population from db/db mouse cardiac tissue, except for miR-30a-5p
and miR146a-5p, which were downregulated (Figure 5a,b). Levels of selected miRNA
expression (miR31, miR23 and miR27) in whole cardiac tissue were not affected (Figure 5c).
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Figure 4. Heat map of miRNA expression data obtained with NGS from two populations of cardiac
macrophages isolated from control (n = 4) and db/db (n = 4) mouse hearts. Results were normalized
with the “Trimmed Mean of M” method and heat map was prepared on the basis of geNorm method.
Relative miRNA expression is depicted according to the color scale shown below. Red indicates
upregulation; green, downregulation.



Int. J. Mol. Sci. 2021, 22, 2197 7 of 22

Int. J. Mol. Sci. 2021, 22, 2197 8 of 24 
 

 

geNorm method. Relative miRNA expression is depicted according to the color scale shown 
below. Red indicates upregulation; green, downregulation. 

 
Figure 5. Heat map of selected miRNA expression data (a) obtained with NGS from two 
populations of cardiac macrophages isolated from control (n = 4) and db/db (n = 4) mouse hearts. 
Results were normalized with the “Trimmed Mean of M” method and heat map was prepared 
based on the geNorm method. Relative miRNA expression is depicted according to the color scale 
shown below. Red indicates upregulation; green, downregulation. Table (b) shows selected 
miRNAs and fold change, which is the normalized miRNA expression in each Test Sample 
divided by the normalized miRNA expression in the Control Sample. Numbers in blue indicate 
downregulation, whereas in red – upregulation of miRNA expression. p-values were calculated 
with a Bioconductor software package. (c) Selected miRNAs expression in cardiac tissue from 
db/db (n = 6) and control (n = 6) mice measured with relative quantitation (RQ) using a 
comparative CT assay. Cardiac tissue from control mice was used as a calibrator. p-values were 
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Figure 5. Heat map of selected miRNA expression data (a) obtained with NGS from two populations of cardiac macrophages
isolated from control (n = 4) and db/db (n = 4) mouse hearts. Results were normalized with the “Trimmed Mean of M”
method and heat map was prepared based on the geNorm method. Relative miRNA expression is depicted according to the
color scale shown below. Red indicates upregulation; green, downregulation. Table (b) shows selected miRNAs and fold
change, which is the normalized miRNA expression in each Test Sample divided by the normalized miRNA expression
in the Control Sample. Numbers in blue indicate downregulation, whereas in red – upregulation of miRNA expression.
p-values were calculated with a Bioconductor software package. (c) Selected miRNAs expression in cardiac tissue from
db/db (n = 6) and control (n = 6) mice measured with relative quantitation (RQ) using a comparative CT assay. Cardiac
tissue from control mice was used as a calibrator. p-values were calculated with SAS 9.4 software.

2.4. Morphological Analysis of Tissue Sections and Cell Suspensions Obtained from Control and
db/db Mouse Hearts Showed Evidence of Cardiac Fibrosis, Inflammation, and Microvascular
Rarefaction

Histological sections of control hearts stained with Picrosirius red revealed a weak
interstitial fibrosis and scant perivascular collagen deposits in the adventitia of medium-
sized coronary vessels (Figure 6a,b). In db/db mice there was a slight increase in interstitial
collagen deposits and perivascular fibrosis around vessels of the same diameter com-
pared with the cardiac tissue in control animals (Figure 6c,d, marked with arrows). Light
microscopy showed collagen deposits, which were stained dark red, forming branches
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towards interstitial cardiomyocytes positioned adjacent to coronary vessels (black arrows
in d).
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Figure 6. (a–d) Paraffin sections of control and db/db mouse hearts stained with Picrosirius red
demonstrate collagen deposits. (a,b)—representative sections from control hearts with a slight
interstitial and perivascular fibrosis stained in dark red; (c,d)—representative sections from db/db
mice demonstrating a slight increase in interstitial and perivascular fibrosis, marked with arrows;
scale bar—100 µm. (e–g) Density of CD31+Lyve-1− cells in the left ventricular wall of control and
db/db mice. (e,f) selected cryosections of control and db/db mouse hearts stained with anti-CD31
(green) and anti-Lyve-1 (red) antibodies, analyzed under a confocal microscope. (g) CD31+Lyve-1−

cell count per 1 mm2 in the left ventricular wall of control and db/db mouse hearts; * p < 0.05 versus
control group as determined by Wilcoxon signed-rank test. (h) Flow cytometry analysis of leukocyte
subpopulations in cell suspensions obtained from control and db/db mouse cardiac tissue. Table
shows percentages of leukocyte subpopulations in total leukocyte population.
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Confocal microscopic analysis of cardiac cryosections stained with anti-CD31 and
anti-Lyve-1− antibodies showed a significant decrease in CD31+Lyve-1− microvessels in
the left ventricles of db/db mice when compared with the microvessel number in control
animals (Figure 6e–g). Moreover, the inflammatory cell profile assessed by flow cytometry
analysis in cell suspensions obtained from cardiac tissue showed elevated numbers of
monocytes, neutrophils, and granulocytes (CD45+Ly6g+) in db/db mice versus control
animals. Interestingly, levels of T lymphocyte subpopulations were also elevated in db/db
mouse cardiac tissue. Both cytotoxic T lymphocyte (CD45+CD3+CD8+) and regulatory T
lymphocyte (CD45+CD3+CD8+, CD25+) counts were higher than in control mice, although
the total number of T lymphocytes (CD45+CD3+) was unaffected. Finally, the lymphocyte
B (CD45+CD19+) count was reduced in db/db mouse cardiac tissue when compared with
that in control animals (Figure 6h).

3. Discussion

Db/db mice are widely used as an animal model of MetS. Metabolic alterations
exert a significant pathological effect on myocardial structure and function, leading to
HF [19]. A recent study by Alex et al. provides a very detailed analysis of HF in db/db
mice, suggesting diastolic dysfunction with preserved ejection fraction, cardiomyocyte
hypertrophy, interstitial/perivascular fibrosis, and microvascular rarefaction. Moreover,
the severity of symptoms is sex-specific, with females exhibiting moderate hypertension,
and males exhibiting decreased microvascular density [20].

Our results show a significantly higher body weight of db/db mice compared with that
of age-matched controls, which is fairly consistent with previously published data [20,21].
Db/db mice gain weight rapidly and reach a plateau by about week 15. Body weight
changes correlate with blood glucose levels. Interestingly, we observed a rapid elevation of
blood glucose levels; however, after db/db mice reached week 15, their blood glucose levels
dropped and did not significantly differ from those in lean controls. This result is similar
to the findings of Alex et al. and Puff et al., who also observed a decrease in blood glucose
levels; however, this drop was noticed after week 12, probably due to a compensatory
mechanism through which an increase in beta cell mass contributes to enhanced insulin
production [20,21].

Interestingly, cardiac hypertrophy (quantified by the heart weight-to-tibia length ratio)
was not observed in db/db mice, with lower heart weight values in db/db mice compared
with those in lean controls. Literature data differ in this respect, and results depend on the
method used and animal age, gender, and other comorbidities. Choi et al. did not show any
difference in heart mass between control and obese mice [22]; on the contrary, Wilson et al.
observed a decrease in heart/body weight ratio in db/db mice and controls [23]. Finally,
Wang et al. demonstrated an increase in heart weight/tibia length ratio in db/db mice [24].
These inconsistent results may be due to different methodology, although in conditions
when body weight changes rapidly, cardiac hypertrophy is better quantified by relating
heart weight to tibia length [25]. Of importance, two different processes simultaneously
occur in the db/db mouse cardiac tissue: cardiomyocyte hypertrophy and elevated car-
diomyocyte apoptosis. Therefore, a balance between these processes may, or may not,
affect the heart weight, as it has been recently described by Papinska et al. [26].

Recently cardiac tissue macrophages have been reported to be involved in tissue repair
regulation, angiogenesis, fibrosis, sensing of tissue edema and salt overload, and many
other functions as well as their well-known phagocytic activity and immune cell modu-
lation [27]. In pathological conditions, such as myocardial infarction, two populations of
monocytes (Ly-6Chi and Ly-6Clow) become mobilized in the circulation. Ly-6Chi monocytes
invade cardiac tissue and differentiate into Ly-6Chi macrophages, which are involved in
dead cell phagocytosis and pro-inflammatory cytokine production. Furthermore, once
acute inflammation resolves, infiltrating Ly-6Chi monocytes become Ly-6Clow macrophages,
which are associated with the regenerative process [28]. We used the common leukocyte
marker CD45 together with standard macrophage markers CD11b, CD64, and Ly-6C to sort
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two populations of cardiac macrophages—pro-inflammatory CD45+CD11b+CD64+Ly6Chi

and pro-regenerative CD45+CD11b+CD64+Ly6Clow [29]. There have been no reports on
the number of macrophage subsets in diabetic mouse cardiac tissue. Our results showed
a lower number of the total macrophage population in db/db animals compared with
that in healthy myocardia. In contrast, the ischemic tissue after myocardial infarction and
the non-ischemic tissue in hypertrophic cardiomyopathy contain an elevated macrophage
density [30,31]. Moreover, macrophage profiles and timing seem to play important roles in
cardiac remodeling after myocardial infarction and in non-ischemic hypertrophy, by ex-
hibiting either detrimental or beneficial effect depending on Ly6Chi/low marker expression
levels. Of note, the predominant population of macrophages in a healthy adult mouse heart
consists of Ly-6Clow cells known for their vessel patrolling function, and with their number
decreasing with age [32]. The differences between the total number of macrophages in
the myocardia of db/db mice and the myocardia affected with ischemic or nonischemic
heart disease might be due to the altered inflammatory profiles in ischemic and diabetic
myocardia and, presumably, are related to animal age/disease stage and sex.

The Ly-6Chi and Ly-6Clow macrophage subpopulations differ not only in surface
marker expression but also in mRNA transcription profiles [33]. A novel finding of
this study was identifying the miRNA transcription profile in Ly-6Chi versus Ly-6Clow

macrophages and in healthy versus db/db cardiac macrophages. We found 150 miRNAs
that were expressed differently in control versus db/db mouse macrophages. Moreover, at
least some of those miRNAs may be related to the pathogenesis of MetS (Table 1) and when
expressed by macrophages or internalized via phagocytosis may be responsible for the
modulation of macrophage phenotype (Table 2). Wang et al. demonstrated that activated
macrophages release vesicles packed with miR-155. These vesicles can be taken up by
cardiac fibroblasts, and the miR-155 molecules they contain subsequently downregulate
fibroblast proliferation and promote the expression of fibroblast inflammatory response
genes. Thus macrophage-derived miR-155 packed in exosomes seems to inhibit cardiac re-
pair after myocardial infarction [34]. Zhang et al. described macrophage-released miR-150
that can be transferred into endothelial cells via exosomes and modify their metabolism.
Thus, crosstalk between macrophages and endothelial cells could be an underlying mecha-
nism of endothelial cell dysfunction and vascular injury in various conditions, including
MetS [35]. Interestingly, the expression levels of selected miRNAs in cardiac tissue were not
affected (Figure 5c). We compared the expression of miR-31, miR-23, and miR-27 isolated
from cardiac macrophages with the expression of these miRNAs obtained from whole
cardiac tissue. Whole-tissue miRNA analysis did not show any differences in these miRNA
levels. This result may indirectly show that at least some of the analyzed miRNAs are
synthetized by macrophages, but this requires further research.

PubMed search analysis revealed that at least 15 miRNAs differentially expressed
in cardiac macrophages in db/db mice target multiple mRNAs for synthesis of proteins
involved in inflammation (miR-21a, miR-26a, miR-27b, miR-29b, miR-30a, miR31, miR-
126, miR-146, miR-223), fibrosis (miR-20a, miR-21a, miR-27b, miR-29b, miR-30a, miR-31,
miR-146, miR-223), angiogenesis (miR-15a, miR-23a, miR-26a, miR-27b, miR-29b, miR-
30a, miR31, miR-126, miR-146a, miR-148, miR-342), and lymphangiogenesis (miR-31), as
summarized in Table 1. Moreover, the same miRNAs, when produced by macrophages
or phagocytosed by these cells, may affect pro-inflammatory (miR-15a, miR-21a, miR-23a,
miR-31, miR-92a-3p) or anti-inflammatory (miR-15a, miR-21a, miR-26a, miR-27b, miR-30a,
miR-126a, miR-146a, miR-148b, miR-223, miR-342) phenotype modulation, phagocytosis
intensity (miR29b), angiogenesis (miR-20a) or lipid uptake (miR-342). Importantly, all but
miR-31 were downregulated in cardiac MetS Ly-6Clow macrophages compared to miRNA
levels in Ly-6Clow macrophages of healthy animals. This effect was not observed in Ly-6Chi

populations which may indicate that “regenerative” subpopulation of macrophages is
more affected by MetS condition than the “inflammatory” one. We are aware that multiple
pathways are influenced by a combination of these miRNAs, each one of which might
activate or inhibit cardiac fibrosis (as demonstrated in Figure 6a–d), microvessel involu-
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tion (as shown in Figure 6e–g), and/or inflammatory cell profiles (Figure 6h). This paper
presents novel data on miRNA expression profiles in isolated macrophages from db/db
mouse myocardia. We discuss some of our results related to MetS effects on myocardial
remodeling and compare them with those found in the literature. Still, there are some pa-
pers describing miRNA levels in plasma or in the heart tissue of individuals suffering from
MetS or T2D, which might reflect microenvironmental influence on macrophage content.
For example, some authors described downregulation of miR-126, miR-15a, miR-29b, and
miR-223 in the plasma of diabetic patients, of patients with CAD, and of Lepob mice [36,37],
whereas He et al. observed downregulation of miR-21 in the serum of patients with MetS
and in circulating monocytes of type 1 diabetic individuals [38]. These observations of
miRNA levels in sera are in line with our data regarding cardiac macrophages. miR-30 is
considered the most abundant in the heart and is involved in ventricular remodeling by
various mechanisms. miR-30 levels are downregulated in such cardiovascular conditions
as hypertension, diabetic cardiomyopathy, and myocardial infarction. Reduction of miR-30
causes cardiac fibrosis (via a Snail-dependent pathologic pathway), promotes autophagy,
and decreases angiogenesis and cardiomyocyte hypertrophy [39]. Among the miRNAs
evaluated in our study, only miR-31 was significantly elevated in db/db mouse cardiac
macrophages. miR-31 expression is stimulated by the vascular endothelial growth factor
(VEGF) and directly downregulates tumor necrosis factor superfamily-15 (TNFSF15), which
is a negative modulator of angiogenesis crucial for vascular homeostasis [40]. In MetS,
when cardiac tissue undergoes remodeling, there is upregulation of serum VEGF [41,42];
however, soluble VEGF receptor levels also increase, which may block proangiogenic action
of VEGF. An increased level of miR-31 in serum of patients with T2D and microvascular
complications was observed by others [43]. Upregulation of this miRNA was observed
after myocardial infarction, and its deleterious effect on cardiac function was described [44].
Of note, miR-31 also downregulates the expression of Prox-1, a major transcription factor
responsible for lymphatic endothelial cell identity, and impairs venous sprouting and
lymphangiogenesis in embryonic development [45].

MiR-126 has been thoroughly studied and reported to be involved in angiogenesis,
endothelial cell (EC) proliferation, EC survival, and sustaining physiological functions
of ECs. Downregulation of this miRNA causes endothelial cell apoptosis, and therefore
microvessel involution, inhibits EC invasion and proliferation, thus impairing angiogenic
activity [46].

miRNA expression levels and functions are very often tissue- or condition-specific.
For example, we observed downregulation of miR-29b in db/db myocardium-derived
macrophages. Nonetheless, other authors reported conflicting results concerning the ex-
pression of this miRNA. Van Rooij et al. also observed downregulation of miR-29b in
cardiac tissue after myocardial infarction, which is associated with fibrosis [47]. Con-
versely, Sassi et al. described upregulation of miR-29b in cardiac myocytes in pressure
overload-induced cardiac hypertrophy and fibrosis; they also reported miR-29b-induced
dysregulation of non-canonical Wnt signaling pathway, which can regulate myocardial
fibrosis [48]. Similar issue affects the results obtained for regulation of macrophage phe-
notype by miRNAs. For example, miR-15a is considered as pro-inflammatory due to
their interaction with mRNA for TNFAIP3-interacting protein 2 (TNIP2) that represses
inflammation [49], but on the other hand it may also inhibit the expression of JAK2, which
switches macrophage phenotype towards anti-inflammatory [50]. Therefore, all results
obtained with miRNAs, both in vivo and in vitro, are extremely tissue-specific and rely
much on the experimental approach.

Over the last several years, miRNAs, especially those associated with cardiac
macrophages, have gained considerable attention as potential therapeutic targets in cardio-
vascular diseases. Considering the multitude of macrophage genotypic subsets and their
tissue-related plasticity, thorough research is required for further medical interventions
targeted for specific tissues/organs and devoid of negative side-effects) [51–53]. Precise un-
derstanding of the role of miRNAs in regulating inflammatory or regenerative processes in
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the cardiac tissue may result in the development of therapeutic strategies in MetS-induced
heart failure. Some authors report tools which enable efficient miRNA delivery and ensure
miRNA stability within tissue [17], whereas others question their efficiency [54]. Circu-
lating miRNA profiles can also be used as a diagnostic tool as they often correlate with
the severity of cardiovascular events such as myocardial infarction [55]. In this paper we
described for the first time the miRNA transcription profiles in two distinct macrophage
populations in MetS-affected cardiac tissue. Results of our study might suggest that at
least these few selected miRNAs are of macrophage origin. However, we cannot be cer-
tain whether the miRNAs detected in macrophage subpopulations are actually produced
by macrophages or are released by other cells and subsequently phagocytized, as sug-
gested by other authors [56,57]. Of note, some miRNAs within myocardial db/db mouse
macrophages were down-regulated in comparison with the miRNA levels in control mouse
macrophages. Therefore, downregulation of crucial remodeling processes by the absence
or low levels of miRNAs might occur in cardiac tissue. Although our results are only
preliminary, we believe that they may help elucidate macrophage function in MetS-related
cardiac pathologies in the future.

4. Materials and Methods
4.1. Animals

This study was performed on BKS.Cg-Dock7<m>+/+Lepr<db>/J mice (db/db); the
C57BL/6J strain was used as control. All animal experiments were approved by the
First Local Bioethics Committee of the University of Warsaw, Poland and carried out
in accordance with EU Directive 2010/63/EU for animal experiments. Nine-week-old
male mice were purchased from Charles River (Italy) and kept under specific pathogen-
free conditions, with unlimited access to LabDiet® 5K52 (6% fat) chow (Charles River
Laboratory, Sant’Angelo Lodigiano, Italy). After 1 week of adaptation, mouse blood
glucose levels and body weight were measured every week. Blood samples were taken
from mouse tails, and glucose levels were measured with a OneTouch Select Plus® blood
glucose meter (LifeScan, Milpitas, CA, USA). At the age of 21 weeks, the animals were
sacrificed by CO2 asphyxiation, and their hearts were isolated for further analysis.

4.2. Assessment of Macrophage and Microvascular Density in a Confocal Microscope

Frozen hearts were cut serially into 10-µm sections; subsequently, the sections were
fixed in 4% paraformaldehyde; washed with PBS; incubated with 1% BSA, 0.1% TritonX-
100, and 0.1 M glycine in PBS for 30 min; and blocked with 10% donkey serum (Jackson
ImmunoResearch Laboratories, West Grove, PA, USA). For macrophage density assessment
the sections were incubated for 1 h with primary antibodies against the CD68 molecule
(Abcam, Cambridge, UK, cat. no ab125212, final concentration 1:100) diluted in PBS con-
taining 5% donkey serum, followed by two washes in PBS. Then, the slides were incubated
with Cy™3-conjugated donkey anti-rabbit IgG, (Jackson ImmunoResearch, Laboratories
West Grove, PA, U.S. cat. no 711-165-152, final concentration 1:800) and Wheat Germ
Agglutinin (WGA), Alexa Fluor 488 Conjugate (Molecular Probes, Eugene, OR, USA, cat.
no W11261, final concentration 1:1800) diluted in PBS/1% BSA for 1 h. In order to assess
microvascular density, the sections were incubated for 1 h with primary antibodies against
CD31 (BD Biosciences, San Jose, CA, USA, cat. no 550274, final concentration 1:100) and
Lyve-1 molecules (Angiobio, San Diego, CA, USA, cat no. 11-034, final concentration 1:100)
diluted in PBS with 5% donkey serum, followed by two washes in PBS. Subsequently, the
slides were incubated with Cy™3-conjugated donkey anti-rabbit IgG and donkey anti-rat
AlexaFluor™647 (Jackson ImmunoResearch Laboratories West Grove, PA, U.S., cat. no
711-165-152, final concentration 1:800 and cat. no 712-605-153, final concentration 1:500, re-
spectively). Cell nuclei were counterstained with DAPI (Thermo Fisher Scientific, Waltham,
MA, USA). Sections mounted in Fluorescence Mounting Medium (Dako, Glostrup, Den-
mark) were viewed under a Leica confocal microscope (Leica, Wetzlar, Germany). Most
representative figures were chosen from three heart samples (i.e., immunostained scans
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of tissue sections) from each group of animals. Macrophage locations and numbers were
assessed by evaluating the distribution of CD68-positive cells per myocardial tissue sec-
tions area in various locations: the left ventricular wall, right ventricular wall, and septum.
Microvascular rarefaction was assessed by evaluating the number of CD31-positive/Lyve-1
negative cells in the left ventricle. 10 regions of interest were randomly selected, and the
images were taken under a 20× objective. To avoid inter-counter variation, all countings
were performed by the same operator. Data are expressed as the mean number of cells per
area of 1 mm2.

4.3. Cardiac Macrophage Isolation by Flow Cytometry Sorting

Hearts were collected from 21-week-old db/db and control mice, cut in half, and rinsed
in PBS. Next, the hearts were cut into pieces and digested with 0.5 mg/mL collagenase
type II (Sigma-Aldrich, St. Louis, MO, USA) on a magnetic stirrer at 37 ◦C for 45 min.
To obtain single cell suspensions, the digested tissue was pipetted and filtered through
40-µM nylon filters (Falcon, Corning, New York, NY, USA). The cells were washed twice
and suspended in a staining buffer (1% BSA in PBS). First, the cells were incubated with
Fixable Viability Dye (eBioscience, San Diego, CA, USA, cat no 65-0865-14, Thermo Fisher
Scientific, Waltham, MA, USA). Then Fc receptors (CD16/CD32) were blocked with Fc
Block (cat no, 553141, BD Biosciences, San Jose, CA, USA). The antibodies were as listed:
CD45 (clone 30-F11, cat. no 563891, BD Biosciences, San Jose, CA, USA), CD11b (clone
M1/70, cat. no 562605, BD Biosciences, San Jose, CA, USA), CD64 (clone X54-5/7.1, cat.
no 558539, BD Biosciences, San Jose, CA, USA), Ly6C (clone AL-21, cat. no 560592, BD
Biosciences, San Jose, CA, USA). Stained cells were washed, suspended in PBS, sorted with
FACSAria I, and analyzed with BD FACSDiva software (Becton-Dickinson, Franklin Lakes,
NJ, USA). Cardiac macrophages were identified as CD45+CD11b+CD64+ cells and sorted
into two subpopulations based on Ly6C expression (Ly6C+/hi and Ly6C−/low). The sorting
strategy is shown in Figure 3a.

4.4. Inflammatory Cell Profile of Cardiac Tissue Cell Suspension

The cell suspension from cardiac tissue was prepared as described above. Cells
were incubated with Fixable Viability Dye (eBioscience, San Diego, CA, USA, cat. no
65-0865-14, Thermo Fisher Scientific, Waltham, MA, USA). The cardiac inflammatory
cell profile was evaluated based on the following markers: CD45 (clone 30-F11, cat. no
563891, BD Biosciences), CD19 (clone 1D3/CD19, no cat. 152404, BioLegend, San Diego,
CA, USA), CD3 (clone 17A2, cat. no 100217, BioLegend), CD8a (clone 53-6.7, cat. no
100722, Biolegend), CD4 (clone RM4-5, cat. no 100530, BioLegend), CD25 (clone 3C7, cat.
no 101904, BioLegend), and Ly6G (clone 1A8, cat. no 127628, BioLegend). The stained
cells were washed, suspended in PBS, and analyzed using flow cytometry (FACSCanto II,
Becton-Dickinson).

4.5. RNA Isolation, Total miRNA Library Preparation, and miRNA Sequencing

After cells were transferred to a lysis solution, RNA was isolated with a mirVana™
miRNA Isolation Kit (Thermo Fisher Scientific, Waltham, MA, USA) and purified with
DNAse I. The initial RNA concentrations were measured with NanoDrop One/OneC
Microvolume UV Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). At
least 60 ng of each RNA was used for further experiments. Total miRNA libraries were
prepared with an miRNA Library kit and miRNA NGS 12 Index IL kit (Qiagen, Venlo,
The Netherlands) according to the manufacturer’s instruction. Quality assessment of the
miRNA libraries was performed with the Agilent 2100 Bioanalyzer (Agilent, Santa Clara,
CA, USA) and High Sensitivity DNA chips (Agilent, Santa Clara, CA, USA). Final library
concentrations were measured with a Qubit dsDNA High Sensitivity Kit (Thermo Fisher
Scientific, Waltham, MA, USA) and sequenced on the MiSeqDx Instrument (Illumina, San
Diego, CA, USA).
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4.6. miRNA-Seq Data Analysis

The results were analyzed with the Data Analysis Center available on the Qiagen
website www.qiagen.com (accessed on 22 February 2021). The results were normalized
with the “Trimmed Mean of M” method and heat maps were prepared based on the
geNorm method. Fold-Change represents the normalized miRNA expression of each Test
Sample divided by the normalized miRNA expression of the Control Sample. The results
of detected miRNAs were subsequently sorted according to their significance. Out of 1400
miRNAs, about 150 miRNAs, whose expression differed significantly between control
and db/db mouse macrophages, were selected for further manual search in the PubMed
database in order to verify their associations with MetS.

4.7. RT-PCR Analysis of Cardiac miRNAs

Thirty-nanogram pieces of cardiac tissue were transferred to lysis solution and ho-
mogenized. RNA was isolated with a mirVana™ miRNA Isolation Kit, and the initial
concentrations and quality of RNA were measured with NanoDrop (Thermo Fisher Scien-
tific, Waltham, MA, USA). Reverse Transcription was performed with a TaqMan MicroRNA
Reverse Transcription Kit according to the manufacturer’s protocol (Applied Biosystems,
ThermoFisher Scientific, Waltham, MA, USA) with RT primers: snoRNA234 (RT:001234),
snoRNA202 (RT:001232), hsa-miR-23a (RT:000399), has-miR-27b (RT:000409), and mmu-
miR-31 (RT: 000185). cDNA was stored at −20◦ C. Gene expression was measured with the
relative quantitation (RQ) using a comparative CT assay [58] Cardiac tissue from control
mice was used as a calibrator. Real-Time PCR was performed in Abi Prism 7500 Ap-
plied Biosystems, ThermoFisher Scientific, Waltham, MA, USA) in 96-well optical plates.
Each sample was run in triplicates and supplied with endogenous controls snoRNA234
(TM:001234) and snoRNA202 (TM:001232). For miRNA quantification TaqMan Expression
Assays were used: hsa-miR-23a (TM:000399), has-miR-27b (TM:000409), mmu-miR-31
(TM: 000185). All probes were stained with FAM (all from, Applied Biosystems, Ther-
moFisher Scientific, Waltham, MA, USA). Reactions were run in a 20-µL volume with
TaqMan Universal Master Mix (Applied Biosystems, ThermoFisher Scientific, Waltham,
MA, USA), appropriate primer set, MGB probe, and 5 ng of cDNA template. Universal
thermal conditions, i.e., 10 min at 95 ◦C, 40 cycles of 15 s at 95 ◦C, and 1 min at 60 ◦C,
were used. Data analysis was done with sequence detection software version 1.2 (Applied
Biosystems, ThermoFisher Scientific, Waltham, MA, USA).

4.8. Picrosirius Red Staining for Collagen Deposits

Hearts from age-matched control and db/db mice were fixed in buffered 4%
paraformaldehyde (pH 7.2), rinsed in water, and processed for paraffin blocks. Paraf-
fin sections were deparaffinized and routinely stained with hematoxylin-eosin and with
Picrosirius red (for collagen deposits) with modification according to Puchler and/or
Junqueira [59,60]. Briefly, sections were stained with Weigert’s hematoxylin, followed
by immersion in phosphomolybdic acid, and subsequently stained in 2% Picrosirius red
solution for 60 min. After clearing in 95% ethanol, the sections were mounted in a histologic
mounting medium.

Table 1. Selected miRNAs that are potentially involved in MetS pathogenesis, with some of their confirmed targets.

miRNA Function Target Gene References

miR-15a-5p Angiogenesis, fibrosis Tie-2, fibrosis via VEGF and EMT; and
TGF-β1/Smad2 [61–63]

miR-20a-5p fibrosis ALK-5, TGFβR2, SARA, CD36 [64,65]

miR-21a-5p fibrosis, inflammation PPARα, SMAD7, PTEN [66–68]

miR-23a-3p angiogenesis SEMA6A, Sprouty2 [69,70]

miR-26a-5p inflammation, angiogenesis PTEN, VEGF-A, PI3K/AKT [71,72]

miR-27b-3p fibrosis, inflammation, angiogenesis ALK5, IL-1, IL-6, TNFα, MCP1, SEMA6A,
Sprouty2 [69,73–77]

www.qiagen.com
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Table 1. Cont.

miRNA Function Target Gene References

miR-29b-3p fibrosis, extracellular matrix deposition,
angiogenesis Wnt, elastin, collagen, fibronectin, IGF-1 [47,48,78,79]

miR-30a-5p fibrosis, inflammation, angiogenesis Angiopoietin-2, VCAM-1, CTGF, Beclin1,
Dll4, Snail1, Wnt [80–86]

miR-31-5p lymphangiogenesis, fibrosis, angiogenesis,
inflammation TNFSF15, PKCε, Prox1, FOXC2, E-selectin [40,45,87,88]

miR-92a-3p angiogenesis KLF2, KLF4, TF [89,90]

miR-126a-3p angiogenesis, inflammation VCAM-1, Spred-1, PI3KR2, VEGF-A [91–95]

miR-146a-5p inflammation, fibrosis, angiogenesis NFκB, TRAF6, IRAK, MYD88, SMAD4,
MAPK [96–98]

miR-148b-3p angiogenesis, fibrosis, EMT FGF-2, DNMT, PTEN, Wnt-β-catenin [99–101]

miR-223-3p inflammation, fibrosis ICAM-1, RASA1, FBXW7 [102–104]

miR-342-3p angiogenesis FGF11 [105]

Table 2. Selected miRNAs that are potentially involved in MetS pathogenesis due to their involvement in macrophage
phenotype regulation. Please note that contradictory results are due to different experimental approach and model used.

miRNA Target Gene Effect on Macrophage and on Macrophage Phenotype
Alteration References

miR-15a-5p TNIP2
JAK2

Pro-inflammatory in vitro and in mouse model of sepsis
Anti-inflammatory in in vitro model of allergic rhinitis [49,50]

miR-20a-5p HIF-2α
Anti-angiogenic in tumor associated macrophages

(TAMs) [106]

miR-21a-5p PDCD4
IL-10

Anti-inflammatory in Brucella infected bone marrow
derived macrophages

Suppresses M-2 macrophage polarization in primary
bone-marrow derived macrophages during

particle-induced osteolysis

[107,108]

miR-23a-3p TNFAIP3 Tumor associated macrophages (TAMs) switching
towards M1 phenotype [109]

miR-26a-5p CTGF Reduces pro-inflammatory factor TNF-α, IL-6, IL-1β
expression of LPS-induced mouse alveolar macrophages [110]

miR-27b-3p MIP-1β
Anti-inflammatory effect in bone-marrow derived

macrophages in vitro [111]

miR-29b-3p DNMTs (confirmed indirectly)
Inhibits phagocytic function in alveolar macrophages in

syngeneic murine model of bone marrow
transplantation

[112]

miR-30a-5p SOCS3 Anti-inflammatory in LPS stimulated RAW 264.7
macrophages [113]

miR-31-5p Cab39 Pro-inflammatory in LPS-induced alveolar macrophages
in vitro [114]

miR-92a-3p PTEN
KLF4

Pro-inflammatory in LPS-induced acute lung injury
mouse model

Pro-inflammatory in monocyte-derived macrophages
under atheroprone microenvironment in vitro

[115,116]

miR-126a-3p ATF3, ATP1B1,
ATP9A and RAI14

Reduction of pro-inflammatory cytokine/
chemokine secretion by primary human macrophages

and increase in their phagocytic activity
[117]
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Table 2. Cont.

miRNA Target Gene Effect on Macrophage and on Macrophage Phenotype
Alteration References

miR-146a-5p Notch1 M2 phenotype polarization of microglia following brain
stroke in vivo and in vitro [118]

miR-148b-3p Nox2 Anti-inflammatory and lowering ROS production in
macrophages in myocardial infarction mouse model [119]

miR-223-3p
Nlrp3

Pknox1
Rasa1 and Nfat5

Anti-inflammatory in acute and chronic hepatic injury,
and in vitro studies

M2 phenotype polarization in bone marrow–derived
macrophages stimulated with LPS and in adipose tissue

of mice on a high-fat diet
M2 phenotype polarization in adipose-tissue

macrophages isolated from mice on a high-fat diet

[120–122]

miR-342-3p Chi3l1 (not confirmed) Suppresses inflammation and lipid uptake in THP-1
cells [123]

4.9. Statistical Analysis

Blood glucose, body weight, macrophage count, microvascular rarefaction, and miR-
NAs expression level statistics were calculated with SAS 9.4 software, and graphs were
prepared with SAS ODS Graphics Editor 9.43. Sample distribution was measured with the
Kruskal–Wallis test, and the null hypothesis was tested with Wilcoxon signed-rank test.
Normal distribution was evaluated with Shapiro-Wilk test. For the “Trimmed Mean of
M” normalization method of NGS results the p-values were calculated with Bioconductor
software.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/4/2197/s1. Table S1. Analysis of miRNA expression in cardiac macrophage populations. Num-
bers represent fold change that is the normalized miRNA expression in each sample (db/db mouse
CD45+CD63+CD11b+Ly6C+/hi and CD45+CD63+CD11b+Ly6C−/low cardiac macrophages) divided
the normalized miRNA expression in the control sample (control mouse cardiac CD45+CD63+CD11b+
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