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Opinion
Although coronavirus tropism is most often ascribed to
receptor availability, increasing evidence suggests that
for the neurotropic strains of the murine coronavirus
mouse hepatitis virus (MHV), spike–receptor interactions
cannot fully explain neurovirulence. The canonical MHV
receptor CEACAM1a and its spike-binding site have been
extensively characterized. However, CEACAM1a is poorly
expressed in neurons, and the extremely neurotropic
MHV strain JHM.SD infects ceacam1aS/S mice and
spreads among ceacam1aS/S neurons. Two proposed
alternative MHV receptors, CEACAM2 and PSG16, also
fail to account for neuronal spread of JHM.SD in the
absence of CEACAM1a. It has been reported that JHM.SD
has an unusually labile spike protein, enabling it to per-
form receptor-independent spread (RIS), but it is not clear
if the ability to perform RIS is fully responsible for the
extremely neurovirulent phenotype. We propose that the
extreme neurovirulence of JHM.SD is multifactorial and
might include as yet unidentified neuron-specific spread
mechanisms.

Introduction
Interruption of virus entry by targeting virus–receptor
interactionshas longbeenagoal of vaccinationandantibody
therapy, and more recently of small-molecule pharmaceuti-
cal therapy as well; there are now antiretroviral drugs
targeting both the HIV envelope protein and its co-receptor
CCR5. The species specificity of coronaviruses is most often
attributed to receptor availability, so the cross-species
transmission of severe acute respiratory syndrome (SARS)
human coronavirus in 2002 focused a great deal of attention
on the spike–receptor interaction as a target for therapeutic
intervention [1]. However, our experience with neurotropic
strains of the murine coronavirus mouse hepatitis virus
(MHV, a model widely used for encephalitis and demyelin-
ating disease; Box 1) suggests a paradox: although the spike
protein is the most important determinant of neuroviru-
lence [10,11], coronavirus neurotropism cannot be fully
explained by receptor use. Two recent studies have con-
firmed this view. Mice lacking the canonical MHV receptor,
CEACAM1a, remain susceptible to viruses expressing the
spike protein from the extremely neurotopic JHM.SD
(MHV-4) strain of MHV [12]. (JHM.SD is the most neuro-
virulent isolate [13] of the neurotropic JHM strain, also
calledMHV-4, whichwas derived by serial passage through
mouse brain [14]). Although JHM.SD spreads efficiently
among adjacent ceacam1a�/� neurons, no known alterna-
Corresponding author: Weiss, S.R. (weisssr@mail.med.upenn.edu)

2 0165-6147/$ – see front matter � 2010 Elsevier Ltd. All rights reserved. doi:10.1
tive receptor is both expressed in neurons and capable of
conferring MHV susceptibility to nonpermissive cells [15].
Here we review the knownMHV receptor(s) and their spike
protein-binding site, as well as the phenomenon of receptor-
independent spread (RIS) performed by JHM.SD. Based on
current knowledge, we believe that neither receptor use nor
RIS can fully explain JHM.SD pathogenesis and hypothe-
size that the extreme neurotropism displayed by this strain
must be multifactorial and include as yet unidentified neu-
ron-specific spread mechanisms. Further studies of neuro-
tropic MHV strains in ceacam1a�/�mice should clarify the
mechanism(s) of MHV neurovirulence and guide future
attempts to target the spike proteins of encephalitis viruses
for therapeutic intervention.

The MHV spike glycoprotein binds the canonical
receptor CEACAM1a
The canonical receptor for the murine coronavirus MHV,
CEACAM1a, was one of the earliest virus receptors iden-
tified. It had long been noted that the SJL/J strain of inbred
mice were resistant to MHV, whereas other strains (such
as BALB/c) were susceptible. It was demonstrated that
MHV binds to a 100–110-kDa protein in BALB/c tissues
but not to SJL/J tissue extracts [16]. Inoculation of mice
with a partially purified protein extract produced a mono-
clonal antibody, CC1 [17], which blocked MHV infection of
cultured cells [18] and mice [19]. This antibody was used to
further purify the receptor [17], and sequencing confirmed
that it is a mouse carcinoembryonic antigen (CEA) family
member [20] identical to the open reading frame of a
transcript, mmCGM1, that was identified by screening a
mouse cDNA library with a probe homologous to human
CEA [21]. The same screen produced a second transcript,
mmCGM2 [22], which was initially misidentified as a
splice variant of mmCGM1 [23] and later identified as a
different allele for which resistant SJL/J mice are homo-
zygous [24]. (The cDNA library was derived frommice from
the outbred CD-1 strain [21] that were apparently hetero-
zygous at the receptor locus.) Although the SJL/J allele
acts as an MHV receptor if over-expressed in tissue cul-
ture, it fails to bind MHV virions in virus overlay protein
blot assays, and the soluble form has fourfold less virus
neutralizing activity than the functional allele [25]. This
suggests that it is too weak a receptor to function at
endogenous levels; in addition, it is not recognized by
CC1 [24]. The nomenclature was further complicated by
the existence of multiple splice forms [26]; thus, in 1999,
the nomenclature of the entire CEA family was revised,
with the functional MHV receptor allele designated
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Box 1. Mouse hepatitis virus structural proteins

Coronaviruses are enveloped positive-sense RNA viruses that cause a

variety of diseases in humans and animals, most notoriously the

outbreak of severe acute respiratory syndrome (SARS) in 2002–2003.

Mouse hepatitis virus is a coronavirus used as a model for both liver

and CNS disease, facilitating studies of the viral pathogenesis of these

organ systems in the natural host. The viral RNA genome is expressed

as a set of seven nested mRNAs with a total of 11 open reading

frames (ORFs) that encode two large replicase polyproteins (ORF1a

and the frameshift product ORF1ab), three nonstructural proteins of

unknown function (ORF2a, ORF4 and ORF5a) and six structural

proteins: hemagglutinin esterase (HE; ORF 2b), spike (S; ORF3),

envelope (E; ORF5b), membrane (M; ORF6), nucleocapsid (N; ORF7)

and internal protein (I; alternative reading frame of ORF7) (Figure Ia).

The HE and I proteins are not expressed by all strains of MHV. The

structural proteins assemble at the ER–Golgi intermediate compart-

ment (ERGIC), from which they are transported in vesicles to the

plasma membrane to be released by exocytosis. The virus particles

consist of a positive-sense RNA genome coated with N protein

surrounded by an ERGIC-derived lipid bilayer envelope. The five

remaining structural proteins are transmembrane proteins embedded

in the viral envelope (Figure Ib). M, E, and I have small extracellular

domains; HE forms dimers that project from the envelope as small

spikes, and the larger, heavily glycosylated S protein forms trimers

that project as large spikes or ‘peplomers’ that give coronaviruses

their characteristic crown-like appearance by transmission electron

microscopy. S protein mediates both attachment to the virus receptor

and viral fusion with the cell membrane [2]. S is synthesized as a

precursor that is cleaved post-translationally by cellular proteases

into N-terminal S1 and C-terminal S2 subunits that remain noncova-

lently associated [3,4]. (The MHV-2 spike protein, which is not cleaved

by the producing cell [5,6], is beyond the scope of this article.) The

receptor-binding domain of S is associated with S1 and the fusion

activity with S2 [7,8]. Although no definitive structure exists, MHV S is

believed to be a type I viral fusion protein [9] (like influenza HA or HIV

Env), which means that fusion activation should result in presentation

of the hydrophobic fusion peptide by a three-stranded coiled-coil

motif. Therefore, the fusion-activated conformation of S2 can be

detected by aggregation or liposome binding.
[()TD$FIG]

5'
1a 1b

2a

HE

S

4

5a

E

M

N
3'

I

RNA

N

S

HE

M

E

(a)

(b)

L

TRENDS in Pharmacological Sciences 

Figure I. MHV genome (a) and virus particle (b). Illustration created by Susan J.

Bender and used with kind permission from Springer Science+Business Media:

[58], Figure 1.
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ceacam1a and the MHV-resistant SJL/J allele designated
ceacam1b (Table 1) [27].

The MHV binding site on CEACAM1a has been exten-
sively characterized. The murine CEA family belongs to
the immunoglobulin superfamily and contains two
branches: the transmembrane domain-anchored CEACAM
proteins and the secreted pregnancy-specific glycoprotein
(PSG) proteins. The extracellular portions of these proteins
consist of different numbers of variable (V)- (usually N-
terminal and designated N) and constant-type (C) immu-
noglobulin-like domains (divided into A and B subsets and
numbered by subset), and many proteins have multiple
splice variants [27]. CEACAM1a consists of a V-type N
domain followed by either three (A1, B, A2) or one (A2) C-
type domains, a transmembrane domain, and a long or
short cytoplasmic tail. All four possible splice variants are
expressed, generating CEACAM1a-4L, CEACAM1a-4S,
CEACAM1a-2L, and CEACAM1a-2S (Figure 1, Table 1)
Table 1. Current and previously published names for mouse hepa

New name Isoform Old name

Ceacam1a 4L MHVR(4d)

4S mCEA [21

2L BgpG [26]

2S BgpC [26]

Ceacam1b 4L BgpF [26]

4S BgpE [26]

2L BgpH [26]

2S mmCGM2

Ceacam2 2S Bgp2C [29

Psg16 bCEA [30]
[27]. All four forms support MHV infection in cultured cells
[24]. It has been shown that bothMHV and CC1 bind to the
N domain [31], albeit at slightly different (if overlapping)
sites: MHV requires amino acids 34–52 of CEACAM1a,
whereas CC1 requires amino acids 1–70 and specifically
residues 26-32, 42, and 43 [32]. Independent work identi-
fied the contiguous six-amino-acid motif at position 38–43
as crucial for MHV binding [33], and it is noteworthy that
CEACAM1b has no homology with CEACAM1a at this
sequence (Figure 2). Although the N domain is necessary
and sufficient for neutralization and receptor activity [34],
a truncated soluble protein containing only the N and A1
domains neutralizes less efficiently than either the two- or
four-domain form, which suggests that the fourth Ig-like
domain improves MHV binding [25]. The crystal structure
of the soluble two-domain protein shows no interaction
between the N and A2 domains; however, the critical
MHV-binding residues 38–43 are prominently displayed
titis virus receptors

(s)

L [24]; BgpD [26]

]; MHVR [28]; MHVR1 [28]; mmCGM1 [21]; mmCGM1a [23]; BgpA [26]

; MHVR(2d) [24]

[22]; mmCGM1b [23]; BgpB [26]

]; Bgp2(2d) [29]
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Figure 1. Comparison of domain structures of proposed mouse hepatitis virus receptors. V-type Ig-like domains are in red and C-type domains in blue. Transmembrane and

cytoplasmic domains are in green and alternative C-terminus of PSG16-4(N1*)C2 in purple. Illustrations are modeled on those at the Carcinoembryonic antigen homepage

(http://www.carcinoembryonic-antigen.de/index.html) with permission from W. Zimmermann.
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on the CC0 loop of the N domain, which is stabilized in an
unusually complex conformation relative to related pro-
teins [35]. The ability of CEACAM1a to bind MHV is thus
well understood.

No known MHV receptor explains the extreme
neurotropism of MHV strain JHM
Although CEACAM1a is sufficient to confer MHV suscep-
tibility to nonpermissive cell lines [28], CEACAM1a ex-
pression cannot account for some aspects of MHV tissue
tropism. Notably, although some strains of MHV (includ-
ing A59 and the highly neurotropic JHM) cause central
nervous system (CNS) disease, CEACAM1a is poorly
expressed in the CNS relative to other MHV target tissues
such as the intestine and the liver [15,20]. Furthermore,
neurons, which are the predominant CNS cell type infected
by both A59 and JHM [11,15], express even lower levels of
[()TD$FIG]

Figure 2. Alignment of the N-terminal domains of proposed mouse hepatitis virus recep

six-amino-acid motif (residues 38–43) required for MHV receptor activity is boxed.

4

ceacam1amRNA than other CNS cell types [15]. However,
the ability of A59 to spread among wild-type but not
ceacam1a�/� hippocampal neuron cultures implies that
neurons do express CEACAM1a protein [15], although the
possibility that A59 actually requires CEACAM1a expres-
sion by contaminating microglia cannot be ruled out. By
contrast, the JHM.SD spike mediates spread even among
ceacam1a�/� neurons, although initial infection rates are
strikingly lower than for wild-type neurons [15]. At pres-
ent, the role of CEACAM1a in MHV infection of the CNS is
not clear.

One possible explanation for the discrepancy between
CEACAM1a expression and MHV infection in neurons is
that MHV uses an alternative receptor to infect neurons.
This hypothesis is supported by the reduced affinity of the
JHM spike for CEACAM1b relative to the A59 spike
[25,36,37], which suggests that the receptor-binding
tors. Numbering is from the signal peptidase cleavage site (dotted line). The critical

http://www.carcinoembryonic-antigen.de/index.html
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domains of the two proteins differ in a biologically relevant
fashion. Two CEA family members have been identified as
possible alternative receptors: CEACAM2 and PSG16
(Figure 1). CEACAM2 (previously Bgp2) is similar to
CEACAM1a in overall structure, but the MHV-binding
loop at amino acids 38–43 has more homology to CEA-
CAM1b (Figure 2). Like CEACAM1b, CEACAM2 can sup-
port MHV infection if it is overexpressed in nonpermissive
cells [29], but the purified soluble form is less efficient at
neutralizing MHV than is CEACAM1a [25]. Studies of the
receptor efficiency of the two proteins have been hampered
by an inability to control for receptor density, but it is
generally believed that CEACAM2 is a less efficient recep-
tor than CEACAM1a [15,29]. At present, it is not clear
whether endogenous levels of CEACAM2 can support
MHV infection. In addition, ceacam2 mRNA is even more
poorly expressed in neurons and glial cells than ceacam1a
mRNA is [15]. Together, these data suggest that although
CEACAM2might be an alternative MHV receptor, it is not
likely to account for the ability of JHM to spread in
ceacam1a�/� neurons.

The other potential MHV receptor, PSG16, is both more
promising and more problematic than CEACAM2. Unique
among the PSG class, PSG16 is expressed in the CNS
[15,30,38] and specifically in neurons [15], which makes
it an attractive explanation for the ability of JHM to spread
among ceacam1a�/� neurons. Two isoforms of PSG16 have
been described (Figure 1) [30,38]. The first, PSG16-
4(N1*)C1 (formerly known as bCEA; Table 1), was isolated
frommouse brain by screening with a probe homologous to
ceacam1a [30]. The second, PSG16-4(N1*)C2, was derived
from sequencing of clones from a cDNA library derived
from themouse retina [38] and seems to result from joining
of a cryptic splice donor site within the last exon of the –C1
isoform to an additional exon downstream. Both PSG16
isoforms lack the signal sequence and the N-terminal part
of the N1 ectodomain relative to other murine PSG pro-
teins (Figure 2). Both, like other PSG proteins, also lack
any C-terminal membrane anchor motif. The absence of a
membrane anchor does not necessarily preclude receptor
activity: C-terminally truncated soluble forms of CEA-
CAM1a were expressed on the cell surface, presumably
by binding to membrane-anchored partners, and conferred
MHV receptor activity to the expressing cells [34]. The N-
terminal truncation is more problematic. Translocation in
the absence of a signal sequence, although very uncommon,
has been documented, but the PSG16 domain most homol-
ogous to the N domain of CEACAM1a is the N1 domain,
which is missing the N-terminal MHV-binding site
(Figure 2). An attempt to assess the MHV receptor activity
of PSG16-4(N1*)C2 by targeting it to the cell surface with
the signal sequence and membrane anchor domains of the
avian retrovirus receptor TVA did not result in detectable
surface expression, although parallel CEACAM1a and
CEACAM2 constructs reached the cell surface and sup-
portedMHV infection [15]. Currently, it is not clear wheth-
er the chimeric PSG16 protein is specifically retained
within the secretory pathway or is simply dysfunctional
owing to misfolding. A third PSG16 isoform is predicted
from analysis of the Psg16 locus and placental expressed
sequence tag libraries [39]. This full-length isoform,
PSG16-4C1 (Figure 1), contains both a canonical signal
sequence and an intact N1 domain and can be amplified
from mouse placenta (J.M. Phillips, unpublished observa-
tions); however, alignment of the full-length PSG16 with
murine CEACAM proteins shows that the MHV-binding
motif on the CC0 loop has been entirely deleted (Figure 2).
Additional studies are under way to determine whether
this novel full-length isoform of PSG16 could be an alter-
native receptor for MHV.

The labile spike protein of the JHM strain can perform
RIS
It is possible that the spike-dependent spread of JHM
among ceacam1a�/� neurons relies not on an alternative
receptor, but on a phenomenon known as RIS. The most
common RIS assay involves overlaying a monolayer of
nonpermissive cells with infected permissive cells; for
RIS-competent strains of MHV (chiefly JHM.SD and the
highly lethal JHM cl-2 isolate [40]), the infected cells fuse
with neighboring uninfected cells, which fuse in turn to
form large syncytia [41–43]. Neither the A59 strain [42] nor
the mildly attenuated JHM.IA [44] performs RIS, and the
acid-dependent JHMmutant OBLV60 performs RIS only if
the medium is adjusted to the permissive pH [45]. RIS
activity depends on the MHV spike glycoprotein but is not
blocked byCC1 [45]. A similar assay has been used to study
spread from infected microglia to neurons, although it is
not clear that the latter truly lack CEACAM1a [15,46].
Fusion also occurs among nonpermissive cells expressing
the spike protein alone and is blocked by anti-spike anti-
bodies [45]. Taken together, these data imply that the RIS
phenomenon requires only the JHM.SD spike protein.

It is thought that the ability of the JHM.SD spike to
mediate RIS is due to the unusual instability displayed by
this protein. Both A59 and JHM spike proteins are cleaved
during egress into noncovalently associated S1 and S2
subunits (Box 1), and both proteins dissociate if the viruses
are incubated at 37 8C under mildly alkaline pH, releasing
soluble S1 and causing S2 to aggregate on the viral enve-
lope [41,47]; a similar conformational change is observed in
response to soluble CEACAM1a and correlates with in-
creased liposome binding [37], which suggests that the
conformational change observed at alkaline pH is the same
as that responsible for receptor-dependent fusion. Howev-
er, the JHM.SD spike dissociates more readily than that of
A59 or JHM.IA [36,41,44], and mutations in the JHM.SD
spike that increase stability decrease the ability to perform
RIS [41,44]. In summary, the JHM.SD spike seems to have
a more labile S1–S2 interaction than the A59 spike or RIS-
incompetent JHM spikes [36], and this hyperlability cor-
relates with RIS.

The extreme neurovirulence of the JHM.SD strain is
multifactorial
Although neurons express very little MHV receptor and
the highly neurotropic JHM.SD spike is capable of RIS, it is
not fully clear that the ability to perform RIS is responsible
for the extreme neurovirulence of JHM.SD. JHM.SD forms
expanding foci of infected cells in hippocampal neuron
cultures from wild-type or ceacam1a�/� mice, which sug-
gests direct cell-to-cell spread, but these neurons do not
5
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obviously form the syncytia [15] that are observed during
RIS in cell lines. Several strains of JHM with mutations in
S2 have lost the ability to perform RIS and are less
neurovirulent than wild-type JHM.SD (J.C. Tsai, unpub-
lished data) [48,49], but many are also deficient in CEA-
CAM1a-dependent fusion [41,50,51], are less able to use
CEACAM1b as an alternative receptor [52], or resist neu-
tralization by soluble receptor (i.e. are not triggered by
receptor binding) [53] despite wild-type receptor-binding
domains, which implies defects in receptor-dependent fu-
sion as well as RIS. The same is true of tissue-culture
adapted strains that lack RIS activity due to large dele-
tions in S1 [41]. By contrast, JHM.IA, which has four amino
acid substitutions in its spike protein, including one
(G310S) that abrogates RIS, has a stable spike and retains
full CEACAM1a-dependent fusion activity. Although it is
less pathogenic than JHM.SD, JHM1A is still relatively
neurovirulent in naı̈veweanling and adultmice [44,54]. On
the basis of these conflicting results, we suggest that the
extreme neurovirulence of JHM.SD is multifactorial.

Although the extreme virulence of JHM.SD does not
seem to depend on RIS alone, the ability to spread among
neuronsdespiteminimalCEACAM1aexpression inthat cell
type could be crucial for MHV neurotropism. If so, infection
of ceacam1a�/�mice and neurons will be an important tool
for investigating the elements of neurovirulence. First,
infection of ceacam1a�/� mice and neurons with JHM.IA
and RIS-incompetent variants of JHM.SD should clarify
whether CEACAM1a-independent spread in neurons is a
special case of RIS or a new, neuron-specific phenomenon. If
CEACAM1a-independent spread in neurons is distinct from
RIS, the next question is whether JHM uses an alternative
receptor for interneuronal spread or whether the synaptic
environment enables JHM to spread in the absence of any
receptor. The former might be identified by screening for
neuronally expressed proteins that interact with JHM S or
confer JHM infection to nonpermissive cells; the latter is
more difficult to address, but determination of whether
interneuronal spread requires cell-to-cell fusion or release
of virus from neurites could suggest further approaches.
These experiments should help to elucidate the mechanism
of JHM.SD spread in ceacam1a�/� neurons.

Concluding remarks
An increasing body of research suggests that viruses that
infect neurons might not use typical virus–receptor inter-
actions for interneuronal spread; for example, both pseu-
dorabies virus (which requires the attachment protein gD
for extracellular but not interneuronal spread [55]) and
measles virus (which uses a neurotransmitter receptor to
spread trans-synaptically in the absence of its canonical
receptor [56,57]) use alternative pathways for interneuro-
nal spread. In these cases, drugs that target virus–recep-
tor interactions might protect non-neuronal cells but
might not prevent neuron-to-neuron spread of an estab-
lished infection. The highly neurotropic strains of MHV
offer a well-defined virus–receptor system for studying
atypical interneuronal spread, and a better understand-
ing of this system might suggest improved therapeutic
targets for similarly atypical neuronotropic encephalitis
viruses.
6
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