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Abstract: Sensor networks provide services to a broad range of applications ranging from intelligence
service surveillance to weather forecasting. While most of the sensor networks are terrestrial,
Underwater Sensor Networks (USN) are an emerging area. One of the unavoidable and increasing
challenges for modern USN technology is tolerating faults, i.e., accepting that hardware is imperfect,
and coping with it. Fault Tolerance tends to have more impact in underwater than in terrestrial
environment as the latter is generally more forgiving. Moreover, reaching the malfunctioning devices
for replacement and maintenance under water is harder and more costly. The current paper is the
first to provide an overview of fault-tolerant, particularly cross-layer fault-tolerant, techniques in
USNs. In the paper, we present a systematic survey of the techniques, introduce a taxonomy of the
Fault Tolerance tasks, present a categorized list of articles, and list the open research issues within
the area.

Keywords: underwater sensor network; fault tolerance; cross-layer fault tolerance; fault management

1. Introduction

Underwater Sensor Networks (USNs) have become widespread and are being de-
ployed in a wide range of applications ranging from harbor security to monitoring under-
water pipelines and fish farms. Due to the fact that USNs often operate in an extremely
harsh environment, and many of their applications are safety-critical, it is imperative to
develop techniques enabling these networks to tolerate faults. Moreover, USNs face many
challenges that are not present in terrestrial networks, such as virtual inapplicability of
the wireless radio communication under water and limitations of the acoustic means,
for example.

In the current paper, applications, practices, and central issues on fault tolerant USNs
are discussed, and a systematic survey of fault tolerant techniques in USN networks is
presented. Our objective is to investigate the state of the art and main focuses of ongoing
research on cross-layer Fault Tolerance in underwater sensor networks, as well as to identify
the existing gaps in previous research. As by now a limited effort has been put on the
Fault Tolerance of USNs by the research community, the criteria is expanded, and papers
covering some specific aspects of the fault-tolerance topic are also taken into account.
Moreover, the sources also include generic terrestrial Fault Tolerance in sensor networks
because research on underwater sensor network faults is limited, and many of the generic
technologies, approaches, and tools can be adapted for use in USNs.

It is important to stress that the underwater environment is mostly different from
terrestrial conditions, in the sense of additional and more fatal hazards, like an increased
pressure and a danger of flooding, as well as added difficulty of communication and
physical access. Some communication media, such as radio signals, are not applicable
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underwater. Additionally, falling temperatures with increasing depth may affect the
equipment’s operation and reliability.

In this paper, a systematic search in IEEExplore, Google Scholar, and ScienceDirect
online environments was carried out to obtain a relevant sample of works in the field of fault
tolerant techniques in USNs. The search revealed 122 papers, with 59 of them dedicated
to the Fault Tolerance of USNs, while the 63 remaining ones were generic fault tolerant
techniques for terrestrial sensor networks applicable to the underwater environment.

In order to provide a systematic view of the paper categories, this survey introduces a
taxonomy of Fault Tolerance tasks. Specifically, the identified relevant papers are grouped
according to the tasks of fault prevention and prediction and Fault Detection and Fault
Identification, as well as Fault Isolation and Fault Masking, respectively.

Moreover, a comparative analysis of the identified papers was presented, where the
works were characterized according to their extra-functional aspects covered (i.e., security,
energy-efficiency, scalability, cross-layer aspect) and Fault Tolerance tasks targeted, as well
as marine or terrestrial application. As a result of the analysis, the lack of cross-layer
Fault Tolerance approaches in the USN domain was identified as a particular gap in the
state-of-the-art with prospective future research.

There are several surveys investigating underwater sensor networks. For example,
Reference [1] introduced the term of Internet of Underwater Things (IoUT) and showed its
applications in fish farms, monitoring underwater pipelines, harbor security, etc., and [2]
analyzed cross-layer error control in Underwater Wireless Sensor Networks (UWSNs);
however, the analysis focused on the underwater wireless network functionality faults and
not on other sources of the USN faults. Underwater communications have been specifically
surveyed in References [3,4], disregarding aspects of underwater sensor networks outside
communication issues.

The main challenges identified for Internet of Underwater Things are the communica-
tion reliability and the differences between Underwater and Terrestrial Networks [5], such
as mobility caused by water flow. For terrestrial sensor networks, there were 11 surveys
found. Thereof, 3 terrestrial surveys addressed cross-layer aspects. Reference [6] was
surveying cross-layer resilience design methods and [7,8] fault management techniques in
wireless sensor networks. In addition, References [9,10] included surveys about aspects
of the internet of things, and 7 papers by References [7,8,11–15] were surveys of different
aspects of terrestrial wireless sensor networks. Reference [16] presented a survey about
fault tolerant control systems, and, finally, Reference [14] was focused on surveying fault
management frameworks in terrestrial wireless sensor networks.

The current state-of-the-art is lacking literature reviews covering faults in USNs not
only from communication but from the entire infrastructure perspective, as well. To that
end, the current paper has the following novel contributions:

• to the best of the authors’ knowledge, this is the first survey of fault-tolerant, particu-
larly cross-layer fault-tolerant, techniques in USNs;

• it introduces a taxonomy of the Fault Tolerance tasks for categorizing fault-tolerant
techniques for USNs;

• it presents a comprehensive, categorized list of articles of works applicable in fault-
tolerant USN design and deployment; and

• the survey also lists the open research issues within the focused area.

The paper is organized as follows. In Section 2, the formal methodology of select-
ing the papers is explained and a breakdown of the sample by keywords is provided.
Section 3 gives an overview of the specific Fault Tolerance challenges in underwater sensor
networks. In Section 4, the taxonomy of possible fault sources and that of Fault Toler-
ance tasks is presented. Subsequently, Section 5 is divided according to this taxonomy
of tasks. In Section 5.1, works targeting the fault prevention and prediction task are dis-
cussed and the respective design, deployment, data collection, and testing frameworks
are reviewed. Section 5.2 gives an overview of Fault Detection and Fault Identification
techniques. Section 5.3 provides an overview of Fault Masking and Fault Recovery tech-
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niques. In Section 6, a categorized table of the related works identified by the survey is
presented. Finally, in Section 7, open research issues are discussed, and conclusions are
drawn in Section 8.

2. Methodology

The current overview is following the PRISMA [17] guidelines for systematic reviews.
In order to obtain a relevant sample in the field of fault tolerant techniques in USNs,
IEEExplore, Google Scholar, and ScienceDirect online environments were searched with
the following search keywords: “underwater”, “sensor network”, “internet of things”,
“resilient”, “fault tolerant”, “fault management”, “cross-layer” in English language. Be-
cause the resulting counts were low (see Table 1), some keywords were removed, and more
papers identified. Top papers were selected by the order of relevance offered by the
respective environments. The papers published before the year 1990 were not consid-
ered. Further, citations within those sources were searched from the aforementioned
environments, and additional papers were identified this way. Related articles offered
by IEEExplore and ScienceDirect algorithms were also taken into account. Next, the du-
plicates and non-relevant papers (e.g., control theory) were removed from the collected
papers, and the collected papers were analyzed, categorized, and divided into marine and
terrestrial categories. Personalization on search engines was turned off wherever possible.

Table 1 shows the count of results using combinations of keywords in Google Scholar,
IEEExplore, and Sciencedirect. (Searches were conducted on 13 April 2021, from Taltech,
Estonia, IP addresses.). From Table 1, it can be seen that some combinations were giving no,
or a very limited number of, results. A critical amount of papers was not reached using the
initial criteria, and the criteria were expanded to include also relevant non-marine-specific
(terrestrial) papers. The argumentation behind this is that many of these techniques may
also be usable in underwater environments (see Section 3).

Table 1. Search engine result count of respective keyword combinations.

Search Keywords G. Scholar IEEEX S.Direct

“underwater”, “internet of things”, “resilient”, “fault tolerant”, “fault management”,
“cross-layer”

4 0 0

“underwater”, “internet of things”, “resilient”, “fault tolerant”, “fault management” 8 0 1
“underwater ”, “sensor network”, “resilient”, “fault tolerant”, “fault management” 36 0 4
“sensor network”, “resilient”, “fault tolerant”, “fault management”, “cross-layer” 49 1 4
“underwater ”, “sensor network”, “fault management” 162 0 10
“sensor network”, “resilient”, “fault tolerant”, “fault management” 223 9 16

As a result of the search procedure, 122 related works were identified. These included
59 papers on marine Fault Tolerance and 63 papers being on terrestrial. The papers
were tagged by specific areas addressed by them. The tags for specific areas included
’sensor network’, ’fault tolerant’, ’wireless’, ’scalable’, ’mobile’, ’routing protocol’, ’security’,
’localization’, ’framework’, ’survey’, ’energy-efficient’, ’cross-layer’, ’deployment’, ’marine’,
and ’terrestrial’.

A bar graph showing the number of papers from our search that covered different
specific areas is presented in Figure 1. The specific areas are ordered by the number of
papers addressing them, and the bars for the specific areas maintain their colors throughout
Figures 1–3. It should be noted that, in the following context, the meaning of “localization”
is location detection in space, and the meaning of “mobile” is capacity of movement. It can
be seen from Figure 1 that there were substantially more terrestrial papers than the ones
specific to marine environments. In addition, wireless communication is a frequently
targeted area. Figure 2 shows research areas of the analyzed papers falling into terrestrial
category. It should also be noted that papers on general fault-tolerant sensor networks,
not specifically claiming any environments, were categorized into the terrestrial category.
Figure 2 presents the frequency of specific areas addressed in terrestrial papers where
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the order of the most frequent categories has switched but is not much different from
Figure 1. However, Figure 3, which presents the analyzed marine and aquatic environment-
related papers covering different specific areas, shows that marine wireless communication
related research works have the highest number of papers among those identified by the
current survey.
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Figure 1. The number of papers by specific areas.
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Figure 2. The number of terrestrial-related papers by specific areas.
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Figure 3. The number of marine-related papers by specific areas.

In order to further highlight the differences of the previous research focus in marine
and terrestrial sensor networks, a radar diagram is shown in Figure 4. For the diagram, we
selected eight significant specific areas: ’fault tolerant’, ’wireless’, ’mobile’, ’localization’,
secure’, ’scalable’, ’energy efficient’, and ’cross-layer’, respectively. It can be seen from
Figure 4 that a large share of marine research (shown by blue color in Figure 4) interest from
the identified papers has been drawn to underwater wireless communication, while some
are drawn to underwater Fault Tolerance techniques and almost none to underwater cross-
layer Fault Tolerance. Underwater energy-efficiency and scalability are more covered areas
than underwater vehicles (mobility) and security. Papers addressing terrestrial techniques
(shown by green in Figure 4) were, according to the initial search criteria, more focusing
on Fault Tolerance, including cross-layer Fault Tolerance, and less on energy efficiency
or security.

High research effort on marine wireless networking in Figure 4 confirms the claim [5]
that current pace of research on Internet of Underwater Things (IoUT) is slow due to the
challenges arising from the uniqueness of underwater wireless sensor networks. Specifi-
cally, the main challenges for IoUT are the differences between Underwater Wireless Sensor
Networks and Terrestrial Wireless Sensor Networks [5].

Fault Tolerant Control Systems is another extensive research area of Fault Tolerance
not covered by current paper. There is an existing recent review paper [16] on the overview
of research works in that topic.
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Figure 4. A radar chart of the analyzed papers addressing the main specific areas.

3. Specifics of Underwater Sensor Networks

Environmental and engineering challenges for sensor networks in underwater envi-
ronments are shown on Figure 5. An underwater environment is mostly different from a
terrestrial one due to the harsh physical conditions—high pressure and hard accessibility,
as well as limited communication and energy resources. Depending on the specific location,
the temperature may fall with increasing depth, which may affect, e.g., the battery lifetime.
In underwater environments, faults can be caused over time by ambient flowing water
generated by surface waves or other reasons that shake the components of the sensor
networks. Moreover, faults can be introduced by humans or aquatic organisms.

Many communication methods are unavailable underwater, and there are multiple
phenomena [2,18] that obstruct communication there. Because of the possibility of flooding
the hardware due to water leakage, more attention and resources should be paid to the
physical integrity of sensor nodes. On the other hand, faults from excessive heat should be
rare and avoidable underwater. In the underwater context, Fault Tolerance has been so
far addressed for reliant UWSN networking [2,3,19,20], space localization [21], and moni-
toring underwater pipelines [22]. While it should be possible to adapt most of the generic
Fault Tolerance concepts for the underwater use, the environment is more demanding
and unforgiving, and faults are more costly. Some more demanding approaches, like
cloud computing, may not make sense to be implemented in USNs. However, the authors
cannot see any obstacles for applying those fault tolerant approaches that yield appropri-
ate communication methods, low network bandwidths, and power requirements in the
underwater domain.

Last but not least, one of the promising approaches that could be adapted suc-
cessfully within the underwater environment’s constraints appears to be cross-layer re-
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silience, which is an open research topic and lacking in recent research works, even for the
terrestrial implementations.
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Figure 5. Environmental and engineering challenges in USNs.

4. Taxonomy of Faults and Fault Tolerance Tasks

In the following, we present the taxonomy of the sources of faults, as well as of the
Fault Tolerance tasks. The objective of describing and representing these taxonomies is to
categorize the articles for the current survey.

4.1. Sources of Faults

A fault is defined [23] as an underlying defect of a system that leads to an error.
An error is a faulty system state, which may lead to failure, and failure is an error that
affects system functionality. Faults may occur in different components and layers of
systems for different reasons. The only type of fault possible in software is a design
fault introduced during the software development, i.e., a bug [24]. Software bugs can be
addressed separately and will not be covered further in the current paper.

Fault sources can be categorized by components where they occur. In sensor net-
works, they can occur in sensor nodes, in the communication network, and in the data
sink [25]. Sensor networks share common failure issues with traditional networks, as well
as introduce node failures as new fault sources [7].

USNs additionally introduce faults caused by environmental conditions, such as pres-
sure, currents, underwater obstacles, etc. Those conditions may cause physical damage
that may result in failures, as well as obstruct the system’s functionality. For instance,
in underwater acoustic networks, loss of connection and high bit error rate may be caused
by shadow zones [18] formed by different physical reasons. Domingo and Vuran dis-
tinguish up to five different underwater propagation phenomena which may obstruct
communication [2].

Faults can either be permanent or temporary [26]. Permanent faults may be caused by
manufacturing defects, as variances of the hardware components are inevitable due to phys-
ical reasons [27]. One of the other factors that can introduce faults is aging and wear-out of
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the hardware components [28]. In addition to the components themselves, the interconnec-
tions between them are also affecting the reliability and may cause faults [29].

One of the challenges of fault management is temporary faults, especially soft errors.
Soft error is a temporary change of signal value due to ionizing particles [26] that may
lead to failure. Due to high integration density, it is estimated that soft failure rate is
increasing in the future [30]. Another potential source of temporary faults is electromagnetic
interference [31].

4.2. Fault Tolerance Tasks

The objective of the current section is to define a taxonomy of Fault Tolerance tasks to
help categorize the identified papers. The Fault Tolerance tasks are based on more general
Fault Tolerance principles from References [32,33]. Figure 6. shows the taxonomy of Fault
Tolerance tasks applicable in USNs and how they affect each other. While the design and
initial deployment of USNs contribute to Fault Prevention and Prediction abilities, data
collecting techniques at the run-time contribute also to Fault Detection and Fault Recovery
stages of the system, all of which are going to be discussed in the current paper.

The techniques under consideration can be categorized into the following groups:

• Fault Prediction and Prevention
This task is about both preventing a fault to happen, as well as about proactive fault
avoidance. Sensor networks can prevent certain faults from happening by design and/or
deployment aspects. A disadvantage of fault prevention is a potentially increased system
complexity. Fault avoidance, in turn, includes manufacturing testing and verification,
which have a high cost often exceeding that of the entire design process.

• Fault Detection and Identification
One of the central parts of Fault Tolerance is Fault Detection and Fault Identification of
affected components which can, for instance, be performed by utilizing data collection
with ping messages. Without Fault Identification, for instance, sensor node and
network faults may be hard to distinguish. A disadvantage of Fault Detection and
Fault Identification may be additional energy requirements and network congestion.

• Fault Isolation, Masking, and Recovery
Isolation, masking, and recovery are different techniques for repairing a fault, mini-
mizing the effect of a fault, or avoiding it to turn to system failure. Identified faults
can be isolated, masked, and sensor network recovered, for instance, redirecting
traffic through healthy backup components. Fault Recovery can ensure overall system
operation even when components degrade. The downside may be the cost of adding
components to ensure redundancy.

The overview of fault tolerant techniques presented in the following section follows
the above-described taxonomy.

Fault tolerance

Fault prevention
and prediction

Design Deployment Data collection

Fault detection
and identification

Fault Isolation,
Masking and Recovery

Figure 6. Taxonomy of Fault Tolerance tasks in USNs.
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5. Overview of Techniques by Fault Tolerance Tasks

In the following, the Fault Tolerance techniques categorized according to the Fault
Tolerance Tasks introduced in Section 4.2 and presented in Figure 6 will be discussed in
more detail.

5.1. Fault Prevention and Prediction

Fault prevention and prediction in sensor networks are dependent on the architectural
design of the system and the initial deployment method of the sensor network. These will
be discussed in the following subsections. In addition, data collection in USNs and testing
frameworks for UWSNs are presented.

5.1.1. Design of the Sensor Network

In Wireless Sensor Networks (WSN), instead of a centralized homogeneous topology,
dividing nodes into clusters is an energy efficient and resilient method [12], where dedicated
cluster head nodes may have more energy and communication capabilities to effectively
act as mediators between regular nodes and data sinks.

To overcome the issues caused by varying environmental challenges of Underwater
Wireless Sensor Networks (UWSN), natural algorithms may be utilized. For instance, clus-
tering and routing can be done utilizing Cuckoo Search algorithm and Particle Swarm Op-
timization [34], which have behaved more resiliently in underwater conditions than more
usual terrestrial Low Energy Adaptive Clustering Hierarchy (LEACH) protocol [11]. Pres-
sure measurements have been used for UWSN routing [35] with floating depth-controlling
sensors. Fault Management tasks can also be distributed across the whole network. In WSN
with enough spare nodes energy efficient grid can be formed [36], changing the node man-
ager, gateway and sensing nodes selected and spare nodes put to sleep. This results in
energy-efficient and lightweight network but requires excess nodes.

However, existing UWSN protocols have not been adequately compared in underwa-
ter field trials yet [4].

5.1.2. Sensor Network Deployment

Sensor network deployment techniques are important for WSNs where deployment
may directly affect the nodes’ locations and networking availability. Even for terres-
trial wireless sensor networks, to obtain a satisfactory network performance, an adapt-
able deployment method is essential [37]. Usually, the sensor placement for WSNs uti-
lizes, for redundancy reasons, more sensors than the minimum required number [38].
The deployment costs and energy efficiency of WSNs have been investigated in Refer-
ence [39], and it has been found that there is no single solution that can easily be applied in
practice [40].

Wired sensor network deployment is less researched, possibly because wired sensor
networks’ node deployment locations are limited by the cables, their locations are more
predetermined, and node connectivity is not directly related to the location.

5.1.3. Data Collection

Sensor networks tend to have limited network bandwidth, energy, and storage capa-
bilities. Thus, filtering and aggregating sensor information may be a way to meet those
requirements. Raw sensor data near the source can be divided into informative, non-
informative, and outlier groups [41], and only the needed data could be communicated or
stored. Outlier data may result from noise, failures, disturbances, etc., and may be useful
for Fault Tolerance purposes.

Different techniques to compress and aggregate collected information in UWSNs are
investigated in Reference [42]. It was found that aggregation is justified, and cluster-based
aggregation techniques are performing better than non-cluster-based ones. For instance,
cluster head (CH) switching to backup (BCH) technique was proposed [43] for cluster-
based UWSNs.
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Moreover, security challenges need to be addressed. One way to minimize the risk of
data tampering and/or interference is to ensure that the data is processed locally or, if that
is not possible, then communicated end-to-end encrypted [44].

5.1.4. UWSN Testing Frameworks

Wireless networking protocols are one of the key research areas in UWSNs. To evaluate
the implementation of underwater wireless protocols, simulation is often used. Due to the
specifics of underwater environments (See Section 3), generic simulation environments
are not able to capture some of the relevant features. Frameworks covered in the current
section are useful for underwater acoustic protocols’ simulation and evaluation.

Frameworks, such as DESERT version 1 and 2 [45] and SUNSET [46], that allow
simulation, emulation, and testing of the sensor networks, have been developed for UWSNs.
An analysis conducted in Reference [47] shows that SUNSET represents a more mature,
flexible, and robust framework for in-field testing than DESERT. However, DESERT v2 was
released subsequently. For acoustic UWSN security testing, SecFUN framework [48] has
been proposed.

5.2. Fault Detection and Identification

In essence, Fault Detection means determining that one or more bits in the computa-
tion differ from their correct value [33]. This can be detected via continuous monitoring of
the network and nodes’ status. Some sources also use the word “Diagnosis” in a broader
meaning than just detection and identification. Diagnosis has been defined as “characteriz-
ing the system’s state to locate the causes of errors, determine how the system is changing
over time, and predict errors before they occur [33]”. The current section covers different
techniques to execute the previously mentioned concepts.

A distributed hierarchical fault management [49] has been used for WSNs, where
agent Fault Detection devices collect information from the power modules and sensors to
determine failure conditions and sequentially diagnose the nature of the detected failure.

At higher abstraction levels, there has been a wide use of the SNMP protocol [50] by
the industry for Fault Detection querying and triggering in IP networked devices. There
are multiple commercial tools for generating failures, e.g., Chaos Monkey from Netflix [51],
that randomly terminate services in production environments, to ensure their resiliency.
The latter does not manage the occurring faults but ensures that the repairing mechanisms
are in place and operable. Intelligent Platform Management Interface (IPMI) [52] is an
industrial technology specification for hardware system management and monitoring.

A neural-network-based scheme for sensor failure detection, identification, and ac-
commodation can be used which may allow the conditions to deviate to greater extent
from theoretical models and estimation. A relatively simple and computationally light ap-
proach has been presented [53], where a neural network is used as an online learning state
estimator for detecting faults. The neural network itself can be built as fault-tolerant [54],
so that failing nodes have the least impact on result data.

Situational Awareness approach, using a mechanism that has been borrowed from
humans, can be applied in sensor data interpretation for Internet of Things (IoT), specifically,
regarding processes of sensation, perception and cognition. In addition to specification-
based and learning-based approaches, a perception-based approach utilizing Fuzzy Formal
Concept was proposed [55] for Situational Awareness identification.

Semantic Sensor Network Ontology has been proposed in Reference [56] for managing
interoperability between sensing systems. The Semantic Ground describes information
for interoperability and cooperation among agents [57]. To enhance resilience in Semantic
Sensor Networks, monitoring nodes may forward observations to association nodes, which
develop Situational Awareness by mining association rules, for example, via a natural
Artificial Bee Colony algorithm [57].
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Electric Power Grids need efficient monitoring since, for outage detection, environmen-
tal monitoring, and fault diagnostics, different WSN-based approaches are reviewed [13].
Most of these approaches are also applicable in other kinds of applications.

5.3. Fault Isolation, Masking and Recovery

Subsequent to Fault Detection, Fault Identification, and Fault Diagnosis, a fault han-
dling stage can be entered [49] to prevent further data corruption and system deterioration.
The fault handling consists of Fault Isolation, Masking, and Recovery. Fault handling
can hide the fault occurrence from other components by applying Fault Masking; the
key techniques for such masking are informational, time, and physical redundancy [32].
Proposed masking technique For Underwater Vehicles is Triple Modular Redundancy
(TMPR) [58], which is also one of the most commonly used Fault Masking techniques.
Isolating a faulty component from the others can be facilitated by using virtualization [32].
In large scale distributed systems, frozen virtual images of healthy services have been used
as checkpoints [59] for rolling back in case of a fault occurrence.

Fault Recovery ensures that the fault does not propagate to visible results, for instance,
by rolling back to a previous healthy state (checkpointing) or re-trying failed operations
(time redundancy). Some of the techniques for Fault Recovery can be Reconfiguration,
which is changing the system’s state so that the same or similar error is prevented from
occurring again, and Adaptation, which is re-optimizing the system, for instance, after Re-
configuration task [33].

In Sensor Networks, different approaches for Fault Recovery have been used, that have
different resource overheads, energy-efficiencies, scalabilities and network types. For both
network and node Fault Recovery in wireless sensor networks, Mitra et al. (2016) [8]
compares techniques, such as checkpoint-based recovery (CRAFT), agent-based recovery
(ABSR), fault node recovery (FNR), cluster-based and hierarchical fault management
(CHFM), and Failure Node Detection and Recovery algorithm (FNDRA). While some
of those are specific to terrestrial wireless usage, some principles (e.g., checkpointing,
etc.) can also be used in wired and/or underwater environments. To reduce the network
bandwidth requirements, checkpoint backup can be mobile to nearby nodes [60] and used
for recovering from fault situations.

In network protocols, Fault Masking and Fault Recovery are handled by error control
schemes that are commonly categorized into the following three groups [2]:

• Automatic Repeat Request (ARQ)—re-transmission of corrupted data is asked;
• Forward Error Correction (FEC)—data corruption can be detected and corrected by

the receiving end; and
• Hybrid ARQ (HARQ)—a combination of FEC and ARQ.

The cross-layer approach benefits Fault Recovery significantly since single-layer re-
dundancy, such as hardware redundancy and application checkpointing, have very high
costs, and latency between fault occurrence and detection makes the recovery difficult [33].

6. Comparative Analysis

All the papers that were selected according to the criteria described in Section 2 are
listed in Table 2. The table includes information about the targeted extra-functional aspects
and Fault Tolerance task(s). In addition, the Marine column in Table shows if the listed
paper is explicitly touching aquatic environments. The papers are ordered by their order of
citation within this survey paper. Papers that are not directly cited in the text but still listed
in Table 2 are ordered chronologically by the publishing year. Papers that are not included
in the analysis but are cited (e.g., definitions) have not been included in the table.

It can be seen from Table 2 that only two papers address both marine and cross-
layer Fault Tolerance aspects. However, in the work targeting cross-layer analysis of
error control [2], the term ’cross-layer’ does not apply to the system stack but only to the
communication protocol layers. Another work authored by the authors of this survey [61]
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is focusing on data-driven cross-layer Fault Tolerance. Thus, there is a serious gap in
research addressing cross-layer Fault Tolerance in underwater sensor networks.

Regarding other extra-functional aspects, security in marine environments is ad-
dressed by six marine papers and is focusing on securing wireless communication [20,48,62],
authentication [63], and hybrid attacks [64]. On scalability, seven marine papers were iden-
tified, and underwater scalability has been researched, for instance, in the context of
monitoring underwater pipelines [22]. On Energy-efficiency, there were 14 Marine papers
identified, and extensive focus has been on energy-efficient underwater wireless proto-
cols [3,19,65–69] and less on other aspects. Open research issues from all the mentioned
extra-functional aspects will be discussed in the following section.

Table 2. Categorized papers.

Pub. 1st Auth. Year Extra-Functional Aspect Marine Fault Tolerance (FT) Tasks and
Secure Energy-

Efficient
Scalable Cross-

Layer
Other Research Areas

[1] Domingo 2012 - - - - + sensor network
[2] Domingo 2012 - - - + + sensor network, FT

detect/recover, wireless
[3] Zenia 2016 - + + - + sensor network, routing protocol,

survey, FT detect, FT recover
[4] Jiang 2018 - - - - + survey, wireless, sensor network
[5] Kao 2017 - - - - + FT design, survey, wireless
[6] Veleski 2017 - - - + - survey, FT detect, FT recover
[7] Paradis 2007 - - - + - FT detect/recover, survey,

wireless
[8] Mitra 2016 - + + + - survey, wireless, FT detect, FT

recover,
[9] Atzori 2010 - - - - - sensor network, survey

[10] Diaz 2016 - - + - - survey
[11] Tyagi 2013 + + + - - survey, wireless, routing protocol
[12] Singh 2012 - - - - - routing protocol, survey , wireless
[13] Fadel 2015 - - - - - survey, sensor network, wireless,

FT detect
[14] Moridi 2020 - - - - - sensor network, wireless, FT

detection, FT recovery
[15] More 2017 - + + - - sensor network, survey
[16] Amin 2019 - - - - - FT detect/recover, survey
[18] Domingo 2009 - - - - + FT detect, wireless
[19] Xu 2012 - + + - + FT detect, FT recover, sensor

network
[20] Lal 2016 + - + - + wireless, sensor network
[21] Das 2017 - - + - + localization, sensor network, FT

recover
[22] Mohamed 2011 - - + - + sensor network, FT detect
[23] Kumar 2018 - - + - - FT detect/recover
[25] Khan 2013 - - + + - FT detect/recover, wireless
[26] Henkel 2011 - - - + - FT design/detect/recover
[27] Georgakos 2013 - - - + - FT design/detect/recover, vehicle
[28] Lorenz 2012 - - - - - FT prevent
[29] Sauli 2012 - - - - - FT prevent
[30] Rehman 2016 - - - + - FT prevent/detect/recover
[31] Kaaniche 2000 - - - - - FT prevent/detect/recover
[33] Carter 2010 - - - + - FT design
[34] Sofi 2018 - + - - + sensor network, wireless
[35] Noh 2016 - - - - + routing protocol, sensor network,

wireless
[37] Wu 2007 - - - - - deployment, localization, sensor

network, wireless
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Table 2. Cont.

Pub. 1st Auth. Year Extra-Functional Aspect Marine Fault Tolerance (FT) Tasks and
Secure Energy-

Efficient
Scalable Cross-

Layer
Other Research Areas

[38] Isler 2004 - - - - - deployment, sensor network,
wireless

[39] Dong 2020 - + - - + sensor network, wireless, FT
recover

[40] Cheng 2008 - - - - - deployment, sensor network,
wireless

[41] Bhuvana 2018 - + - - - sensor network, wireless, FT
detect

[42] Goyal 2017 - - - - + wireless, sensor network
[43] Goyal 2018 - - - - + wireless, sensor network, FT

detection, FT recovery
[45] Campagnaro 2016 - - - - + framework, wireless, sensor

network
[46] Petrioli 2015 - - - - + framework wireless, sensor

network
[47] Petroccia 2013 - - - - + framework, wireless, sensor

network
[48] Ateniese 2015 + - - - + framework, wireless, sensor

network
[49] Liu 2013 + + - + - wireless, sensor network
[51] Gunawi 2011 - - + - - FT design
[53] Napolitano 1995 - - - - - sensor network, FT detect, FT

recover
[54] Neti 1992 - - - - - FT design
[55] Benincasa 2014 - - - - - sensor network
[56] Compton 2012 - - - - - sensor network, deployment
[57] DAniello 2016 - - - + - sensor network, FT detect, FT

recover
[58] Alansary 2019 - - - - + vehicle, FT recovery
[59] Cristea 2011 + - + - - FT detect, FT recover
[60] Salera 2007 - - - + - sensor network, FT detect, FT

recover
[61] Vihman 2020 + - + + + sensor network, FT detect
[62] Han 2015 + - - - + wireless, sensor network
[63] Chae-

Won
2016 + - - - + sensor network, wireless

[64] Han 2020 + - + - + sensor network, wireless
[65] Dong 2013 - + - - + sensor network, wireless
[66] Zhou 2016 - + - - + , wireless, sensor network,

routing protocol
[67] Wang 2016 - + - - + , sensor network, wireless
[68] Huang 2011 - + - - + wireless, sensor network, routing

protocol
[69] Rani 2017 - + - - + sensor network, routing protocol
[70] DeHon 2010 - + + + - FT detect, FT recover
[71] Darra 2017 + - - - - survey, sensor network, wireless
[72] Mitra 2010 - - - + - FT detect, FT recover
[73] Henkel 2014 - - - + - FT detect, FT recover
[74] Bulusu 2000 - + + - - localization, sensor network
[75] Nassif 2001 - - - - - FT prevent
[76] Zhao 2002 - + + - - , wireless, sensor network
[77] de Lemos 2004 - - - - - FT design, sensor network
[78] Bokareva 2005 - - - + - cross-layer, FT design, FT recover,

framework, sensor network
[79] Heidemann 2006 - - - - + sensor network, wireless
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Table 2. Cont.

Pub. 1st Auth. Year Extra-Functional Aspect Marine Fault Tolerance (FT) Tasks and
Secure Energy-

Efficient
Scalable Cross-

Layer
Other Research Areas

[80] Mengjie 2007 - - + + - wireless, sensor network, FT
detect, FT recover

[81] Lee 2008 - - - - - wireless, FT detect, sensor
network

[82] Wang 2008 - - - - + sensor network
[83] Khan 2009 - + + - - wireless, FT design, sensor

network
[84] Teymorian 2009 - - - - + localization, sensor network
[85] Yu 2009 - - - - + localization, wireless, sensor

network
[86] Kim 2011 - - - + - vehicle, FT detect, FT recover,
[87] Tanasa 2011 - - - - - vehicle, FT detect
[88] Roman 2011 + - - - - sensor network,
[89] Paul 2011 + - - - - sensor network
[90] Xu 2011 - - - - + wireless, sensor network, routing

protocol, FT recovery
[91] Thomas 2013 - - - - - FT detect
[92] Gubbi 2013 + - + - - wireless, sensor network,
[93] Guo 2013 - - + - + localization, sensor network
[94] Amory 2013 + - + - + vehicle
[95] Oteafy 2014 - - - + - wireless, sensor network
[96] Rault 2014 - - + - - wireless, sensor network
[97] Kuila 2014 - + - - - wireless, sensor network, routing

protocol
[98] Zhu 2014 - - - - + sensor network
[99] Rossi 2015 - + - - + sensor network, wireless
[100] Bauer 2015 - - - - - FT masking
[101] Benson 2015 - - - + - sensor network
[102] Zhehao 2015 - - - - + localization, wireless, sensor

network
[103] Han 2015 - - - - + localization, wireless, sensor

network, deployment
[104] Valerio 2015 - - - - + wireless, sensor network, routing

protocol
[105] Rehman 2016 - - - + - FT detect, FT recover,
[106] Sahoo 2016 - - - + - FT design, FT detect
[107] Li 2016 - - - - + localization, vehicle
[108] Liu 2016 - - - - + sensor network, wireless,

localization
[109] Khan 2016 - - - - + vehicle, sensor network
[110] Koraz 2017 - - - + - FT detect
[111] Suvarna 2017 - + - - + wireless, sensor network, routing

protocol
[112] Cario 2017 - + - - + sensor network, wireless
[113] Dong 2017 - + - - + , localization, wireless, sensor

network
[114] Kao 2017 - - - - + survey, sensor network, wireless
[115] Mortazavi 2017 - - - - + localization, wireless, sensor

network
[116] Seto 2017 - - - - + vehicle
[117] Azad 2018 - - - + - FT detect, FT recovery
[118] Sahu 2018 - - - - + clustering, sensor network,

routing protocol, FT detection, FT
recovery

[119] Dala 2018 - - - - + sensor network, FT detection, FT
recovery
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Table 2. Cont.

Pub. 1st Auth. Year Extra-Functional Aspect Marine Fault Tolerance (FT) Tasks and
Secure Energy-

Efficient
Scalable Cross-

Layer
Other Research Areas

[120] Tang 2018 - - - - + wireless, sensor network, fault,
FT detection, FT recovery

[121] Yanmaz 2018 - - + - - vehicle, sensor network, wireless
[122] Han 2018 - - - - + localization, wireless, sensor

network
[123] Shah 2018 - - + - + localization, sensor network
[124] Caporuscio 2020 - - - - - sensor network, FT detection, FT

recovery
[125] Desai 2020 - - - - - sensor network, FT detection
[126] Jin 2020 - - - - + sensor network, wireless, routing

protocol, vehicle, FT detection; FT
recovery

[127] Prasanth 2020 - + - - + wireless, sensor network, fault, ft
recovery, ft detection

7. Open Research Issues

In the following, the open research issues identified are presented according to the
categories of extra-functional aspects reported in Table 2.

7.1. Security

Faults and security are interrelated concepts [59]. It requires effort to prevent systems
from being penetrated, even when they operate as intended; however, faults will add
further uncertainty and make the task of prevention even harder. Faults can be created by
an intrusion; but, moreover, faults can enable new intrusion vectors [70]—misbehaving
devices violate key assumptions and create a number of new attack vectors to systems.
For example, soft errors explained in Section 4.1 can be used to defeat cryptography [128].
In wireless sensor networks, intrusion detection systems have been investigated [71],
and intrusion detection can be divided into Anomaly detection, which can work well for
unknown attacks, and Misuse detection, for known attack signatures.

7.2. Energy-Efficiency

Power dissipation has by now reached a point where energy concerns limit the
computation we can deploy on the chip [70], and the aim is shifting from transistor density
and speed to energy density and cost. Energy density and efficiency need also to be
addressed on a larger scale; for instance, WSNs may not have unlimited power supply and
need to utilize energy-efficiency strategies [11,12,36,40]. For Fault Tolerance techniques,
cross-layer approach is considered more energy-efficient [33] than single layer. Strategic
redundancy in cross-layer approach may allow systems to safely operate on the verge of
failure [70], spending less energy without going over the edge.

In sensor networks, energy consumption can be reduced, for instance, by using
specific low-energy communication protocols, reducing the number and speed of the
nodes, and pausing the nodes [129]. However, with the growing complexity of applications,
energy consumption is becoming one of the limiting factors.

7.3. Scalability

One of the traditional benefits of scaling has been the decrease of cost per func-
tionality [70], but easing reliability problems by multiplicating logic, voting and similar
techniques means that the scaled technology might not offer a reduction of energy or area.
Some Fault Tolerance techniques may increase computing overhead, and not all approaches
are scalable [8]. Large scale fault tolerant systems are researched without paying special
attention to energy and communication constraints [59].
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7.4. Cross Layer Approach to Fault Tolerance

Faults are not going to disappear but likely to increase in the future [30]. One way to
cope with faults is to accept imperfect devices to fail and compensate failures at higher
levels in the system stack [70], tolerating faults across layers involving circuit design,
firmware, operating system, applications, etc. Cross-layer fault tolerant systems have
potential to implement reliable, high-performance and energy-efficient solutions without
overwhelming costs [33] by distributing the responsibilities of tolerating faults across
multiple layers [6]. Cross-layer Fault Tolerance has also been viewed from the perspective
of sensor data layers [61].

In case Fault Detection and Fault Recovery are to be implemented in different system
layers, then following challenges arise [72]:

• For statistical validation and metrics high confidence resource-light reliability and
availability estimation is needed.

• Verification of resilience techniques, to be sure that resilience techniques perform
under all possible scenarios.

• Reliability grades for testing and grading system-wide reliability and data integrity.
Reliability may change under different workloads.

In addition to the cross-layer approach, a Multi-Layer approach [73] has also been
proposed, where system layers are adapted to each other to reduce error propagation.
However, in the opinion of the authors of the current paper, this does not constitute a
principally distinct approach but, rather, an increment to the cross-layer approach.

8. Conclusions

The current paper presented a systematic survey on fault tolerant techniques in USNs and
pointed out open research issues in this field. The paper considered fault tolerant techniques
that are developed for underwater use or could be adapted for that. The techniques were
divided into groups according to the taxonomy of Fault Tolerance tasks, and papers utilizing
these techniques were discussed in sections corresponding to the tasks.

We collected top papers by conducting a systematic search from different online
environments, related papers suggested by those environments, and sources cited by the
collected papers. Next, we analyzed the collected papers, divided them into categories and
discussed aspects covered in those papers. Areas of high research interest and open research
issues in the scope of the initial criteria were detected and brought out. Additionally,
in order to categorize and systematize the analyzed papers, taxonomies for fault sources
and Fault Tolerance tasks were described, and a full table of the papers was presented.

The current paper is the first to investigate the state-of-the-art in Fault Tolerance,
particularly cross-layer Fault Tolerance, in USNs. According to the survey, there is a
lack of research covering the cross-layer Fault Tolerance aspect for underwater sensor
networks. Therefore, the mentioned topic is a prospective candidate for future works on
fault tolerant USNs.
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