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Abstract: Entropy indicates irregularity or randomness of a dynamic system. Over the decades,
entropy calculated at different scales of the system through subsampling or coarse graining has been
used as a surrogate measure of system complexity. One popular multi-scale entropy analysis is the
multi-scale sample entropy (MSE), which calculates entropy through the sample entropy (SampEn)
formula at each time scale. SampEn is defined by the “logarithmic likelihood” that a small section
(within a window of a length m) of the data “matches” with other sections will still “match” the
others if the section window length increases by one. “Match” is defined by a threshold of r times
standard deviation of the entire time series. A problem of current MSE algorithm is that SampEn
calculations at different scales are based on the same matching threshold defined by the original
time series but data standard deviation actually changes with the subsampling scales. Using a fixed
threshold will automatically introduce systematic bias to the calculation results. The purpose of this
paper is to mathematically present this systematic bias and to provide methods for correcting it. Our
work will help the large MSE user community avoiding introducing the bias to their multi-scale
SampEn calculation results.

Keywords: entropy; multi-scale sample entropy; systematic bias

1. Introduction

Complexity is an important property of a complex system such as the living organisms,
Internet, traffic system etc. Measuring system complexity has long been of great interest
in many research fields. Since complexity is still elusive to define, a few approximate
metrics have been used to quantify complexity. One widely used measure is entropy which
quantifies the irregularity or randomness. Complexity and entropy, however, diverge
when complexity reaches the peak. Before the peak, complexity increases with complexity,
but complexity decreases with entropy after the peak. To provide approximate solution
to this dilemma, people have proposed many empirical measures. A popular one is
the multi-scale entropy (MSE) proposed by Costa et al. [1]. MSE is based on Sample
entropy (SampEn) [2,3], which is an extension of the well-known Approximate entropy
(ApEn) [3,4] after removing the self-matching induced bias. SampEn has gained popularity
in many applications such as neurophysiological data analysis [5] and functional MRI data
analysis [6,7] because of the relative insensitivity to data length [2,8]. Because complex
signal often presents self similarity when the signal is observed at different time scale,
Costa et al first applied SampEn to the same signal but at different time scales after coarse
graining. When applied to Gaussian noise and 1/f noise, it was observed that SampEn of
Gaussian noise decreases with the signal subsampling scale while it stays at the same level
for most of scales of a 1/f process. Since a 1/f process is known to have higher complexity
(defined by the higher self similarity) than Gaussian noise, the diverging MSE of a 1/f
noise and the Gaussian noise appears to support that MSE may provide an approximate

Entropy 2021, 23, 659. https://doi.org/10.3390/e23060659 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-0942-9359
https://orcid.org/0000-0002-8339-5567
https://www.mdpi.com/1099-4300/23/6/659?type=check_update&version=1
https://doi.org/10.3390/e23060659
https://doi.org/10.3390/e23060659
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23060659
https://www.mdpi.com/journal/entropy


Entropy 2021, 23, 659 2 of 12

approach to measure system complexity. Since its introduction, MSE has been widely used
in many different applications as reflected by the thousands of paper citations [1,9]. While
MSE and its variants have been shown to be effective for differentiating different system
states through simulation or real data, it introduces bias by using the same threshold for
identifying the repeated transit status at all time scales. Nikulin and Brismar [10] first
observed that MSE not purely measures entropy but both entropy and variation at different
scales. We here claimed that the changing variation captured by MSE is mainly caused
by an incomplete scaling during the coarse-graining process and the subsequent variance
change induced entropy change should be considered as a systematic bias to be removed.

The rest of this report is organized as follows. Section 2 is the background. To better
understand the series of entropy formation, we introduced Shannon entropy, ApEn, Sam-
pEn, and MSE. Section 3 describes the bias caused by the coarse-graining process and the
one threshold-for-all-scales MSE algorithm. Both a mathematical solution and a practical
solution were provided to correct the bias. Section 5 concludes the paper.

2. Entropy and MSE

This section provides a brief history about the evolution of entropy and approximate
entropy measures.

Hartley and Nyquist first used logarithm to quantify information [11,12]. Shannon
then proposed the concept of Shannon entropy as a measure of information through the
sum of the logarithmically weighted probability [13]. Denoting a discrete random variable
by X and its probability by p(x), Shannon entropy of X is formulated as:

H(X) = − ∑
x∈X

p(x) log p(x) = E[log (
1

p(x)
)];

In an analogous manner Shannon defined the entropy of a continuous distribution with
the density distribution function(pdf) p(x) by:

H(X) = −
∫

x∈X
p(x) log p(x)dx = E[− log p(x)],

where E represent the expectation operator. Without loss of generality, in this paper we use
natural logarithms to calculate entropy. When the entropy calculated via a logarithm to
base b, it could be calculated by Hb(X) = 1

log b H(X).
Shannon entropy was then extended into the Kolmogorov–Sinai(K-S) entropy [14] for

characterizing a dynamic system. Assume that the F-dimension phase space is partitioned
into a collection of cells of size rF and the state of the system is measured at constant time
intervals δ. Let p(c1, ...cn) be the joint probability that the state of system x(t = δ) is in cell
c1, x(t = 2δ) is in cell c2, ... , and x(t = nδ) is in cell cn. The K-S entropy is defined as

K-S entropy = − lim
δ→0

lim
r→0

lim
n→∞

1
δn ∑

c1,...,cn

p(c1, ..., cn) log p(c1, ..., cn).

K-S entropy depends several parameters and is not easy to estimate. To solve this
problem, Grassberger and Procaccia [15] proposed K2 entropy as a lower bound of K-S
entropy. Given a time series U = {u1, u2, ..., uN} with length N, define a sequence of m
dimension vectors v(m)

i = [ui, ui+1, ..., ui+m−1], 1 ≤ i ≤ N −m + 1. The m dependence of
functions are

Cm
i (r) = (N −m + 1)−1

N−m+1

∑
j=1

θ(r− ‖v(m)
i − v(m)

j ‖)

and

Cm(r) = (N −m + 1)−1
N−m+1

∑
i=1

Cm
i (r)
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where ‖vi − vj‖ is Euclidean metric ‖vi − vj‖ =
(

∑m−1
h=0 (ui+h − uj+h)

2
) 1

2 and θ(·) is Heavi-
side step function. K2 entropy is defined as

K2 entropy = lim
r→0

lim
m→∞

lim
N→∞

1
δ

log
Cm(r)

Cm+1(r)
.

By incorporating the embedding vector based phase space reconstruction idea pro-
posed by Takens [16] and replacing the Euclidean metric with the Chebyshev metric
‖vi − vj‖ = maxm−1

h=0 |ui+h − uj+h|, Eckmann and Ruelle [17] proposed an estimate of the
K-S entropy through the so-called E-R entropy:

Φm(r) = (N −m + 1)−1
N−m+1

∑
i=1

log Cm
i (r)

E-R entropy = lim
r→0

lim
m→∞

lim
N→∞

1
δ

[
Φm(r)−Φm+1(r)

]
,

where the delay is often set to be δ = 1.
The E-R entropy has been useful in classifying low-dimensional chaotic systems, but it

becomes infinity for a process with superimposed noise of any magnitude [18]. Pincus [4]
then extended the E-R entropy into the now well-known ApEn depending on a given
embedding window length m and a distance cutoff r for the Heaviside function:

ApEn(U; m, r) = Φm(r)−Φm+1(r),

and
ApEn(m, r) = lim

N→∞
ApEn(U; m, r), N is the length of discrete signal U.

SampEn was proposed by Richman and Moorman [19] as an extension of ApEn to
avoid the bias induced by countering the self-matching of each of the embedding vectors.
Specifically, SampEn is formulated by:

Bm
i (r) = (N −m− 1)−1

N−m

∑
j=1,j 6=i

θ(r− ‖v(m)
i − v(m)

j ‖),

Bm(r) = (N −m)−1
N−m

∑
i=1

Bm
i (r),

Am
i (r) = (N −m− 1)−1

N−m

∑
j=1,j 6=i

θ(r− ‖v(m+1)
i − v(m+1)

j ‖),

Am(r) = (N −m)−1
N−m

∑
i=1

Am
i (r),

SampEn(U; m, r) = − log
Am(r)
Bm(r)

, fix m and r,

SampEn(m, r) = lim
N→∞

SampEn(U; m, r), N is the length of discrete signal U.

The coarse-graining multi-scale entropy-based complexity measurement can be traced
back to the work by Zhang [20] and Fogedby [21]. In [1,22] Costa et al. calculated entropy at
each coarse-grained scale using SampEn and named this process as the MSE. As commented
by Nikulin and Brismar [10], a problem of the MSE algorithm is the use of the same
matching criterion r for all scales, which causes systematic bias to SampEn.
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3. The Systematic Bias of Entropy Calculation in MSE

In MSE [1,22], the embedding vector matching threshold r in defined by the standard
deviation of the original signal. Using the same threshold, entropy of Gaussian signal
decreases with the scale used to downsample the original signal. By contrast, entropy of
1/f signal remains unchanged when scale increases. As 1/f signal is known to have high
complexity while Gaussian noise has a very low complexity, the monotonic MSE decaying
trend or the sum of MSE at different scales were proposed as a metric for quantifying
signal complexity.

However, the moving-average based coarse-graining process automatically scales
down the subsampled signal at different time scales. Without correction, this additional
multiplicative scaling will be propagated into the standard deviation of the signal to be
assessed at each time scale and will artificially change sample entropy. This bias can be
easily seen from the coarse-graining of a Gaussian noise.

Denote a Gaussian variable and its observations by X = {x1, x2, ..., xN}, where N
indicates the length of the time series. The coarse-graining or moving averaging process
can be described by Y(τ) = {y(τ)j }, y(τ)j = 1/τ ∑

jτ
i=(j−1)τ+1 xi where τ > 0 is the coarse-

graining level or the so-called “scale”. Given the mutual independence of the individual
samples of X, the moving averaging of these samples can be considered as an average of
independent random variables rather than observations of a particular random variable.
In other word, we can rewrite Y(τ) to be Y(τ)

j = 1/τ ∑
jτ
i=(j−1)τ+1 Xi, where Xi is a random

variable. For Gaussian noise X, Xi will be Gaussian noise too and can be fully characterized
with the same mean µ and standard deviation (SD) σ. Through a simple mathematics
operation, we can get that SD(Y(τ)) = σ/

√
τ. Because SD(τ) monotonically decreases with

τ, if we do not adjust the matching threshold, the number of matched embedded vectors
will increase with τ, resulting a decreasing SampEn.

Entropy of a Gaussian distributed variable can be calculated through Shannon entropy:

H(Y) = −
∫ +∞

−∞
p(y) log p(y)dy

= −
∫ +∞

−∞
p(y) log(

1
σy
√

2π
e
− (y−µy)2

2σ2
y )dy

= −
∫ +∞

−∞
p(y) log(

1
σy
√

2π
)dy−

∫ +∞

−∞
p(y) log(e

− (y−µy)2

2σ2
y )dy

= − log(
1

σy
√

2π
)
∫ +∞

−∞
p(y)dy +

1
2σ2

y

∫ +∞

−∞
(y− µy)

2 p(y)dy

=
1
2

log (2πσ2
y ) +

1
2

.

For the simplicity of description, we often normalize the random variable to have a
µ = 0 and σ = 1. Considering the scale-dependent SD derived above, we can then get the
Shannon entropy of the Gaussian variable at the scale τ by

H(Y(τ)) =
1
2

log (
2π

τ
) +

1
2

This equation clearly demonstrates the non-linearly but monotonically decreasing relation-
ship of entropy with respect to scale τ.
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Below, we provided mathematical derivation of the dependence of MSE on the signal
subsampling scale. Given the m dimensional embedding vectors Z(m)

j = [Yj, Yj+1, ..., Yj+m−1],
sample entropy can be expressed as [22]

SampEn(Y; m, r) = − log
Pr(‖Z(m+1)

j − Z(m+1)
i ‖ ≤ r)

Pr(‖Z(m)
j − Z(m)

i ‖ ≤ r)

= − log Pr
(
‖Z(m+1)

j − Z(m+1)
i ‖ ≤ r

∣∣∣‖Z(m)
j − Z(m)

i ‖ ≤ r
)

.

where ‖ · ‖ is the Chebyshev distance.
For m = 1, we can have

{‖Z(m)
j − Z(m)

i ‖ ≤ r} = {|Yj −Yi| ≤ r},

and

{‖Z(m+1)
j − Z(m+1)

i ‖ ≤ r} = {max{|Yj −Yi|, |Yj+1 −Yi+1|} ≤ r}
= {|Yj −Yi| ≤ r} ∧ {|Yj+1 −Yi+1| ≤ r}.

Thus,

SampEn(Y; m, r) = − log
Pr({|Yj −Yi| ≤ r} ∧ {|Yj+1 −Yi+1| ≤ r})

Pr(|Yj −Yi| ≤ r)

= Pr
(
|Yj+1 −Yi+1| ≤ r

∣∣|Yj −Yi| ≤ r
)
.

Based on the iid condition of Yj, we can draw a conclusion that

Pr
(
|Yj+1 −Yi+1| ≤ r

∣∣|Yj −Yi| ≤ r
)
= Pr

(
|Yj+1 −Yi+1| ≤ r

)
.

If m ≥ 2, we can get

{‖Z(m)
j − Z(m)

i ‖ ≤ r} = { max
k∈{0,...,m−1}

{|Yj+k −Yi+k|} ≤ r},

and

{‖Z(m+1)
j − Z(m+1)

i ‖ ≤ r} = { max
k∈{0,...,m}

{|Yj+k −Yi+k|} ≤ r}

= {|Yj+m −Yi+m| ≤ r} ∧ { max
k∈{0,...,m−1}

{|Yj+k −Yi+k|} ≤ r}.

Therefore,

SampEn(Y; m, r)

= − log
{|Yj+m −Yi+m| ≤ r} ∧ {maxk∈{0,...,m−1}{|Yj+k −Yi+k|} ≤ r}

{maxk∈{0,...,m−1}{|Yj+k −Yi+k|} ≤ r}

= Pr
(
|Yj+m −Yi+m| ≤ r

∣∣{ max
k∈{0,...,m−1}

{|Yj+k −Yi+k|} ≤ r}
)

.

and

Pr
(
|Yj+m −Yi+m| ≤ r

∣∣{ max
k∈{0,...,m−1}

{|Yj+k −Yi+k|} ≤ r}
)
= Pr

(
|Yj+m −Yi+m| ≤ r

)
,
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given the mutual independence of Yj. It should be noted that this conclusion does not
require the condition of identical distribution, as long as the condition of independence
is sufficient.

For the simplicity of description, we re-denote Yj+m and Yi+m by two general normally
distributed but independent random variables ξ and η whose means are 0 and SDs are 1.
The joint probability density functions (PDF) is

p(ξ, η) =
1

2πσ2
y

e
− (ξ−µy)2+(η−µy)2

2σ2
y

and probability is

Pr(|ξ − η| ≤ r) =
∫∫
|ξ−η|≤r

1
2πσ2

y
e
− (ξ−µy)2+(η−µy)2

2σ2
y dξ dη

=
∫ ∞

−∞

∫ η+r

η−r

1
2πσ2

y
e
− (ξ−µy)2+(η−µy)2

2σ2
y dξ dη.

We can then get

SampEn(Y; m, r) = − log Pr
(
|Yj+1 −Yi+1| ≤ r

)
= − log Pr(|ξ − η| ≤ r)

= − log

 1
2πσ2

y

∫ ∞

−∞

∫ η+r

η−r
e
− (ξ−µy)2+(η−µy)2

2σ2
y dξ dη


t=

η−µy
σy

======
s=

ξ−µy
σy

− log

(
1

2π

∫ ∞

−∞

∫ t+ r
σy

t− r
σy

e−
s2+t2

2 ds dt

)
.

Similar to Shannon entropy calculating, after normalize the random variable to
have a µ = 0 and σ = 1, the scale-dependent SD derived for coarse grained signal is
SD(Y(τ)) = 1/

√
τ. We can get

SampEn(Y(τ); m, r) = − log

(
1

2π

∫ ∞

−∞

∫ t+r
√

τ

t−r
√

τ
e−

s2+t2
2 ds dt

)
.

Since the interval [t− r
√

τ, t + r
√

τ] increases with τ, the above integral monotonically in-
creases with τ. Accordingly, the negative logarithm based sample entropy SampEn(Y(τ); m, r)
will monotonically decreases with τ. This is consistent with the aforementioned Shannon
entropy-based MSE bias description.

The systematic bias in MSE can be corrected by using a scale adaptive matching
threshold. One approach to adjust the threshold is to use SD(τ) = SD(0)/

√
τ for scale τ

during SampEn(Y(τ); m, r) calculation. This works well for Gaussian signal but may not be
effective for other signals if they have extra scale-dependent SD behavior in addition to that
induced by the subsampling scale. Finding the theoretical scale-dependent SD equation
may not be trivial too. Instead, SD can be directly calculated from the data after each coarse
graining. This approach has been proposed in [10].

To demonstrate the systematic bias of MSE and the effeteness of the correction method,
we used three synthetic time series with known entropy difference: the Gaussian noise,
a 1/f noise, and a random walk. The length of time series was N = 2× 104. MSE with and
without bias correction were performed.
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4. Results

Figure 1 shows the results of MSE with and without bias correction for the three time
series (Figure 1a). Parameters used for SampEn calculation were m = 2, and r = 0.15× SD.
Without bias correction, MSE produced a monotonically decaying SampEn for Gaussian
noise when scale increases. By contrast, SampEn of Gaussian noise stays the same level
at different scales after bias correction. The SD bias showed minor effects on SampEn
calculation for both 1/f noise and the random walk. Correcting the bias did not dramatically
change the SampEn at different scales.
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Figure 1. Different signals and their SampEn calculated at different scales. (a) The original signals
before coarse graining; (b) MSE without bias correction; (c) MSE with bias correction.

5. Discussion and Conclusions

We provided a full mathematical derivation for the systematic bias in MSE introduced
by the coarse graining process. We then used synthetic data to show the bias and the
correction of it using dynamic SD calculation. Bias correction for Gaussian data MSE
calculation works exactly as described by the theoretical descriptions given in this paper.
The systematic bias does not appear to be a big issue for the temporally correlated process
such as the 1/f noise and random walk. This is because variance of a temporally correlated
process does change with the subsampling process if the sampling rate is still higher
than the maximal frequency. According to [23], both 1/f noise and random work can be
considered special cases of the autoregressive integrated moving average (ARIMA) model.
As we derived in Appendix A, an ARIMA model is still an ARIMA model after coarse
graining given the condition of that the residuals at different time points are independently
and identically distributed (i.i.d.) Gaussian noise. In other words, the moving averaging
process will not change the signal variance and will not change SampEn.
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While we only showed the results based on one particular set SampEn calcualtion
parameters, we included additional figures in Appendix B showing that the bias and
the bias correction are still true for other parameters. We did not show the effects of bias
correction on real data, but the results shown in the synthetic data should be generalizable to
real applications since both the math derivations and the correction process are independent
of any specific data but rather general to any dynamic system.
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Appendix A. The Coarse-Grained ARIMA Process

Assume that a time series {Xi} can be modeled by an ARIMA process: ARIMA(p,d,q):(
1−

p

∑
h=1

ϕhLh

)
(1− L)dXi =

(
1 +

q

∑
h=1

θhLh

)
εi,

where {εi} are i.i.d. Gaussian noise, L is the lag operator.
Denote the consecutive coarse-grained time series of {Xi} by {Y(τ)

j }:

Y(τ)
j =

1
τ

jτ

∑
i=(j−1)τ+1

Xi.

where τ is scale.
Let

ε
(τ)
j =

1
τ

jτ

∑
i=(j−1)τ+1

εi,
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then {ε(τ)j } are also i.i.d. Gaussian and we can have

(
1−

p

∑
h=1

ϕhLh

)
(1− L)d

 1
τ

jτ

∑
i=(j−1)τ+1

Xi


=

1
τ

jτ

∑
i=(j−1)τ+1

[(
1−

p

∑
h=1

ϕhLh

)
(1− L)dXi

]

=
1
τ

jτ

∑
i=(j−1)τ+1

[(
1 +

q

∑
h=1

θhLh

)
εi

]

=

(
1 +

q

∑
h=1

θhLh

) 1
τ

jτ

∑
i=(j−1)τ+1

εi

.

and (
1−

p

∑
h=1

ϕhLh

)
(1− L)dY(τ)

j =

(
1 +

q

∑
h=1

θhLh

)
ε
(τ)
j .

This proves that for any scale τ, {Y(τ)
j } is also an ARIMA(p,d,q) process.

Appendix B. Numerical Results on Different m and r

The following Figures A1–A8 show additional MSE calculation results for different
SampEn parameters m and r with and without bias correction. N means the length of the
time series at scale 1. Theses figures confirmed the systematic bias in the original MSE
algorithm for different m and r and the data adaptive correction successfully removed the
bias for all assessed signals.
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Figure A1. MSE calculation results with m = 2 and r = 0.1× SD. Data length N = 2× 104.
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Figure A2. MSE calculation results with m = 2 and r = 0.2× SD. Data length N = 2× 104.
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Figure A3. MSE calculation results with m = 2 and r = 0.3× SD. Data length N = 2× 104.
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Figure A4. MSE calculation results with m = 2 and r = 0.4× SD. Data length N = 2× 104.



Entropy 2021, 23, 659 11 of 12

1 2 3 4 5 6 7 8 9 10

Scale

0

0.5

1

1.5

2

2.5

3

E
n

tr
o

p
y
 M

e
a

s
u

re

Gaussian noise

1/f power noise

Random walk

(a) MSE without bias correction
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Figure A5. MSE calculation results with m = 3 and r = 0.1× SD. Data length N = 2× 104.
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(a) MSE without bias correction
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Figure A6. MSE calculation results with m = 3 and r = 0.2× SD. Data length N = 2× 104.
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(a) MSE without bias correction
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Figure A7. MSE calculation results with m = 3 and r = 0.3× SD. Data length N = 2× 104.
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(a) MSE without bias correction
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Figure A8. MSE calculation results with m = 3 and r = 0.4× SD. Data length N = 2× 104.
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