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Abstract

The cleavage mechanism of severe acute respiratory syndrome (SARS) coronavirus main proté@ihas@QWP) for the octapeptide
AVLQSGFR is studied using molecular mechanics (MM) and quantum mechanics (QM). The catalytic dyad His-41 and Cys-145 in the active
pocket between domain | and Il seem to polarizethelectron density of the peptide bond between GIn and Ser in the octapeptide, leading
to an increase of positive charge on C(CO) of Gln and negative charge on N(NH) of Ser. The possibility of enhancing the chemical bond
between GIn and Ser based on the “distorted key” theory [Anal. Biochem. 233 (1996) 1] is examined. The scissile peptide bond between GIn
and Ser is found to be solidified through “hybrid peptide bond” by changing the carbonyl group CO of Gl tr CR. This leads to a
break of ther-bond system for the peptide bond, making the octapeptide (AVLQSGFR) a “distorted key” and a potential starting system for
the design of anti SARS drugs.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction based on the experimentalPM structures of human coro-
navirus (HCoV) and porcine transmissible gastroenteri-
Spreading of severe acute respiratory syndrome (SARS)tis virus (TGEV) complex. Recently, the crystal struc-
[22,26,27,31]in Asia, North America and several coun- tures of SARS CoV M© at different pH values were
tries in Europe prompted an unprecedented global ef-reported by Yang et al[34]. The X-ray structures re-
fort to fight the disease. Researchers have identified cru-vealed some differences with the homology model ob-
cial proteins of SARS-coronavirus and thousands of com- tained earlief7]. However, experimental structure of SARS
pounds are being screened in an effort to find new drugs CoV MP™ folds in an arrangement that is similar to the
[7,20,32] Anand et al.[7] described a homology model HCoV and TGEV M structures, and both homology
of SARS coronavirus main proteinase {1 or 3CLP™) model and experimental structure have a His—-Cys cat-
alytic dyad between domains | and [B4]. The struc-
—_— ) tures of the three coronavirus main proteinases reveal re-
_Abbreviations: SARS, severe acute respiratory syndrome; CoV, coron- o paple degree of conservation on the substrate-binding
avirus; MP , main protelnase . . . .
* Corresponding author. sites and form the structure basis for rational drug design
E-mail addresskchou@san.rr.com (K.-C. Chou). [7,20]-
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At the same time, structure-based drug design has been
progressing based on the molecular structure of SARS—CoV
MP™©[20]. AG7088 suggested by Anand et[al] could well
serve as a starting point to design efficient inhibitors for SARS
CoV MP°, AG7088 is a peptide inhibitor designed based on
the structure of HCoV M° and is being clinically tested by
Pfizer for the treatment of the human common cold. Chou et
al.[20] have found some deficiency of AG7088 for binding to
SARS CoV M and suggested to use its derivative KZ7088
that could form better interactions with the active pocket of
SARS CoV M', Chou et al. also proposed an octapeptide
inhibitor NH,—AVLQ | SGFR-COOH (the cleavage site is
indicated by| ) based on molecular modelling. This sugges- b SARS CoV M™®
tion was supported by the recent work of Yang et[34].

In their structural determination, these authors used a decade _ _ _ o )
peptide NH-TSAVLQ| SGFR COO, which squiesimi- (5, A =ieneieamnoe e e Doy 0ol
!ar to the octapeptide NJ+HAVLQ | SGFR-COOH. Accord- between R and Ry; (b) after chemical modification, the scissile peptide
ing to a very recent report by Gan et f3], the octapep-  pond changes to a strong “hybrid peptide bond” and the cleavage is difficult.
tide originally proposed by Chou et 0] has been synthe-  Adapted from Cho(i12] with permission.

sized and tested as the most active in inhibiting replication

of the SARS coronavirus compared with other compounds the active site region of a protease. Therefore, our research
reported. Moreover, it has been found that the octapeptidewill focus on the cleavability of an octapeptide.

had no toxicity in vivo under the physiological concentration As shown inFig. 1a, the combination of a thin line and a
[23]. dashed line is used to represent the conjugapeoperty in

That a peptide is cleavable by a protease means that thergeptide bond. Iifrig. 1b, however, the scissile peptide bond is
is good binding between ligand and receptor on the active replaced by a strong “hybrid peptide bond” betwearaRd
region of protease and that the peptide has a scissile bondRy through a chemical modification, and the enhanced chem-
to be cleaved (see, e.413]) and a comprehensive review ical bond become not cleavable by the protease. According to
[12]. However, one needs to make some further chemical the “distorted key” theory12], a cleavable octapeptide can
modification for the octapeptide in order to stabilize its in- be likened to a key that fits well in binding to the protease
hibition power to SARS CoV M° and make it become an  active region leading to a cleavage at its scissile bond. The
effective drug. This may be realized based on the “distorted octapeptide after some chemical modification can still bind
key” theory[12,13] To reach such a goal, a detailed un- to the active region but its peptide bond can no longer be
derstanding of the cleavage mechanism of the octapeptidecleaved by the protease. Thus, the modified octapeptide can
by SARS CoV M as well as the 3D structure of the en- be vividly compared to a “distorted key” that can be inserted
zyme is essential. Similar strategies have been used to investiinto a lock but that can neither open it nor be easily pulled
gate Cdk5—-Nc5a-ATP compleX19,36], apoptosis proteins  out from the locl{12]. In view of this, the modified octapep-
[10,11,15,17]Jand beta-secretase zymodg4]. Many useful tide naturally becomes a stable competitive inhibitor and a
insights have been gained through these studies. Accordinglypotential candidate of drug.
it is expected that the present study may also provide useful The octapetide AVLQSGFR is the first designed octapep-
insights for the development of anti SARS drug. tide [20] based on the molecular structure of SARS CoV

MP® and is proved cleavable experimentally. In this study,

we use molecular mechanical and quantum mechanical sim-
2. Theory and method ulations to investigate the cleavage mechanism, properties of

the chemical bonds concerned as well as the catalytic interac-

The protease-susceptible sites in a given protein or peptidetion between the octapeptide and SARS Co¥MThe study
usually extend to an octapeptide regid2,13] The corre- is performed in the following four steps: (1) using molecular
sponding amino acid residues are sequentially symbolized bymechanics to minimize the energy of the SARS Co¥M
eight subsites R R3, Rz, Ry, Ry, Ry, Ry, Ry, and the eight ~ complex with the octapeptide from the basis derived from
combination positions of protease are noted hy S, S, docking studies; (2) computing the atomic charge distribu-
S, S, Sy, Se, Sy (see, e.g.8,9] as well ag-ig. 3of [12]). tion around the binding pocket of SARS CoVPM using
Occasionally, the susceptible sites in some proteins may con-ab initio quantum mechanics and the minimizing conforma-
tain one subsite less or mdi3], however, eight amino acid  tional energy; (3) computing the molecular energy, chemical
residues are the most common cases. Although the proteinbond properties, and atomic charges of the octapeptide in
being cleaved contains much more than eight amino acid the background charge distributif2¥] of SARS CoV M
residues, usually only the segment of an octapeptide fits inusing ab initio quantum mechanics; and (4) in the same back-
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Fig. 2. The energy-refined docked structure of the octapeptidg—NH
AVLQSGFR—COOH with SARS coronavirus main protease (SARS CoV
MmProy,

ground charge distribution, computing the molecular energy,
chemical bond properties, and atomic charges of the modified
octapeptide.

3. Calculation results

The docking operation of the octapeptide AVLQSGFR
to SARS CoV M'° was performed based on the homology
structure[7,20] using MOE (molecular operating environ-
ment) program packad28]. Twenty-five docking structures
were obtained, and the one with the most optimal docking
score was used for further energy minimizatibig. 2shows
the energy-refined docked structure obtained by the afore-

mentioned step 1. In contrast to the common serine protease:

that have a Ser—His—Asp catalytic triad, SARS CoV¥V'M
has a His—Cys catalytic dyad (His-41 and Cys-145), which
is similar to TGEV M (His-41 and Cys-144) and HCoV
MP'® (His-41 and Cys-144]7,29]. According to Chou et al.
[20], the catalytic active region is located within the pocket
between domain | and Il of SARS coronavirus main protease
that contains the following 23 amino acid residues: Cys-22,
Gly-23,Thr-24, Thr-25, Leu-27, His-41, Val-42, Cys-44, Thr-
45, Ala-46, Glu-47, Asp-48, Met-49, Leu-50, Asn-51, Pro-
52, Tyr-54, Cys-145, His-164, Met-165, Asp-187, Arg-188,
and GIn-189.Fig. 3a shows the location of catalytic dyad

25 (2004) 1857-1864 1859
His-41 and Cys-145 in SARS CoV P. The active cleft of
SARS CoV M' can well accommodates the octapeptide,
and the ligand binds to the receptor through six hydrogen
bonds Fig. 3b), fully in consistent with the results reported
by Chou et al[20].

In order to study the influence of SARS CoVPM on
chemical bonds of the octapeptide, we considered a small
region from the catalytic cleft surrounding the octapeptide,
as shown irFig. 3b. The catalytic dyad His-41 and Cys-145
are in the front of peptide bond GIn-Ser on the subsites R
and Ry, The polar hydrogen kb on Nz in midazole group
of His-41 points to the peptide bond GIn-Ser and has large
influence in the active region.

AVLQSGFR
octapeptide

/

Gin-189

Phe-185 —»

Fig. 3. (a) The catalytic dyad His-41 and Cys-145 are located in the active
cleft between domain | and domain Il of SARS Co\P®I (b) The hydrogen
bonds between Nf+AVLQSGFR—COOH and the surrounding amino acid
residue of the enzyme.
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Fig. 4. Electron density counter map of peptide bond GIn—Ser in gaseous phasenepléme consisting of carbonyl C and O of GIn and N(NH) of Ser.

Electrostatic interaction plays the dominant role in empirical method AM1 are quite different from the results
ligand—receptor combination and must be taken into consid- by ab initio HF/6-31G calculationg25], especiallygESF of
eration during the quantum mechanical calculations for the AM1 are not reasonable. Becauge " reproduces quantum
influence of SARS CoV M°to the chemical bonds oftheoc- mechanical electrostatic potential on molecular surface, in
tapeptide. For this purpose, we divide the amino acid residuesthis research, we usgSP from HF/6-31G calculations to
inthe active cleft between domain | and Il of SARS CoV'™™ illustrate our points. It can be seen frorable 2that the two
into six segments and compute the atomic charges using atpolar hydrogen atoms on imidazole group have large atomic
initio quantum mechanics separateljid. 4). The 62 amino chargesgFSP. The atomic charge (0.4201) of polar hydro-
acid residues in the six segments are listedidhle 1 After gen H.; is a little smaller than the atomic charge (0.4288) of
deducting the overlap atoms, there are a total of 953 atomicproton I-g*l on nitrogen Nz and is close to the peptide bond
background charges, including all atoms in catalytic cleft. ~ GIn—Ser on subsites;Rand R:. The polar hydrogen k3 at-

In Table 2 we list Mulliken atomic chargeg™! and tracts them-electron density from peptide bond GIn-Ser so
electrostatic potential equivalent charggs®, which are ob- as to weaken this chemical bond.
tained by fitting atomic charges to the electrostatic potential ~ We calculate the cleavage reaction energy from the oc-
at the van der Waals surface. The atomic charges from semitapeptide AVLQSGFR to two tetrapeptides AVLQ and SGFR

using ab initio HF/6-31Gin the gaseous phase. The molec-

Table 1 ular energies of the octapeptide and two tetrapeptides are
Division of amino acid residues in the active cleft of SARS Co¥Htotal shown inTable 3and the hydrolyzing reaction energy is
62 amino acid residues and 953 atoms are included 110.8 kJ/mol.
Domain | Sequential position
D11 20-30
D12 40-50
D13 49-59 4. Chemical modification of the octapeptide
Domain Il Sequential position
D21 140-150 The peptide bond is considered as a psemwdmnd, i.e.,
D22 160-169 a partialm-bond consisting of three atoms and four electrons
D2.3 181-190

[33]. Table 4shows the atomic coordinates of the six atoms on
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Table 2
Atomic charges of amino acid His-41in SARS Co\P®I
Atom AM1 (gMulh AM1 (gFSP) HF/6-31& (gMu HF/6-31G (gF5P)
N —0.5403 —5.5624 —0.9145 —0.9637
H(N) 0.3069 08209 03991 03419
Cu —0.0528 61962 —0.0083 06296
He 0.2347 —1.2792 03013 00690
c 03710 —0.8152 08328 03524
o —0.3964 —0.5648 —0.6468 —0.6346
Cp —0.1888 —4.6016 —0.3596 —0.2660
Hps 0.1921 11542 02501 00832
Hp2 0.1426 06820 01807 00959
c, —0.0833 12703 02802 02473
Ns1 —0.2937 —0.1343 —0.9053 —0.4730
H 0.3777 08715 04483 04288
Cs2 —0.0778 —0.6847 01800 00619
Hs2 0.3617 01458 03704 01410
Ce1 0.0330 —2.4836 05501 02165
He1 0.3607 17427 03516 02269
N2 —0.2724 10889 —0.8636 —0.3348
He2 0.4199 —0.0400 04877 04201
Table 3 Fig. 4is the electron density counter map of peptide bond

Chemical reaction energy of the octapeptide cleavage in gaseous phase

GIn—Ser in gaseous phase on thelane consisting of C

Octapeptide P8 (hartree) —29906747 and O in carbonyl group €0 of GIn and N(NH) of Ser.

gua:pep:!ge ; Ei Eﬂazfeeg —iggéggg The electron density counters surrounding atom N(NH) and
uatpeptide 2 P2 (hartree - . . . .

Water (hartree) 760107 C(CO) form two triangles like sphybrid orbits, therefore,

Energy AE, kJ/mol) 1108
a 1 Hartree = 2625.5 kJ/mol.

the 2p. orbits of the three atoms, which are perpendicular
to the plane, form arg bond system. ITable 4 we list the

atomic charges of the six atoms on both sides of peptide

bond GIn—Ser obtained from ab inito HF/6-31@alcula-
the two ends of peptide bond (GIYCO=NHC«(Ser). The  tions in gaseous phase with the background charges of SARS
X-coordinates of the six atoms are almost the same. The carCoV MP™. The negative charge of N(NH) in serine increases
bonyl group CO of glutamine and the nitrogen atom N(NH) of to —0.8689 in SARS CoV M° background charges from
Serine form arj bond. The catalytic dyad His-41 and Cys- —0.8344 in gaseous phase. The positive charge of carbonyl
145 in the active pocket between domain | and Il attracts carbon C(CO) of glutamine increases to 0.8074 in the back-
w-electron density from the peptide bond GIn—Ser, causing ground charges from 0.7706 in gaseous phase, and hence,
the increase of positive charge on C(CO) of glutamine and this is favorable to the cleavage reaction.
negative charge on N(NH) of serine, and that the electrophilic  Fig. 5is the counter map of electronic density difference
proton H" attacks N(NH) of serine and neucleophilic OH  of peptide bond GIn—Ser in the octapeptide AVLQSGFR ob-
attacks C(CO) of glutamine, respectively. The catalytic func- tained by subtracting the electron density in gaseous phase
tional group is the imidazole ring of His-41 and plays the from the electron density in the background chari@e$ of
acid-base catalytic role. Th&palue of imidazole group of ~ SARS CoV M. In Fig. 5, the grey bold line is the 0-value
histidine is 6.0, the concentration of flis the same as in  line that means the electronic densities in gaseous phase and
water, and hence, His-41 serves as a good proton provider inin protease background charges are unchanged. The solid thin
life condition[33]. lines show the regions where the electron densities are greater

Table 4
Atomic charges and coordinates of six atoms on the both sides of peptide bond GIn—-Ser in the octapeptide

Glutamine side Serine side

Cu C(CO) 0(CO) G N(NH) H(NH)
gFSP (gast 0.0247 Q7706 —0.6743 —0.0128 —0.8343 04120
qESR(MmProyb 0.0805 08074 —0.6545 —0.2073 —0.8689 04212
X (A) —34.348 —34.698 —34.813 —34.916 —34.878 —34.732
Y (A) 14.691 15100 16316 14399 14156 13185
ZA) —2.681 —4.041 —4.254 —6.348 —4.998 —4.769

a Atomic charges in the gaseous phase.
b Atomic charges in SARS CoV P background charges.
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Fig. 5. The counter map of electron density difference of peptide bond GIn—Ser in the octapeptide AVLQSGFR obtained by subtracting the elsdiyonic den
in gaseous phase from the electronic density in background charges of SARS bV M

Ect))rlsifcharges of the six atoms on two sides of peptide bond GIn—Ser after chemical modification

Glutamine side Serine side

Ca C(CH) H(CHp) Ca N(NH) H(NH)
ESP (gash 0.0578 —0.1040 0.1275 —0.0081 —0.7690 0.3887
gESF(MPro)b 0.1127 —0.1211 0.1489 —0.2164 -0.7771 0.4014

2 Atomic charges in gaseous phase.
b Atomic charges in SARS CoV RP background charges.

in SARS CoV M background charges than in gaseous tide AVLQSGFR[20] may become a competent inhibitor
phase and the dashed thin lines show the areas where théor SARS CoV M and an effective drug candidate against
electron densities are smaller in protease background chargeSARS. Here we show the possibility of chemical modifica-
than in gaseous phase. We find that along the peptide bondion to the octapeptide AVLQSGFR through computational
between (GIn)C-N(Ser) the electron densities increase onmodeling.
N(Ser) side and decrease on (GIn)C side. This change is fa- Table 5lists atomic charges of the six atoms on the
vorable for the neucleophilic attack of anion Oldn (GIn)C both sides of hybrid peptide bond GIn—-Ser after changing
and electrophilic attack of cation'Hon N(Ser). carbonyl group CO of GIn to CHgroup. Comparing with
SARS CoV M has a very high selectivit7,34], and Table 4 we find that the carbon atom in GHyroup of
in the polyprotein cleavage sites, the subsitaRnvariably hybrid peptide bond turns to be negatived.1040 from
occupied by GIn. A simple routine way to make the octapep- positive charge 0.7706 in CO group (s&able 4, and
tide AVLQSGFR to an effective inhibitor is to change the hence, the neucleophilic attack by OHs impossible. On
cleavable scissile peptide bond to the solid single bond by the other hand, the negative charge of N(NH) of the Ser
some chemical modificatiof12,30] If we replace the car-  side decreases from0.8689 to—0.7771 inTable 4 and
boxyl group CO of glutamine on subsitq o CH, or CR, hence, the electrophilic attack by™Hs more difficult. The
group, ther-bond system is broken and the modified octapep- third row in Table 5is the atomic charges in the background
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