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Purpose: We aimed to establish the transcriptome diagnostic signature of

postmenopausal osteoporosis (PMOP) to identify diagnostic biomarkers and

score patient risk to prevent and treat PMOP.

Methods: Peripheral blood mononuclear cell (PBMC) expression data from

PMOP patients were retrieved from the Gene Expression Omnibus (GEO)

database. Differentially expressed genes (DEGs) were screened using the

“limma” package. The “WGCNA” package was used for a weighted gene co-

expression network analysis to identify the gene modules associated with bone

mineral density (BMD). Least absolute shrinkage and selection operator (LASSO)

regressionwas used to construct a diagnostic signature, and its predictive ability

was verified in the discovery cohort. The diagnostic values of potential

biomarkers were evaluated by receiver operating characteristic curve (ROC)

and coefficient analysis. Network pharmacology was used to predict the

candidate therapeutic molecules. PBMCs from 14 postmenopausal women

with normal BMD and 14 with low BMD were collected, and RNA was extracted

for RT-qPCR validation.

Results:We screened 2420 differentially expressed genes (DEGs) from the pilot

cohort, and WGCNA showed that the blue module was most closely related to

BMD. Based on the genes in the blue module, we constructed a diagnostic

signature with 15 genes, and its ability to predict the risk of osteoporosis was

verified in the discovery cohort. RT-qPCR verified the expression of potential

biomarkers and showed a strong correlation with BMD. The functional

annotation results of the DEGs showed that the diagnostic signature might

affect the occurrence and development of PMOP through multiple biological

pathways. In addition, 5 candidate molecules related to diagnostic signatures

were screened out.

Conclusion: Our diagnostic signature can effectively predict the risk of PMOP,

with potential application for clinical decisions and drug candidate selection.

OPEN ACCESS

EDITED BY

Dongwei Zhang,
Beijing University of Chinese Medicine,
China

REVIEWED BY

Daniele Mercatelli,, University of
Bologna, Italy
Xiaofan Ding,
The Chinese University of Hong Kong,
China

*CORRESPONDENCE

Jing Wang,
wangjing11277@126.com

†These authors have contributed equally
to this work and share first authorship

SPECIALTY SECTION

This article was submitted to
Experimental Pharmacology and Drug
Discovery,
a section of the journal
Frontiers in Pharmacology

RECEIVED 15 May 2022
ACCEPTED 25 July 2022
PUBLISHED 29 August 2022

CITATION

Zeng R, Ke T-C, Ou M-T, Duan L-L, Li Y,
Chen Z-J, Xing Z-B, Fu X-C, Huang C-Y
and Wang J (2022), Identification of a
potential diagnostic signature for
postmenopausal osteoporosis via
transcriptome analysis.
Front. Pharmacol. 13:944735.
doi: 10.3389/fphar.2022.944735

COPYRIGHT

© 2022 Zeng, Ke, Ou, Duan, Li, Chen,
Xing, Fu, Huang and Wang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 29 August 2022
DOI 10.3389/fphar.2022.944735

https://www.frontiersin.org/articles/10.3389/fphar.2022.944735/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.944735/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.944735/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.944735/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.944735&domain=pdf&date_stamp=2022-08-29
mailto:wangjing11277@126.com
https://doi.org/10.3389/fphar.2022.944735
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.944735


KEYWORDS

postmenopausal osteoporosis (PMOP), biomarkers, diagnostic signature, WGCNA,
network pharmacology

Introduction

Osteoporosis is the most common systemic bone disease

in postmenopausal women (PMOP). This condition is

characterized by decreased bone mineral density (BMD)

and destruction of the bone tissue microstructure,

resulting in decreased bone strength and increased

fracture risk (Yao et al., 2019). The latest data show that

the prevalence of osteoporosis in women over 50 years old in

China is 29.1%, and the total number of patients is

approximately 49 million. With the increase in the aging

of society, by 2050, there will be 5.99 million cases of

osteoporosis-related fractures in China every year (Cheng

et al., 2021). Hip fracture is a common osteoporotic fracture

in older postmenopausal women. Approximately 33% of

women aged 90 years will experience a hip fracture, and

these patients are older and have multiple comorbidities,

leading to a poor prognosis (Ensrud et al., 2019).

Osteoporosis has become a major public health problem

worldwide, placing a heavy financial burden on patients

and healthcare systems. Osteoporosis includes primary

and secondary osteoporosis. The occurrence of primary

osteoporosis is related to estrogen deficiency in women,

decreased testosterone levels in men, and changes in

hormone levels such as parathyroid hormone and

calcitonin. Secondary osteoporosis is mainly caused by

endocrine and metabolic diseases, connective tissue

diseases, kidney diseases, digestive tract diseases, and drugs.

Most patients have no apparent symptoms in the early

stage of osteoporosis, and the main clinical manifestations

include pain, reduced height, limited activities, stooped

posture, and respiratory system involvement. Most people

lack awareness of osteoporosis and fail to detect the

symptoms. Even when a brittle fracture occurs, there is no

clear history of trauma or only a slight history of trauma

(Glaser and Kaplan, 1976). Osteoporosis can be characterized

by sparse trabecular bone and decreased BMD on imaging,

but these imaging manifestations are affected by subjective

factors and are not sensitive to early bone loss. Dual-energy

X-ray absorptiometry (DXA) testing of BMD is strongly

recommended by the World Health Organization (WHO).

However, DXA cannot detect early bone loss, and studies of

many clinical cases have suggested that DXA does not

accurately assess the severity of osteoporosis and the risk

of fracture. For example, in one report, the individuals who

had the highest risk of future fractures among those who had

bone density tests were rarely diagnosed with osteoporosis

(T < -2.5) but were often diagnosed with reduced bone mass

(−2.5 < T < -1) (Siris et al., 2014).

Therefore, transcriptome analysis may be helpful for the

early diagnosis and prevention of osteoporosis. Based on the

Gene Expression Omnibus (GEO) database, we used

WGCNA to identify the top gene modules related to

osteoporosis and conducted least absolute shrinkage and

selection operator (LASSO) regression to build a

diagnostic signature composed of 15 genes. The two most

representative genes,METTL4 and RAB2A, were subjected to

RT–qPCR to verify the correlation between their expression

and BMD. In addition, we explored the potential molecular

mechanism of osteoporosis, which will contribute to the early

diagnosis, treatment, and prevention of this disease. To

discover novel osteoporosis drugs from our research, we

explored the molecular targets of the diagnostic signature

through network pharmacology.

Materials and methods

Microarray data collection and processing

The datasets were downloaded from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2013),

and the pilot cohort and discovery cohort were analyzed on

the Affymetrix Human Genome U133A Array platform. As

the pilot cohort, GSE56815 included 80 Caucasian females,

40 of whom had high BMD and 40 of whom had low BMD. In

addition, we selected 20 postmenopausal subjects from the

GSE13850 dataset as a discovery cohort: 10 women with high

BMD and 10 women with low BMD. Raw data were read

through the “affy” package (Gautier et al., 2004), and the RMA

algorithm was used for background correction and data

normalization. To verify the purity of peripheral blood

mononuclear cells (PBMCs) in the pilot cohort, we used

the “Cibersort” package.

Identification of differentially expressed
genes (DEGs)

Patients are classified into high- and low-BMD groups

based on clinical information provided by uploaders in the

pilot cohort. The “limma” package (Ritchie et al., 2015) was

used to compare samples from the high- and low-BMD

groups. Genes with adjusted p-value < 0.05 were defined

as DEGs, DEGs with log2FC > 0 were defined as up-regulated

DEGs, while those with log2FC < 0 were down-regulated

DEGs. The “ggplot2” package (Ito and Murphy, 2013) was

used to visualize the DEGs.
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Weighted gene coexpression network
analysis

WGCNA is an algorithm to mine module information

from high-throughput data. In this method, the module is

defined as genes with similar expression trends. If these genes

always have similar expression changes in a physiological or

pathological process, it is reasonable to believe that they are

functionally related and can be defined as a module. In this

study, the “WGCNA” package (Langfelder and Horvath,

2008) was used to construct the weighted adjacency

matrix by selecting appropriate thresholds, and the

weighted adjacency matrix was transformed into a

topological overlap matrix (TOM). The hierarchical

clustering method was used to cluster the TOM matrix,

and the dynamic tree-cutting algorithm was adopted to

divide modules, each corresponding to a color, merge

similar modules to find the module with the highest

correlation with BMD, and extract the most significant

genes associated with BMD in the module.

Construction and validation of a genetic
diagnostic signature of osteoporosis

LASSO logistic regression was used to reduce the

dimensionality of genes in the BMD association module to

construct a genetic diagnostic signature, which was generated

by using the “glmnet” package (Friedman et al., 2010). Then, the

signature was used to calculate the risk score of each patient. The

corresponding coefficient of the gene weighted the expression

values of these genes in each patient, and then, the weighted

expression values were added to obtain the risk score of the

patient, which was calculated as follows:

Risk score � ∑
n

i−1Expi p Coefi

where n is the number of genes included in the signature, Expi is

the expression value of this gene of the patient, and Coefi is the

coefficient of this gene in the signature. Finally, patients were

classified into a high-risk group or a low-risk group according to

the median value of the risk score.

Next, the “pROC” package (Robin et al., 2011) was used to

draw the receiver operating characteristic curve (ROC) and

determine the area under the curve (AUC). If the AUC

was >0.8, the diagnostic effect was defined as good. In

addition, we obtained another independent dataset, GSE13850,

as the discovery cohort, applied the genetic diagnostic signature

to the discovery cohort and defined its diagnostic effect in the

discovery cohort according to the AUC.

Functional annotation analysis

For determination of the potential biological pathways of

osteoporosis, “clusterProfiler” package (Yu et al., 2012) was used

to perform Kyoto Encyclopedia of Genes (KEGG), Gene

Ontology (GO), Disease Ontology (DO) on the up- and

down-regulated DEGs, the results for which adjust

p-value<0.05 were considered statistically significant. Gene Set

Enrichment Analysis (GSEA) on the up- and down-regulated

DEGs was performed by “fgsea” package.

Gene-miRNA interaction analysis,
molecular docking, and network
visualization

TargetScan (McGeary et al., 2019) was used to predict the

interacting miRNAs of the genes in the genetic diagnostic

signature and explore whether potential miRNAs are involved

in the process of osteoporosis by targeting genes.

Subsequently, miRPath was used for pathway enrichment

analysis of miRNAs (Vlachos et al., 2012).

Firstly, we screened potential small molecule substances and

drugs from the CTD database (Davis et al., 2021) and DGIdb

database. Cytoscape was used to construct the miRNA-gene-

molecule network. Secondly, we downloaded the protein 3D

structures from the PDB database (Burley et al., 2021) and

used PyMOL software to remove the water molecules of the

protein. Then, we collected the 3D structures of these potential

small-molecule substances and drugs from PubChem. Next, the

SwissDock (Grosdidier et al., 2011) database was used for

protein-molecule docking. Finally, PyMOL software was used

to modify the docking results.

TABLE 1 Patient characteristics (n = 28).

Mean ± SD (Range)

Characteristic High bone density Low bone density

Patients (n) 14 14

Age (years) 61.9 ± 9.5 66.2 ± 8.4

Height (cm) 156.8 ± 6,7 158.6 ± 5.6

Weight (kg) 58.4 ± 6.3 61.1 ± 7.6

T-score 0.7 ± 0.9 -2.4 ± 0.8

Menstrual condition

Menopause 14 14

Premenopausal 0 0

Smoking status

Smoking 0 0

No history of smoking 14 14

Surgery situation

Have vertebroplasty 0 0

No vertebroplasty 14 14
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RNA extraction and quantitative real-time
polymerase chain reaction

Fourteen women with PMOP and 14 healthy postmenopausal-

matched women controls were selected, and PBMCs were obtained

from them. The characteristics of the patients are summarized in

Table 1. This study was approved by the Ethics Committee of the

First Affiliated Hospital of Jinan University. Both patients and

controls provided written informed consent.

PBMCs were extracted with Histopaque-1077 (Sigma,

United States). According to the manufacturer’s protocol, the total

RNA of PBMCs from all samples was extracted using an EZ-Press

RNA Purification Kit (EZbioscience, United States). cDNA was

obtained by reverse transcription using a PrimeScript RT Kit

(TaKaRa, Japan). Based on the SYBR Green method (ChamQ

Universal SYBR qPCR Master Mix, Vazyme Biotech, China), The

CFX96 Real-Time PCR System (Bio-Rad, United States) was used for

RT-qPCRdetection. ThemRNA-specific primer sequences are shown

in Table 2. After the expression level of GAPDH was used for

normalization, the relative expression level ofmRNAwas determined.

Statistical analysis

Statistical analyses were conducted using RStudio version

1.3.1093 (RStudio Inc.) and GraphPad Prism 8 (GraphPad

Software, Inc.). All data are expressed as the mean ± SD. A

paired difference test between Low BMD samples and normal

control samples in two groups by the “limma” package was used

to determine the DEGs. Analysis with one-way ANOVA

followed by the Student–Newman–Keuls multiple comparison

test was used for the comparison of three or more experimental

groups. For qPCR data, Student’s t test was used for analysis.

Results

Quality control of microarray data and
DEG screening

First, cell purity analysis was performed on the pilot cohort

(GSE56815), and the results are shown in Figure 1A, indicating

that PBMCs accounted for the majority of the pilot cohort,

consistent with the description in NCBI. DEG analysis was

performed on the pilot cohort, and patients were divided into

two groups according to BMD. DEGs were identified by “limma”

package analysis, and 2,420 DEGs were screened out, as shown in

Figure 1B.

Weighted coexpression network and
identification of bone mineral density-
related modules

In this study, the “WGCNA” package was used to construct a

weighted gene coexpression network in the pilot cohort.

According to several iterations, β = 6 was selected as the

optimal soft threshold to construct a scale-free network

(Figure 2A). After exclusion of the MEgrey module, which

contains all genes not involved in clustering, a total of

7 modules were identified. The interaction between modules

was analyzed, and the heatmap showed that the gene expression

of each module was relatively independent (Figure 2B). Then,

correlation analysis between these modules and BMDwas carried

out, and the results showed that the MEblue module, which

consisted of 396 genes, had the highest correlation with BMD

(cor = 0.51, p < 0.001) (Figure 2C).

Construction and testing of the diagnostic
signature

The LASSO algorithm was used to determine λ = 0.09

(Figure 2D), and a diagnostic signature consisting of 15 genes

TABLE 2 mRNA-specific primer sequences.

Gene Primer sequence Tm

METTL4 F: GCTGTTCATAAAGAATGCCAGCAA 57

R: CAGCTCCCTGATCTTTGTATGGT 56

RAB2A F: TCCATCACAAGGTCGTATTACAGA 55

R: TGGTTGAATGTATCTCTCCGTGTA 55

GAPDH F: ACAGTTGCCATGTAGACC 56

R: TTTTTGGTTGAGCACAGG 60

TABLE 3 Genes and their coefficients that constitute the diagnostic
signature.

Gene Coefficient

RAB2A −0.69559

VSIG4 0.005073

ADAM7 0.014223

AMBP 0.018658

PAFAH1B2 0.031496

AOC3 0.050969

KLK3 0.088715

KRTAP1.3 0.100,972

LPO 0.13443

SLC41A3 0.144,549

NKX3.1 0.208,241

GLT8D2 0.231,434

LAMB1 0.338,636

SEC14L1P1 0.394,242

METTL4 1.089913
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(Figure 2E) was established. The specific gene composition and

coefficient of each gene are shown in Table 3. The diagnostic

signature calculated the patients’ risk scores and divided them into

high-risk and low-risk groups (Figure 3A). Principal component

analysis (PCA) showed that risk scores could categorize patients

with different BMDs in the pilot cohort into two groups (Figure 3B).

Moreover, verification was carried out in this study, and the results

showed that the AUC value of the diagnostic signature was 0.993 in

the pilot cohort and 0.980 in the discovery cohort (Figure 3C). The

expression patterns of the 15 genes that constituted the signature

(Figure 3D) and all theDEGs (Figure 3E) in the high-risk and low-risk

groups are shown. Heatmap results showed that the gene expression

patterns of the high-risk and low-risk groups were different, especially

those of the 15 genes that constituted the signature. All the above

results showed that this signature has an excellent ability to predict the

risk of osteoporosis. In addition, we explored the interactions of these

15 genes (Figure 3F).

Functional annotation and Gene Set
Enrichment Analysis

KEGG functional annotation analysis (Figure 4A) showed

that cytokine receptor interaction, neural activity

FIGURE 1
(A) Cell abundance of the pilot cohort. (B) Volcano plot of DEGs between the individuals with a high BMD and a low BMD in the pilot cohort.
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ligand–receptor interaction, Rap1 signaling pathway,

autoimmune thyroid disease, natural killer cell-mediated

cytotoxicity, PI3K-Akt signaling pathway, gap junction,

calcium signaling pathway, and oxytocin signaling pathway

were up-regulated. Combining the above results with previous

studies, we found that the calcium activator calcimycin can

activate the RAF/MEK/ERK pathway through Ras (Li et al.,

2005), and increased calcium concentrations have also been

shown to modulate Ras-dependent Raf1 activation (Yoshiki

et al., 2010). Moreover, lactoferrin-induced PI3K-Akt pathway

activation and Ras phosphorylation can promote osteoblast

proliferation (Hou et al., 2015). DO analysis (Figure 4B)

showed that gynecological and aging diseases were up-

regulated, such as female reproductive system disease, ovarian

disease, bone remodeling disease, osteoporosis, and bone

resorption diseases. GO analysis (Figure 4C) showed that ion

channel complex activity, bone development, bone

morphogenesis were up-regulated, and odontogenesis, GTPase

activity, GDP binding were down-regulated.

According to the GSEA results (Figure 4D), we suggest that

androgen response, late estrogen response, the P53 pathway, and

TNF-α signaling via NF-κB are were down-regulated in the

DEGs of osteoporosis.

miRNA interaction identification and
candidate molecule prediction

Thirty-eightmiRNAswere expected to interactedwith the genes

constituting the diagnostic signature and were used to construct the

FIGURE 2
(A) Fitting index of the scale-free topologymodule under different soft thresholds (left) and network connectivity under different soft thresholds
(right). (B) Cluster diagram of genes and the corresponding gene modules. (C) Correlation between module eigengenes and BMD. (D) Selection of
the optimal parameter (λ) of LASSO regression through cross-validation. (E) LASSO coefficient profiles of the 15 genes that comprise the diagnostic
signature selected by λ.
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miRNA-Gene-Molecule network (Figure 5A). The result of KEGG

(Figure 5B) enrichment analysis showed that miRNA pathway

enrichment overlapped with DEG pathways, such as the

Rap1 signaling pathway, suggesting that overlapping pathways

play a potentially important role in the occurrence and

development of PMOP. We selected the molecules connected to

at least two genes as the candidate molecules. Five candidate

molecules were screened out, including bisphenol A (BPA),

fulvestrant, bicalutamide, mifepristone, and valproic acid (VPA).

RAF, an essential protein in the Rap1 signaling pathway, was

selected for docking with the candidate molecules to explore

their possible binding locations (Supplementary Figure S1).

Validation by real-time polymerase chain
reaction

To verify the authenticity of the diagnostic signature, we

collected PBMCs from 14 postmenopausal healthy controls

(Figure 6A) and 14 postmenopausal women with low BMD

(Figure 6B) in this study. RNA was extracted for RT–qPCR to

verify the diagnostic signature. The gene with themost significant

coefficient had the strongest contribution to the risk score, and

the gene with the largest AUC showed the strongest relationship

to BMD. Interestingly, METTL4 and RAB2A had the largest

positive and negative coefficients, respectively, and they also had

FIGURE 3
(A) Risk plot and (B) PCA of the pilot cohort. (C) The heatmap shows the different expression patterns of 15 genes. (D) ROC curves of the pilot
cohort and the validation cohort. (E) The heatmap shows the different expression patterns between the high- and low-risk groups. (F) Correlations
among the 15 genes.
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the most significant AUC values (Table 4). Therefore, these two

genes were further investigated, and the results were consistent

with the bioinformatics results. The expression ofMETTL4 in the

low BMD group was significantly higher than that in the normal

BMD group (Figure 6C), while the expression of RAB2A in the

normal BMD group was significantly higher than that in the low

BMD group (Figure 6D), suggesting that these two genes play an

essential role in the occurrence and development of osteoporosis.

Discussion

Osteoporosis is a systemic bone disease that mainly involves

decreased bone mass and increased bone brittleness caused by

degeneration of the bone tissue microstructure, resulting in

susceptibility to fracture (Wang et al., 2020). DXA is widely used

in clinical practice as a diagnostic standard for osteoporosis.

However, only a small number of postmenopausal women are

tested for BMD, and many of them have already suffered from

brittle fractures when BMD is found to be reduced (Siris et al., 2014).

FIGURE 4
(A) Result of KEGG enrichment analysis. (B) Result of DO analysis. (C) Result of GO analysis. (D) Results of the GSEA.

TABLE 4 Genes and their AUCs that constitute the diagnostic
signature.

Gene AUC

RAB2A 0.8638

VSIG4 0.7431

ADAM7 0.7219

AMBP 0.72

PAFAH1B2 0.725

AOC3 0.6444

KLK3 0.6444

KRTAP1.3 0.7375

LPO 0.7141

SLC41A3 0.7338

NKX3.1 0.7075

GLT8D2 0.7819

LAMB1 0.6481

SEC14L1P1 0.7038

METTL4 0.8306
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BMD examination results may be affected by body weight, lumbar

curvature, osteophytes, vertebral fractures, and vascular calcification.

Studies have shown that vertebral osteoarthropathy and aortic

calcification can cause false BMD increases and decrease

diagnostic sensitivity (Orwoll et al., 1990; Frohn et al., 1991).

Relying solely on BMD testing will lead to the failure of clinicians

and patients to correctly evaluate the severity of osteoporosis, thus

affecting clinical treatment strategies. In addition, the radiation of

DXA is very low, with each scan receiving only 1/60 to 1/10 of the

radiation dose of a conventional X-ray. However, repeated exposure

to ionizing radiation over a long period can have long-term health

effects, including cancer (Hill and Einstein, 2016;Howard et al., 2020),

suggesting that frequent imaging detection is still not advisable.

Due to the difficulty in the extraction and separation of

osteoblasts and osteoclasts, on the contrary, the isolation and

extraction technology of PBMCs has become increasingly mature,

and its extraction and purification rate can reach more than 90%.

PBMCs are the most likely precursors of osteoclasts, especially in

adult peripheral bone, and are the only precursors of osteoclasts

(Fujikawa et al., 1996). Secondly, PBMCs can secrete cytokines such

as IL-1B, IL-6, and TNF-α, which play an essential role in osteoclast

differentiation, activation, and apoptosis (Custer and Ahlfeldt,

1932). The decrease of PBMCs cytokines is the primary

mechanism by which sex hormones inhibit osteoclast formation

and bone resorption. Therefore, PBMCs are widely used as an ideal

cell model for osteoporosis study (Zhou et al., 2015).

Previous studies have shown that osteoporosis is a polygenic

disease, and genetic factors play an essential role in the occurrence and

development of this condition.However, there are few relevant studies

at present, and few candidate genes have been identified (Andrew and

FIGURE 5
(A) miRNA-gene-molecule interaction network. (B) KEGG enrichment analysis of the potential interacting miRNAs.

Frontiers in Pharmacology frontiersin.org09

Zeng et al. 10.3389/fphar.2022.944735

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.944735


Macgregor, 2004; Cai et al., 2018). Thus, we used public databases to

construct a transcriptome-based diagnostic signature, which is

expected to be applied in clinical practice in the future to assess

the risk of osteoporosis in the potential population and help doctors

diagnose this disease. In this study, the GEO dataset GSE56815 was

first used to identify DEGs between patients with osteoporosis and

healthy controls, and then WGCNA was performed on these DEGs.

The results showed that the blue module was most closely related to

osteoporosis. Then, the genes in the bluemodule were extracted, and a

diagnostic signature composed of 15 genes was constructed through

LASSO regression. Subsequently, the independent dataset

GSE13850 was used to verify the classification ability of the

signature. We found that the AUC values of the signature in the

pilot cohort and the discovery cohort were 0.993 and 0.920,

respectively, showing good prediction of the risk of osteoporosis in

different patients.

To further explore the potential pathogenesis of osteoporosis, we

conducted the functional enrichment analysis of DEGs between the

high- and low-BMDgroups and interactingmiRNAs of the diagnostic

signature. We found that both were involved with the Rap1 signaling

pathway, suggesting that, compared with other mechanisms, the

Rap1 signaling pathway may be more closely related to our

diagnostic signature. The calcium activator calcimycin can activate

the RAF-MEK-ERK pathway through the RAS signaling pathway (Li

et al., 2005). An increased calcium concentration has also been shown

to modulate RAS-dependent RAF1 activation (Yoshiki et al., 2010),

and lactoferrin-induced PI3K-Akt pathway activation and Ras

phosphorylation can promote osteoblast proliferation (Hou et al.,

2015). According to previous studies, osteoclasts are specialized

macrophage/monocyte lineage-derived cells that resorb bone, and

neurofibromatosis type I (NF1) haploinsufficient osteoclasts have

abnormal Ras-dependent bone resorption. (Yan et al., 2008).

FIGURE 6
DXA images of the lumbar spine L1-L4 of womenwith a normal BMD (A) and low BMD (B). The overall expression ofMETTL4 (C)andRAB2A (D) in
PBMCs from 14 low BMD patients and healthy controls.
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Our study found that the two genes with the most significant

positive and negative coefficients in the diagnostic signature,METTL4
and RAB2A, were also the two genes with the most significant AUC

values among the 15 genes. Therefore, we selected these two genes as

representative molecules that were validated by RT–qPCR. We

collected PBMCs from 14 patients with normal BMD and

14 patients with low BMD for RNA extraction. The results

showed that METTL4 expression was significantly lower in

patients with normal BMD than in patients with low BMD, while

RAB2A expressionwas significantly higher in healthy controls than in

patients with low BMD, which was consistent with our bioinformatics

results and the results of other studies.RAB2A is amember of the Ras

gene family.When it binds toGTP, the Ras protein can phosphorylate

and activate downstream proteins, thus regulating the proliferation

and differentiation of osteoblasts (Ge et al., 2007). The Ras gene family

regulates anterograde transport from the endoplasmic reticulum to

the Golgi complex, inhibits the proliferation and differentiation of

osteoprogenitorMC3T3-E1 cells and promotes apoptosis by reducing

the membrane transport process. During this process, the protein

expression of RAB2A was inhibited (Hong et al., 2011). METTL4, as

an m6A methyltransferase, can lead to increased m6A modification.

As a new extranuclear marker, m6Amodification is involved in bone

development and metabolism and plays an essential role in

osteoporosis. A previous study showed that both m6A levels and

methyltransferase expression are increased during osteoclast

differentiation, and methyltransferase knockdown led to increased

osteoclast volume and decreased bone resorption capacity (Li et al.,

2020). Another study also showed that inhibition of mRNA

methyltransferase reversed osteoclast differentiation and bone

resorption (Wang et al., 2021).

Another vital function of diagnostic signatures is to provide

evidence for candidate drugs. RAF is a crucial component of the

Rap1 signaling pathway, and RAF has also been shown to affect the

proliferation and function of osteoblasts (Meng et al., 2015).

Therefore, it is necessary to develop effective new osteoporosis

drugs that target RAF. This study screened out five medications

with high affinity for the diagnostic signature: BPA, fulvestrant,

mifepristone, bicalutamide, and VPA. Although the specific

mechanisms of action of these small compounds remain to be

further elucidated, our results suggest that they have therapeutic

potential for osteoporosis, especially in patients with PMOP.

We speculated that using transcriptome analysis to detect

gene expression might be a complementary method for the

diagnosis of osteoporosis, and the genes can be used as

biomarkers to evaluate the effect of osteoporosis treatment

to avoid frequent radiation examinations in patients.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary materials, further

inquiries can be directed to the corresponding author.

Ethics statement

This study was approved by the Ethics Committee of the

First Affiliated Hospital of Jinan University. Both patients and

controls provided written informed consent.

Author contributions

All persons who meet authorship criteria are listed as

authors, and all authors certify that they have participated

sufficiently in the work to take public responsibility for the

content, including participation in the concept, design,

analysis, writing, or revision of the manuscript. Conception

and design of study: RZ, T-CK, and JW Acquisition of data:

RZ, T-CK, and M-TO Analysis and/or interpretation of data: RZ,

T-CK, Drafting the manuscript: RZ, T-CK, L-LD, Z-JC, and JW

Revising the manuscript critically for important intellectual

content: YL, Z-BX, X-CF, and C-YH.

Acknowledgments

This study was funded by Science and Technology

Program of Guangzhou (No. 202102010107) and Clinical

Research Project of the First Clinical Medical College of Jinan

University (No. 2018005). Experimental instrument support

from the Medical Experimental Center, School of Medicine,

Jinan University is gratefully acknowledged.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphar.

2022.944735/full#supplementary-material

Frontiers in Pharmacology frontiersin.org11

Zeng et al. 10.3389/fphar.2022.944735

http://supplementary materia
https://www.frontiersin.org/articles/10.3389/fphar.2022.944735/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2022.944735/full#supplementary-material
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.944735


References

Andrew, T., and Macgregor, A. J. (2004). Genes and osteoporosis. Curr.
Osteoporos. Rep. 2 (3), 79–89. Epub 2005/07/23. doi:10.1007/s11914-004-
0015-1

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M.,
et al. (2013). Ncbi geo: Archive for functional genomics data sets--update. Nucleic
Acids Res. 41, D991–D995. Database issueEpub 2012/11/30. doi:10.1093/nar/
gks1193

Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., et al.
(2021). Rcsb protein data bank: Powerful new tools for exploring 3d structures
of biological macromolecules for basic and applied research and education in
fundamental biology, biomedicine, Biotechnology, bioengineering and energy
sciences. Nucleic Acids Res. 49 (D1), D437–D451. Epub 2020/11/20. doi:10.
1093/nar/gkaa1038

Cai, X., Yi, X., Zhang, Y., Zhang, D., Zhi, L., and Liu, H. (2018). Genetic
susceptibility of postmenopausal osteoporosis on sulfide quinone reductase-like
gene. Osteoporos. Int. 29 (9), 2041–2047. Epub 2018/06/02. doi:10.1007/s00198-
018-4575-9

Cheng, X., Zhao, K., Zha, X., Du, X., Li, Y., Chen, S., et al. (2021).
Opportunistic screening using low-dose ct and the prevalence of
osteoporosis in China: A nationwide, multicenter study. J. Bone Min. Res.
36 (3), 427–435. Epub 2020/11/05. doi:10.1002/jbmr.4187

Custer, R., and Ahlfeldt, F. E. (1932). Studies on the structure and function of
bone marrow: Ii. Variations in cellularity in various bones with advancing
years of life and their relative response to stimuli. J. Laboratory Clin. Med. 17
(10), 960–962.

Davis, A. P., Grondin, C. J., Johnson, R. J., Sciaky, D., Wiegers, J., Wiegers, T.
C., et al. (2021). Comparative toxicogenomics database (ctd): Update 2021.
Nucleic Acids Res. 49 (D1), D1138–D1143. Epub 2020/10/18. doi:10.1093/nar/
gkaa891

Ensrud, K. E., Kats, A. M., Boyd, C. M., Diem, S. J., Schousboe, J. T., Taylor,
B. C., et al. (2019). Association of disease definition, comorbidity burden, and
prognosis with hip fracture probability among late-life women. JAMA Intern.
Med. 179 (8), 1095–1103. Epub 2019/06/18. doi:10.1001/jamainternmed.
2019.0682

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33 (1), 1–22.
Epub 2010/09/03. doi:10.18637/jss.v033.i01

Frohn, J., Wilken, T., Falk, S., Stutte, H. J., Kollath, J., and Hör, G. (1991). Effect of
aortic sclerosis on bone mineral measurements by dual-photon absorptiometry.
J. Nucl. Med. 32 (2), 259–262. Epub 1991/02/01.

Fujikawa, Y., Quinn, J. M., Sabokbar, A., McGee, J. O., and Athanasou, N. A.
(1996). The human osteoclast precursor circulates in the monocyte fraction.
Endocrinology 137 (9), 4058–4060. Epub 1996/09/01. doi:10.1210/endo.137.9.
8756585

Gautier, L., Cope, L., Bolstad, B. M., and Irizarry, R. A. (2004). Affy--Analysis of
Affymetrix genechip data at the probe level. Bioinformatics 20 (3), 307–315. Epub
2004/02/13. doi:10.1093/bioinformatics/btg405

Ge, C., Xiao, G., Jiang, D., and Franceschi, R. T. (2007). Critical role of the
extracellular signal-regulated kinase-mapk pathway in osteoblast
differentiation and skeletal development. J. Cell Biol. 176 (5), 709–718.
Epub 2007/02/28. doi:10.1083/jcb.200610046

Glaser, D. L., and Kaplan, F. S. (1976). Osteoporosis. Definition and clinical
presentation. Spine 22 (24), 12S–16S. Epub 1998/02/07. doi:10.1097/00007632-
199712151-00003

Grosdidier, A., Zoete, V., and Michielin, O. (2011). Swissdock, a protein-small
molecule docking web service based on eadock dss. Nucleic Acids Res. 39,
W270–W277. Web Server issue)Epub 2011/06/01. doi:10.1093/nar/gkr366

Hill, K. D., and Einstein, A. J. (2016). New approaches to reduce radiation
exposure. Trends cardiovasc. Med. 26 (1), 55–65. Epub 2015/05/13. doi:10.1016/j.
tcm.2015.04.005

Hong, D., Chen, H. X., Yu, H. Q., Wang, C., Deng, H. T., Lian, Q. Q., et al.
(2011). Quantitative proteomic analysis of dexamethasone-induced effects
on osteoblast differentiation, proliferation, and apoptosis in mc3t3-E1 cells
using silac. Osteoporos. Int. 22 (7), 2175–2186. Epub 2010/11/10. doi:10.
1007/s00198-010-1434-8

Hou, J. M., Chen, E. Y., Lin, F., Lin, Q. M., Xue, Y., Lan, X. H., et al. (2015).
Lactoferrin induces osteoblast growth through igf-1r. Int. J. Endocrinol. 2015,
282806. Epub 2015/08/21. doi:10.1155/2015/282806

Howard, A., West, R. M., Iball, G., Panteli, M., Baskshi, M. S., Pandit, H.,
et al. (2020). Should radiation exposure Be an issue of concern in children with

multiple trauma? Ann. Surg. 275, 596–601. Epub 2020/08/03. doi:10.1097/sla.
0000000000004204

Ito, K., and Murphy, D. (2013). Application of Ggplot2 to pharmacometric
graphics. CPT. Pharmacometrics Syst. Pharmacol. 2 (10), e79. Epub 2013/10/18.
doi:10.1038/psp.2013.56

Langfelder, P., and Horvath, S. (2008). Wgcna: An R package for weighted
correlation network analysis. BMC Bioinforma. 9, 559. Epub 2008/12/31. doi:10.
1186/1471-2105-9-559

Li, D., Cai, L., Meng, R., Feng, Z., and Xu, Q. (2020). Mettl3 modulates osteoclast
differentiation and function by controlling rna stability and nuclear export. Int.
J. Mol. Sci. 21 (5), E1660. Epub 2020/03/04. doi:10.3390/ijms21051660

Li, D. W., Liu, J. P., Mao, Y. W., Xiang, H., Wang, J., Ma, W. Y., et al. (2005).
Calcium-activated raf/mek/erk signaling pathway mediates P53-dependent
apoptosis and is abrogated by alpha B-crystallin through inhibition of Ras
activation. Mol. Biol. Cell 16 (9), 4437–4453. Epub 2005/07/08. doi:10.1091/
mbc.e05-01-0010

McGeary, S. E., Lin, K. S., Shi, C. Y., Pham, T. M., Bisaria, N., Kelley, G. M., et al.
(2019). The biochemical basis of microrna targeting efficacy. Science 366 (6472),
eaav1741. Epub 2019/12/07. doi:10.1126/science.aav1741

Meng, H. Z., Zhang, W. L., Liu, F., and Yang, M. W. (2015). Advanced
glycation end products affect osteoblast proliferation and function by
modulating autophagy via the receptor of advanced glycation end
products/raf protein/mitogen-activated protein kinase/extracellular
signal-regulated kinase kinase/extracellular signal-regulated kinase (Rage/
Raf/Mek/Erk) pathway. J. Biol. Chem. 290 (47), 28189–28199. Epub 2015/10/
17. doi:10.1074/jbc.M115.669499

Orwoll, E. S., Oviatt, S. K., and Mann, T. (1990). The impact of osteophytic and
vascular calcifications on vertebral mineral density measurements in men. J. Clin.
Endocrinol. Metab. 70 (4), 1202–1207. Epub 1990/04/01. doi:10.1210/jcem-70-4-
1202

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015).
Limma powers differential expression analyses for rna-sequencing and
microarray studies. Nucleic Acids Res. 43 (7), e47. Epub 2015/01/22. doi:10.
1093/nar/gkv007

Robin, X., Turck,N.,Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., et al. (2011). Proc:
An open-source package for R and S+ to analyze and compare roc curves. BMC
Bioinforma. 12, 77. Epub 2011/03/19. doi:10.1186/1471-2105-12-77

Siris, E. S., Adler, R., Bilezikian, J., Bolognese, M., Dawson-Hughes, B., Favus, M. J., et al.
(2014). The clinical diagnosis of osteoporosis: A position statement from the national bone
health allianceworking group.Osteoporos. Int. 25 (5), 1439–1443. Epub 2014/03/01. doi:10.
1007/s00198-014-2655-z

Vlachos, I. S., Kostoulas, N., Vergoulis, T., Georgakilas, G., Reczko, M., Maragkakis, M.,
et al. (2012). Diana mirpath V.2.0: Investigating the combinatorial effect of micrornas in
pathways. Nucleic Acids Res. 40, W498–W504. Web Server issueEpub 2012/06/01. doi:10.
1093/nar/gks494

Wang, H., Zhao, W., Tian, Q. J., Xin, L., Cui, M., and Li, Y. K. (2020). Effect of lncrna
Ak023948 on rats with postmenopausal osteoporosis via pi3k/akt signaling pathway. Eur.
Rev. Med. Pharmacol. Sci. 24 (5), 2181–2188. Epub 2020/03/21. doi:10.26355/
eurrev_202003_20483

Wang,W.,Qiao, S. C.,Wu,X. B., Sun, B., Yang, J. G., Li, X., et al. (2021). Circ_0008542 in
osteoblast exosomes promotes osteoclast-induced bone resorption through M6a
methylation. Cell Death Dis. 12 (7), 628. Epub 2021/06/20. doi:10.1038/s41419-021-
03915-1

Yan, J., Chen, S., Zhang, Y., Li, X., Li, Y., Wu, X., et al. (2008). Rac1 mediates
the osteoclast gains-in-function induced by haploinsufficiency of Nf1. Hum.
Mol. Genet. 17 (7), 936–948. Epub 2007/12/20. doi:10.1093/hmg/ddm366

Yao, P., Bennett, D., Mafham, M., Lin, X., Chen, Z., Armitage, J., et al.
(2019). Vitamin D and calcium for the prevention of fracture: A systematic
review and meta-analysis. JAMA Netw. Open 2 (12), e1917789. Epub 2019/12/
21. doi:10.1001/jamanetworkopen.2019.17789

Yoshiki, S., Matsunaga-Udagawa, R., Aoki, K., Kamioka, Y., Kiyokawa, E.,
and Matsuda, M. (2010). Ras and calcium signaling pathways converge at
Raf1 via the Shoc2 scaffold protein. Mol. Biol. Cell 21 (6), 1088–1096. Epub
2010/01/15. doi:10.1091/mbc.e09-06-0455

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). Clusterprofiler: An R
package for comparing biological themes among gene clusters. Omics 16 (5),
284–287. Epub 2012/03/30. doi:10.1089/omi.2011.0118

Zhou, Y., Deng, H. W., and Shen, H. (2015). Circulating monocytes: An
appropriate model for bone-related study. Osteoporos. Int. 26 (11), 2561–2572.
Epub 2015/07/22. doi:10.1007/s00198-015-3250-7

Frontiers in Pharmacology frontiersin.org12

Zeng et al. 10.3389/fphar.2022.944735

https://doi.org/10.1007/s11914-004-0015-1
https://doi.org/10.1007/s11914-004-0015-1
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gkaa1038
https://doi.org/10.1093/nar/gkaa1038
https://doi.org/10.1007/s00198-018-4575-9
https://doi.org/10.1007/s00198-018-4575-9
https://doi.org/10.1002/jbmr.4187
https://doi.org/10.1093/nar/gkaa891
https://doi.org/10.1093/nar/gkaa891
https://doi.org/10.1001/jamainternmed.2019.0682
https://doi.org/10.1001/jamainternmed.2019.0682
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1210/endo.137.9.8756585
https://doi.org/10.1210/endo.137.9.8756585
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1083/jcb.200610046
https://doi.org/10.1097/00007632-199712151-00003
https://doi.org/10.1097/00007632-199712151-00003
https://doi.org/10.1093/nar/gkr366
https://doi.org/10.1016/j.tcm.2015.04.005
https://doi.org/10.1016/j.tcm.2015.04.005
https://doi.org/10.1007/s00198-010-1434-8
https://doi.org/10.1007/s00198-010-1434-8
https://doi.org/10.1155/2015/282806
https://doi.org/10.1097/sla.0000000000004204
https://doi.org/10.1097/sla.0000000000004204
https://doi.org/10.1038/psp.2013.56
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.3390/ijms21051660
https://doi.org/10.1091/mbc.e05-01-0010
https://doi.org/10.1091/mbc.e05-01-0010
https://doi.org/10.1126/science.aav1741
https://doi.org/10.1074/jbc.M115.669499
https://doi.org/10.1210/jcem-70-4-1202
https://doi.org/10.1210/jcem-70-4-1202
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1007/s00198-014-2655-z
https://doi.org/10.1007/s00198-014-2655-z
https://doi.org/10.1093/nar/gks494
https://doi.org/10.1093/nar/gks494
https://doi.org/10.26355/eurrev_202003_20483
https://doi.org/10.26355/eurrev_202003_20483
https://doi.org/10.1038/s41419-021-03915-1
https://doi.org/10.1038/s41419-021-03915-1
https://doi.org/10.1093/hmg/ddm366
https://doi.org/10.1001/jamanetworkopen.2019.17789
https://doi.org/10.1091/mbc.e09-06-0455
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1007/s00198-015-3250-7
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.944735

	Identification of a potential diagnostic signature for postmenopausal osteoporosis via transcriptome analysis
	Introduction
	Materials and methods
	Microarray data collection and processing
	Identification of differentially expressed genes (DEGs)
	Weighted gene coexpression network analysis
	Construction and validation of a genetic diagnostic signature of osteoporosis
	Functional annotation analysis
	Gene-miRNA interaction analysis, molecular docking, and network visualization
	RNA extraction and quantitative real-time polymerase chain reaction
	Statistical analysis

	Results
	Quality control of microarray data and DEG screening
	Weighted coexpression network and identification of bone mineral density-related modules
	Construction and testing of the diagnostic signature
	Functional annotation and Gene Set Enrichment Analysis
	miRNA interaction identification and candidate molecule prediction
	Validation by real-time polymerase chain reaction

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


