
RESEARCH ARTICLE

A Computational Framework for Bioimaging
Simulation
Masaki Watabe1, Satya N. V. Arjunan1, Seiya Fukushima2,4, Kazunari Iwamoto1,
Jun Kozuka2, Satomi Matsuoka2, Yuki Shindo1,4, Masahiro Ueda2,4, Koichi Takahashi1,3*

1 Laboratory for Biochemical Simulation, Quantitative Biology Center, RIKEN, Suita, Osaka, Japan,
2 Laboratory for Cell Signaling Dynamics, Quantitative Biology Center, RIKEN, Suita, Osaka, Japan,
3 Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan, 4Graduate School of
Frontier Biosciences, Osaka University, Suita, Osaka, Japan

* ktakahashi@riken.jp

Abstract
Using bioimaging technology, biologists have attempted to identify and document analytical

interpretations that underlie biological phenomena in biological cells. Theoretical biology

aims at distilling those interpretations into knowledge in the mathematical form of biochemi-

cal reaction networks and understanding how higher level functions emerge from the com-

bined action of biomolecules. However, there still remain formidable challenges in bridging

the gap between bioimaging and mathematical modeling. Generally, measurements using

fluorescence microscopy systems are influenced by systematic effects that arise from sto-

chastic nature of biological cells, the imaging apparatus, and optical physics. Such system-

atic effects are always present in all bioimaging systems and hinder quantitative

comparison between the cell model and bioimages. Computational tools for such a compar-

ison are still unavailable. Thus, in this work, we present a computational framework for han-

dling the parameters of the cell models and the optical physics governing bioimaging

systems. Simulation using this framework can generate digital images of cell simulation

results after accounting for the systematic effects. We then demonstrate that such a frame-

work enables comparison at the level of photon-counting units.

Introduction
All scientific measurements are subject to some uncertainties. Experimental accuracy and pre-
cision must be always estimated to establish the validity of our results [1, 2]. It is also true for
measurements using bioimaging techniques such as fluorescence microscopy. The measure-
ments are generally influenced by systematic effects that arise from the stochastic nature of bio-
logical cells, the imaging apparatus, and optical physics. Such systematic effects are always
present in all bioimaging systems and hinder the validation of the mathematical models of bio-
logical cells. For example, the local precision of reconstructed images obtained by precise locali-
zation microscopy, such as stochastic optical reconstruction microscopy (STORM), and
photoactivated localization microscopy (PALM) is particularly limited by the systematic effects
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that are governed by camera specifications and its operating conditions [3–5]. The limitation
constrains the validation of the mathematical models of the biological dynamics.

Theory of model validation is often applied to obtain valid mathematical models in physics
and engineering fields [6–8]. It can be also applied to biological science, because it offers a for-
mal representation of the progressive build-up of trust in the mathematical model of interest.
In a standard exercise of model validation, one performs an experiment and in parallel, runs a
simulation of the model. Then, using metrics controlled by the parameters embedded in the
model and the experimental configuration, the output of the model simulation is iteratively
compared and analyzed with the actual experimental output. There are three important parts
in the iterative process. (1) The experimental outputs are generally influenced by the systematic
effects that arise from various sources in the bioimaging process. The outputs of the model sim-
ulation are usually not presented in the most efficient way for comparison with the experimen-
tal outputs. Simulations of the experimental techniques and their operating conditions are
essential for proper comparison and analysis. (2) The predictive capability of the model is to go
beyond the well-known parameter domain and into a new parameter domain of unknown con-
ditions and outcome. Calibration and validation are one of the important processes of parame-
ter adjustment in each domain. Calibration is defined as the process of improving the
agreement of a set of simulated outputs with a set of actual outputs obtained under well-con-
trolled experimental systems. Validation is defined as the process of quantifying our confidence
in the predictive capability for a given application. (3) Analyses of parameter sensitivity and
limitation are also important to reduce the size of the parameter domain.

In this article, we focus on the first (comparison) issue/part. In order to properly compare
spatial models of biological cell with actual cell images, we propose a computational framework
for managing parameter dependences by defining a uniform interface and common organiza-
tional principles governing the systematic effects. Such a framework allows us to efficiently
handle the parameters defined in a spatial cell model and the physical principles governing the
bioimaging techniques and their operating conditions. Using this framework, we program bioi-
maging simulation modules to generate digital images of the cell simulation results after
accounting for the systematic effects. The intensity of the simulated images corresponds to the
number of photons detected in a light-sensitive device. Thus, the framework streamlines the
comparison at the level of photon-counting units. In particular, we implement the simulation
modules for relatively simple microscopy systems: total internal reflection fluorescence micros-
copy (TIRFM) and laser-scanning confocal microscopy (LSCM). We then evaluate the perfor-
mance of the simulation modules by comparing a simulated image with an actual image for
simple particle models of fluorescent molecules. Thus, these images are comparable at the level
of photon-counting units. Each simulated image is visually similar to the corresponding real
one. In addition, using the LSCM simulation module, we compared a more complex cell model
with real cell images obtained by the actual LSCM system. We construct the following spatial
cell models for the comparison: (i) the ERK nuclear translocation model for the epidermal
growth factor (EGF) signaling pathway, and (ii) the self-organizing wave model of phosphatase
and a tensinin homolog (PTEN) for the chemotactic pathway of Dictyostelium discoideum.
Using a test version of the TIRFM simulation module, we compared the oscillation model of
the Min proteins of Escherichia coli with actual cell images [9].

Methods

Computational framework
To render the simulated output of a spatial cell model well suited for comparison at the level of
photon-counting units, we propose a computational framework for simulating the passage of
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photons through fluorescent molecules and the optical system. Simulations using this frame-
work can generate simulated digital images after accounting for the systematic effects that are
governed by the parameters embedded in spatial cell model and optics system. An overview of
the computational framework is schematically shown in Fig 1. The simulation of the optical
system is composed of three components: (1) an illumination system, (2) molecular fluores-
cence, and (3) an image-forming system. The illumination system transfers photon flux from a
light source to the spatial cell model to create a prescribed photon distribution and maximize
the photon flux delivered to the cell model. Fluorophores defined in the cell model absorb pho-
tons from the distribution and are quantum mechanically excited to higher energy states.
Molecular fluorescence is the result of physical and chemical processes in which the fluoro-
phores emit photons from the excited states [10, 11]. Finally, the image-forming system relays
a nearly exact image of the cell model to a light-sensitive detector.

Simulation of cell model. In particular, the bioimaging simulation system requires the
space-time trajectory of each simulated molecule of interest to generate realistic digital images.
However, many cell simulation systems have been designed to model and simulate both deter-
ministic and stochastic biochemical processes, assuming that simulated molecules are dimen-
sionless and homogeneously distributed in a compartment [12]. Here, we use spatial
simulation methods that can provide accurate space-time trajectories of molecules [9, 13–17].

Fig 1. Schematic overview of the computational framework. Direction of photon propagation is presented
by thick blue arrows.

doi:10.1371/journal.pone.0130089.g001
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For a given cell system, simulations using these methods include a statistical model of biologi-
cal fluctuation that arises from stochastic changes in the cellular compartment geometry, num-
ber of molecules, type of molecule, molecular state, and translational and rotational diffusion.

Simulation of optical system. Simulations of an optical system particularly require the
computation of the photon counting, propagation, and distribution. The optics simulations are
based on geometric optics (or wave optics) and the Monte Carlo method. Each optics simula-
tion includes a statistical model of the systematic effects that are influenced by the parameters
defined in optical devices such as the light source, objective lens, special filter, and detector.
The classical theory of geometric optics is applied to simulate the photon propagation and dis-
tribution through the illumination and image-forming systems, including optical aberrations.
Geometric optics approximates the photon propagation as a ray (paraxial approximation), and
provides the procedures to compute the numerical or analytical forms of the photon distribu-
tions for a given photon wavelength. It is an excellent approximation when the photon wave-
length is very small compared with the size of the structure with which the photon interacts.
However, it introduces normalization constant as an input parameter, and is formalized with-
out counting the number of photons propagating through the optical system. The Monte Carlo
method is applied to the simulation of the stochastic process of counting photons for a given
probability density function. The details for each optics simulation are described below.

1. Illumination system [18, 19]: The bioimaging system requires intense, near-monochro-
matic, illumination by a widely spreading light source, such as lasers. Incident photons from
such a light source can illuminate a specimen. The surviving photons after passing the exci-
tation filters interact with the fluorophores in the cell model, and excite the fluorophores to
electrically excited states. The optics simulations of the focusing of the incident photons
through the objective lens include a statistical model of the systematic effects due to the
numerical aperture (NA), magnification, working distance, degree of aberration, correction
refracting surface radius, thickness, refractive index, and details of each lens element.

2. Molecular fluorescence: The incident photons propagating through the illumination system
are absorbed by the fluorophores in the cell model. Fluorescence is the result of physical and
chemical processes in which the fluorophores emit photons from electronically excited
states [10, 11]. The Monte Carlo simulation of the overall fluorescence process includes a
statistical model of the systematic effects that are influenced by the absorption and emission
spectra, quantum yield, lifetime, quenching, photobleaching and blinking, anisotropy,
energy transfer, solvent effect, diffusion, complex formation, and a host of environmental
variables.

3. Image-forming system [18, 19]: In an optical system that employs incoherent illumination
of the cell model, the image-forming process can be considered as a linear system [20].
Impulse response of the image-forming system to a point-like fluorophore is described by
the point spread function (PSF) of the wavelength and position. When all fluorophores in
the cell model are imaged simultaneously, the distribution of emitted photons of longer
wavelengths that passed through the use of the objective lens and special filters, is computed
as the sum of the PSFs of all fluorophores. The optics simulations of PSF formation and con-
volution include a statistical model of the systematic effects that are ruled by the parameters
embedded in the objective lens, the special filters, and each details of lens elements.
The emitted photons are finally detected by light-sensitive devices, and digitized as an
image at detection time. The properties of the final image depend on the detector specifica-
tions and conditions during the readout process that converts an incident photon signal
into a digital signal. The Monte Carlo simulation for the detection process includes a
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statistical model of the systematic effects that arise from signal and background shot noises,
and detector specifications and conditions, such as pixel size, quantum efficiency (QE),
readout noise, dark current, excess noise factor, gain, offset, exposure time, and binning.

Implementation
We provide a standard computational framework to simulate various different types of bioima-
ing systems. In particular, we implemented the simulation modules for relatively simple
microscopy systems: TIRFM and LSCM. Optical configurations are shown in Fig 2. The mod-
ules are designed to generate digital images of the cell simulation results after accounting for
the systematic effects that are governed by the parameters defined in the TIRFM and LSCM
systems. A cell simulation method with Spatiocyte is used to construct the spatial cell models
[9]. For a given cell system, Spatiocyte can provide a statistical model of biological fluctuation
that arises from stochastic changes in the cellular compartment geometry, number of mole-
cules, type of molecule, molecular state, and translational diffusion. The method can be used to
model complex reaction-diffusion mediated cellular processes occurring on the surface and in
the volume compartments of the cell at a single-molecule resolution. To represent cell com-
partments and rapidly resolve molecular collisions, the method discretizes space into a

Fig 2. Optical configurations. (A) TIRFM simulation module. (B) LSCM simulation modules. Grey arrows
represent direction of photon propagation.

doi:10.1371/journal.pone.0130089.g002
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hexagonal closed-packed lattice. Each molecule randomly walks from voxel to voxel. Molecular
collisions occur between walks. Immobile lipid molecules represent surface compartments,
such as cellular and nuclear membranes. Implementation details are described in ref. [21]. In
addition, other simulation methods such as Green Function Reaction Dynamics (GFRD) [13,
14] will be applied in the future implementation.

The three dimensional point spreading function (3D-PSF) model plays a key role in the
bioimaing simulations [22]. Each point-like source of a fluorophore gives rise to a 3D-PSF pat-
tern in the image-forming systems. The normalization constant of the PSF is usually consid-
ered as an user input parameter. However, the bioimaging simulations requires the counting of
the number of photons emitted from a single fluorophore, and spatial PSF integration to be

unity within infinite volume region (
R1
0
PSF d3r ¼ 1). The PSF decays in an oscillatory man-

ner at tails along the radial and axial axes. Such damping characteristics hinders the estimation
of an exact or approximate form of the PSF normalization constant. A wrong estimation can
easily lead to the miscounting of the number of photons, and provide a wrong intensity of the
final images. Such problematic normalization has not been well discussed in the literature. In
addition, optical aberrations can lead to a non-uniform distribution of the 3D-PSF. The aberra-
tions are deviations in an image that occur when photons from one point of an object does not
converge into a single point after propagating through an optical system. They can be caused
by artifacts that arise from the interaction of photons with glass lenses. Using first order para-
xial approximation, makers of optical instruments typically correct the optical systems to com-
pensate for the optical aberrations.

Assuming the first order paraxial approximation, and the spatial PSF integration to be unity

within a limited volume region (
R L

0
PSF d3r ¼ 1), we implement the TIRFM and LSCM simu-

lation modules. Step-by-step instructions are provided below. More details are discussed in the
supporting information (see S1 Text). Simulation studies to estimate the errors that arise from
the PSF normalization and the optical aberrations are required for the future implementation.

A1. The TIRFM simulation module enables selective visualization of the basal surface regions
of the cell model. Incident beam photons of the excitation wavelength (λ) can uniformly
illuminate the specimen. Evanescent field is generated along z-axes as perpendicular to
the total internal reflection surface, and capable of exciting the fluorophores near the sur-
face. The incident photon flux density at the level of photon-counting unit is defined by

jAI j2 ffi
�

El

#photons

sec � cm2

� �
ð1Þ

where ϕ and El ¼ hc
l are the incident beam flux density (W/cm2) and single photon

energy, respectively. h and c are Planck constant and a speed of light. AI is the amplitude
of the incident photon flux density.

A2. Because of the desperate timescales of the quantum transitions, we simply assume that
the fluorescence molecules subsequently emit single photon of longer wavelength while
they absorb one million photons of excitation wavelength, and the cross-section of pho-
ton-molecule interaction is roughly 10−14 cm2 [23]. No other physical processes is simu-
lated. The expected number of photons emitted from a single fluorophore is defined by

nemit ffi s dT
4p

jAT j2 � 10�6 ½#photons� ð2Þ

where jATj2, σ, and δT are the transmitted beam flux density, the cross-section, and
detection time. The detector is located in a specific direction. We expect to observe the
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number of photons devided by an unit surface area of a sphere (4π). The amplitude of
the transmitted beam flux density depends on the index refraction, and the incident
beam angle, amplitude, and polarization.

A3. When all the fluorophores in the cell model are imaged simultaneously, the distribution
of the emitted photon of longer wavelengths that passed through the use of objective lens
and special filters is computed as the sum of the PSFs of all the fluorophores. In particu-
lar, we use the Born-Wolf PSF model [22]. For an optimal wavelength (λ0) of a fluoro-
phore, we estimated that 55% of the emitted photons that passed through the Dichroic
mirror and emission filter survive (nemit ! n0emit). The expected image plane at the focal
point (z = z0) is given by the convolution of the PSF and written in the form of

Exp: Imageð~r ; zÞ ¼
XN
k¼0

n0
emit PSFl0 ~r �~rk

M
; z � zk

� �
ð3Þ

where N andM are the total number of fluorophores, and optical magnification, respec-
tively. ð~rk; zkÞ is the position of the k-th fluorophore. ð~r ; zÞ is the position in an image

plane. The PSF is normalized within a ±1.0 μm range of radial and axial axes. In addition,
polarization of the evanescent field is non-isotropic, which means that dipoles of differ-
ent orientations are excited with different probabilities per unit time. In order to accu-
rately simulate image-formation process, the polarized form of the PSF is required for
the future implementations.

A4. The emitted photons are finally detected by CMOS or EMCCD cameras, and digitized as
an image at a detection time. The readout process can convert expected incident photon
signals to digital signals relies on camera specifications and camera operating conditions
to carry out the properties for final images. The observed image of the cell model can be
obtained using the Monte Carlo method in the presence of systematic sources, including
statistical fluctuations in photon counting (photon shot noise), and camera specification
and camera operating conditions. Finally, photoelectron signals can be linearly converted
to digital signals. Unit conversions are given by

Exp: Image ½#photons��!Obs: Image ½#photoelectrons��!Digital Image ½A=D counts�

B1. The LSCM simulation module can visualize focal regions of the cell model. In general,
laser beam propagation of excitation wavelength can be approximated by assuming that
the laser beam has an ideal Gaussian beam profile. The incident beam flux of excitation
wavelength (λ) and continuously illuminates specimen, and is focused into a confocal
volume at a given scan time and beam position. Incident photon flux is defined by

P0 ffi F
El

#photons

sec

� �
ð4Þ

where F and El ¼ hc
l are the incident beam flux (W) and single photon energy. h and c

are Planck constant and speed of light, respectively.

B2. We also assume that the linear conversion of photon emission is by 10−6, and the cross-
section of photon-molecule interaction is roughly 10−14 cm2 [23]. No other physical pro-
cesses are simulated. For a given position and time, the expected number of photons
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emitted from a single fluorophore is defined by

nemitð~r ; zÞ ffi s dT
4p

Ið~r ; zÞ � 10�6 ½#photons� ð5Þ

where I(r,z), σ, and δT are the transmitted beam flux density, cross-section, and scan
time per pixel, respectively. The detector is located in a specific direction. We expect to
observe the number of photons divided by an unit surface area of a sphere (4π). The
transmitted beam flux density depends on the incident photon flux, and the beam waist
radius at the focal plane where the wavefront is assumed to be flat.

B3. When all the fluorophores in the cell model are imaged simultaneously, the distribution
of the emitted photon of longer wavelengths that passed through the use of objective lens
and pinhole is computed as the sum of the PSFs of all the fluorophore. In particular, we
use the Born-Wolf PSF model [22]. As an incident beam is scanned across the cell model
in horizontal and vertical axes, a digital image is generated at a time. For a given scan
time and beam central position, the expected image plane at the focal point (z = z0) is
given by the integration of the image plane obtained from the PSF convolution. It is writ-
ten in the form of

Exp: Imageð~r; zÞ ¼
Z Z

dð~rb �~r ; zb � zÞ
Z Z

j~r0 �~rb j<RI
0ð~r0 �~rb; z

0 � zbÞ dx0dy0
� �

dxbdyb ð6Þ

where I 0ð~r00 ; z00Þ ffi
XN
k¼0

nemitð~r00 ; z00Þ PSFl0
~r00 �~rk

M
; z00 � zk

� �

where N, R andM are the total number of fluorophores, pinhole radius, and optical mag-
nification, respectively. ð~rk; zkÞ is the position of the k-th fluorophore. ð~rb; zbÞ is the
position of beam center. ð~r ; zÞ is position in the image plane. The PSF is normalized
within a ±1.0 μm range of radial and axial axes.

B4. The emitted photons are finally detected by a photomultipliers tube (PMT), and digitized
as an image at a given scan time. The observed image of the cell model can be obtained
using the Monte Carlo method in the presence of systematic sources, including statistical
fluctuations in photon counting (photon shot noise), and PMT specifications and PMT
operating conditions. Finally, photoelectron signals can be linearly converted to digital
signals. Unit conversions are given by

Exp: Image ½#photons��!Obs: Image ½#photoelectrons��!Digital Image ½A=D counts�

Results

Comparison of in vitro images
We evaluated the performance of our simulation modules by comparing the simulated images
with the actual photographed ones for simple particle models of fluorescent molecules. We
simulated imaging of the focal region of those simple models for the optical system with the
detector specifications and detector operating (see S2 Text). Details of the in vitro comparison
are described in the supporting information (see S2 Text). The results are shown in Figs 3, 4
and 5. The intensity of the simulated images corresponds to the number of photons detected in
the digital cameras or the PMT. Each simulated image is visually similar to the corresponding
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real ones. Thus, the simulated images were compared with images obtained using actual
microscopy systems at the level of photon-counting units. However, differences still remain in
the resulting images owing to calibration. Calibration is the process of improving the agree-
ment of the code calculation with a chosen set of benchmarks through the adjustment of the
parameters implemented in the simulation modules [6–8]. Such a calibration process is
required in all experiments to improve the agreement of the simulated outputs with the in vitro
data sets. Even though the results of a simple calibration were used, the first version of our sim-
ulation modules was capable of generating images that closely reproduce images obtained with
an actual microscopy system. A more elaborate set of calibration is required in the future.
More details are described below.

1. To test the performance of the TIRFM simulation module, we constructed a simple particle
model of 100 stationary HaloTag-with-tetramethylrhodamine (HaloTag-TMR) molecules
distributed on a glass surface, as shown in Fig 3A. We simulated imaging of the basal region
of the simple model for the TIRFM specifications and TIRFM operating conditions (see S2
Text). Fig 4A shows the expected optical distribution used for the simulation, which was
generated by averaging 100 images over a 3 sec exposure period. Intensity histograms of
each expected images are also shown in Fig 4A. Fig 4B and 4C show the simulated images
and the real captured ones at various beam flux densities. The intensity of the simulated
images corresponded to the number of photons detected in the EMCCD camera. Increasing
the beam flux density results in a relatively brighter image. Each simulated image is visually
similar to the corresponding real one. Thus, the simulated images were compared with the
images obtained using the actual TIRFM systems at the level of photon-counting units.
However, differences still remain in the resulting images owning to calibration. A more
elaborate set of calibrations is required in the future.

2. To test the performance of the LSCM simulation module, we constructed a simple particle
model of 19,656 HaloTag-TMR molecules diffused in an aqueous solution as shown in Fig
3B. We simulated imaging of the middle region of the simple model for the LSCM specifica-
tions and LSCM operating conditions (see S2 Text). Fig 4A shows the expected optical dis-
tribution used for the simulation, which was obtained by averaging 30 images over a 30 sec
exposure period. Intensity histograms of each expected images are also shown in Fig 4A. Fig
5B and 5C show the simulated images and the real captured ones at various beam fluxes.
The intensity of the simulated images corresponds to the number of photon pulses detected
in the PMT. Increasing the beam flux results in relatively brighter image. Each simulated

Fig 3. Simple models (A) 100 stationary HaloTag-TMRmolecules are distributed on a glass surface. (B) 19,656 HaloTag-TMRmolecules are
distributed in a 30 × 30 × 6 μm3 box of aqueous solution (= 5 nM), and rapidly diffuse at 100 μm2/sec.

doi:10.1371/journal.pone.0130089.g003
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image is visually similar to the corresponding real ones. Thus, the simulated images were
compared with the images obtained using the actual LSCM systems at the level of photon-
counting units. However, differences still remain in the resulting images owning to calibra-
tion. A more elaborate set of calibrations is required in the future.

Comparison of in vivo images
Using the LSCM simulation module, we compared a more complex cell model with real cell
images obtained using the actual LSCM system. We constructed the following spatial cell mod-
els: (i) the ERK nuclear translocation model for the EGF signaling pathway, and (ii) the self-
organizing wave model of PTEN for the chemotactic pathway of D. discoideum. We developed
these cell models, which are not available in the literature. We assumed that the parameters of
each cell model and the LSCM system are well evaluated with in vitro data sets. We then simu-
lated imaging of the focal region of those cell models for the LSCM specifications and LSCM
operating conditions (see S3 Text). Details of the in vivo comparison are described in the sup-
porting information (see S3 Text). The results are shown in Figs 6 and 7. The intensity of the
simulated images corresponds to the number of photon pulses detected in the PMT. Thus, the
simulated cell images were compared with the images obtained by the actual microscopy sys-
tems at the level of photon-counting units. Significant new insight on the cell models will be
published in the future.

i. We constructed the cell model of ERK nuclear translocation for the EGF signaling path-
way. We assumed the PC12 cell model that represents the ERK molecules tagged with
the enhanced green fluorescent protein (ERK-mEGFP). Fig 6A and 6B show the main
reaction network and the geometry of the model, respectively. The cell was placed on the
glass surface, and was nearly hemispherical. The size of the hemispherical cell was esti-
mated by experimentalists. A cell measuring 20 μm in diameter and 7 μm in height was
assumed. The model consisted of 75 chemical species, 143 reactions, and 85 kinetic
parameters. A maximum of 100,000 ERK molecules were distributed in the cell cyto-
plasm and rapidly diffuse at 1.00 μm2/sec. The input of the EGF ligand could drive the
transport of 30% of the ERK molecules into the nucleus and back to the initial condition
in 10 min. We simulated imaging of the middle regions of the cell model for the LSCM
specifications and LSCM operating conditions (see S3 Text). Fig 6C and 6D show the
simulated cell images and the cell images obtained using the actual LSCM system. The
intensity of the simulated images corresponds to the number of photon pulses detected
in the PMT. Therefore, the simulated images were compared with images obtained using
the actual LSCM system at the level of photon-counting units (see S1 Video). Each simu-
lated image was visually similar to the corresponding real one, but differences still remain
in the resulting images owning to calibrations. A more elaborate set of calibration is
required in the future.

Fig 4. Using HaloTag-TMRmolecules distributed on a glass surface to evaluate the performance of TIRFM simulationmodule. (A) Expected images
of the simple particle model at various beam flux densities (20,30,40 and 50W/cm2). The expected images are obtained by averaging 100 images over 3 sec
exposure period. Intensity histograms are also shown below each expected images and presented with black-colored bars. Each histograms are
logarithmically scaled and presented with grey-colored bars. (B) Simulated digital images of the simple particle model are shown at various beam flux
densities (20,30,40 and 50W/cm2). Size of each images is 152 × 156 pixel. Orange scalebar represents 3.15 μm. Intensity histograms are also shown below
each simulated images. (C) Real captured images obtained from in vitro experiment are shown at various beam flux densities (20,30,40 and 50W/cm2). The
maximum value of the grayscale is adjusted to improve visualization of each image. Intensity histograms are also shown below each actual images.

doi:10.1371/journal.pone.0130089.g004
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Fig 5. Using HaloTag-TMRmolecules to evaluate the performance of LSCM simulationmodules. (A) Expected images of the simple particle model at
various beam flux (5,10,30,50, and 100 μW). Each expected images are generated by averaging 30 images over 30 sec exposure period. Intensity
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histograms are also shown below each expected images and presented with black-colored bars. Each histograms are logarithmically scaled and presented
with grey-colored bars. (B) Simulated digital images of the simple particle model are shown for various beam flux (5,10,30,50, and 100 μW). Size of each
images is 100 × 100 pixel. Orange scalebar represents 5.18 μm. Intensity histograms are also shown below each simulated images. (C) Real captured
images obtained from in vitro experiment are shown for various beam flux (5,10,30,50, and 100 μW). Size of each images is 100 × 100 pixel. The maximum
value of the grayscale is adjusted to improve visualization of each image. Intensity histograms are also shown below each actual images.

doi:10.1371/journal.pone.0130089.g005

Fig 6. ERK nuclear translocation model of EGF signaling pathway. (A) Reaction network. (B) Geometry of PC-12 cell model. A hemispherical cell
measuring 20 μm in diameter and 7 μm in height is assumed. (C) Time-lapse images of the ERK nuclear translocation model observed using the LSCM
simulation module. Size of each images is 90 × 90 pixel. Orange scalebar represents 4.66 μm. (D) The time-lapse images obtained from the experiment. The
grayscale of each images is adjusted in the range of 0 to 225.

doi:10.1371/journal.pone.0130089.g006
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ii. We also constructed a self-organizing wave model of PTEN for the chemotactic pathway
of D. discoideum to validate the performance of two-color imaging for the LSCM simula-
tion module. We assumed a D. discoideum cell model that expresses the fluorescently
labeled pleckstrin homology domain of Akt/PKB (PH) and PTEN, where PH and PTEN
are indicators for phosphorylates phosphatidylinositol 3,4,5-trisphosphate (PIP3) metab-
olism. PH can bind to PIP3 at the membrane, whereas PTEN catalyzes the degradation
of PIP3 and has a binding motif for phosphatidylinositol 4,5-biphosphate (PIP2). PH
was tagged with EGFP (PH-EGFP), whereas PTEN was tagged with HaloTag with TMR
(PTEN-TMR). A maximum of 10,000 molecules of PTEN-TMR and PH-EGFP were
homogeneously distributed in the cell cytoplasm. On the membrane, PI3K catalyzed
PIP2 phosphorylation to PIP3, whereas PTEN dephosphorylated PIP3 into PIP2. Cyto-
solic PTEN was recruited to the membrane regions containing PIP2. Nonetheless, PIP3
could dislodge PTEN from PIP2 into the cytosol when they came in contact with each
other. This last reaction acted as a positive feedback for PIP3 accumulation. Fig 7A and
7B show the main reaction network and the geometry of the model, respectively. A cell
was placed on the glass surface, and was nearly hemispherical. The size of the hemispher-
ical cell was estimated by experimentalists. The cell measuring 25 μm in diameter and
5 μm in height was assumed. The model involved 8 chemical species, 12 reactions, and
12 kinetic parameters. Lattice-based particle simulation of the cell model enabled of the
reproduction of the local oscillatory dynamics of PTEN-TMR and PH-EGFP. We simu-
lated imaging of the middle region of the cell model for the LSCM specifications and
LSCM operating conditions (see S3 Text). Fig 7C and 7D show the simulated cell images
and the cell images obtained by the actual LSCM system. The intensity of the simulated
images corresponds to the number of photon pulses detected in the PMT. Therefore, the
simulated images were compared with the images obtained using the actual LSCM sys-
tem at the level of photon-counting units (see S2 Video). Each simulated image was visu-
ally similar to the corresponding real one, but intensity differences still remained in the
resulting images. The number of PTEN-TMR and PH-EGFP in the wave model are
approximately 4,000 for each, but we expect more (*30,000) in the observed images. A
more elaborate set of calibration is required in the future.

Discussion
Measurements using bioimaging techniques are generally influenced by systematic effects that
arise from the stochastic nature of biological cells, the photon-molecule interaction, and the
optical configuration. Such systematic effects are always present in all bioimaging systems and
hinder the comparison between the cell model and the real cell image. Combining optics and
cell simulation technologies, we proposed a computational framework for handling the param-
eters embedded in the cell model and the optical principles governing the bioimaging systems.
The simulation using this framework generated digital images from cell simulation results after
accounting for the systematic effects. In particular, we demonstrated that the simulated digital
images are visually similar to the images obtained using actual TIRFM and LSCM systems.
Each pixel intensity corresponded to the number of photon pulses detected in the camera or
the PMT. Thus, the framework streamlines the comparison at the level of photon-counting
units. However, the image comparison is insufficient to check the validity of the simulation
modules. Verification is the process of confirming the simulation modules are correctly imple-
mented with respect to conceptual description and analytical solutions [6–8]. During the verifi-
cation process, the simulation modules must be tested to find and estimate numerical errors in
the implementations. The simulation modules are designed to count the number of photons
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Fig 7. Self-organizing wavemodel of PTEN for the chemotactic pathway ofD. discoideum. (A) Reaction network. (B) Geometry of D. discoiduem cell
model. A hemispherical cell measuring 25 μm in diameter and 5 μm in height is assumed. (C) Time-lapse image of the self-organizing wave model observed
using the LSCM simulation module. Size of each images is 52 × 51 pixel. Orange scalebar represents 5.39 μm. (D) Time-lapse images obtained from the
experiment. Red and green indicate PTEN-TMR and PH-EGFP, respectively. The colorscale of each images is adjusted in the range of 0 to 225.

doi:10.1371/journal.pone.0130089.g007
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that passed through the optical configurations. A wrong estimation of the numerical errors
that arise from the photon-counting principle can provide a wrong intensity of the final
images. For example, a wrong PSF normalization can miscount the number of photons, and
lead to wrong final images. Furthermore, the simulated images can be also compared with a
chosen set of experimental benchmarks defined in calibration and validation parameter
domains [6–8]. Systematic variance and covariance that arise from various different parameter
settings must be estimated to establish the validity of the simulation modules. Analyses to
quantify the systematic uncertainties are required for the future implementation.

One of the key challenges of transforming biology from a phenomenological science to a
predictive one is how to bridge the gap between a cell model and an actual biological cell [24–
28]. Over the last two decades, large-scale, accurate, and comprehensive simulations of cell
models have greatly improved our understanding of many cellular networks and processes
[29–31]. However, we are still far away from having predictive cell models for actual applica-
tions in medicine and biotechnology. In this work, we focused on the “comparison” part of the
model validation and demonstrated the single cell-to-cell image comparison at the level of pho-
ton-counting units. For future implementation, it is important to fully simulate optical systems
and to demonstrate other important parts of the model validation [6–8]. Within this frame-
work, the functionality and capability of the cell models will be more easily seen and under-
stood. Future tasks required for the model validation include studying diversity in cell
populations and obtaining the nominal and predicted probability distributions of the cell
model. The behavior of individual cells depends on the internal variables and the environmen-
tal conditions. The nominal and predicted probability distributions of those variables are char-
acterized by their statistical quantities. A likelihood that quantifies the discrepancy between the
predicted distribution and the observed one can be evaluated by using a statistical test of signif-
icance. If the result of the statistical test satisfies a certain confidence level, then the cell model
is either rejected or accepted with respect to real cell images. Consequently, such model fitting
will support discoveries in biological science.

Bioimaging simulation using the computational framework presented here is not meant to
replace biological experiments. It provides a realistic estimate of the output that would be
obtained in specific biological applications. Biologists often use commercial bioimaging sys-
tems for their own biological interests. Optical properties of biological molecules and/or phe-
nomena uniquely change, according to the experimenter’s skills and experiences in handling
biological samples and optical equipments. The commercial systems are designed for general
usage, and are not optimized to measure the optical properties of all biological samples.
Although some biologists assemble specialized optical imaging systems for a particular applica-
tion, it is still difficult for them to adjust systems parameters without expected outputs. Such an
approach is quite inefficient since it depends on the experimenter’s skills and experiences. A
more systematic approach is required to reduce or eliminate unintended experimenter’s bias.
In order to objectively handle biological and physical principles in an organized manner, it is
important to develop an object-oriented simulation toolkit of biological imaging. The simula-
tion toolkit is constructed on the basis of a set of numerous biological and physical processes to
handle diverse interactions of photons with molecules over a wide energy range. The toolkit
provides a complete set of software components for all area of bioimaging simulations: optical
configuration, spatial cell models, run, parameter management, visualization and user inter-
face. Such a multi-disciplinary nature of the toolkit allows a user to easily design, customize
and extend bioimaging and/or experimental systems well optimized for specific biological
applications. For example, the computational framework can also be applied to simulate other
bioimaging techniques including fluorescence recovery after photobleaching (FRAP), fluores-
cence correlation spectroscopy (FCS), Forster resonance energy transfer (FRET) and
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localization microscopy. All simulation modules can be objectively handled in a uniform soft-
ware platform.

However, there are two problems in constructing such a software platform. (1) Computa-
tional speed is not well optimized for the TIRFM and LSCM simulation modules. The speed of
generating a simulated image is proportional to the number of fluorophores embbeded in a cell
models. Bioimaging simulation of a cell model containing 100,000 fluorophores, requires about
one day to obtain the final image. Optimization is required in the near future. (2) The optical
properties of many commercial materials are not publicly available. In particular, information
on the objective lens used is important for predicting an exact PSFs in a wide field. A question
is how we can overcome such nonscience-related problems (probably, it is a matter of business
model). In conventional approaches to biological research, biologists and optical physicists
work independently, and do not interact much technologically. In order to properly design and
customize the bioimaging and experimental systems well optimized for the specific biological
applications, collaborative work with optical physicists and engineers will be required for the
future biological research. Clearly, the bioimaging simulation toolkit allows us to better com-
municate with optical physicists and engineers, and to perform the simulation studies of bioi-
maging systems and their operating conditions. Optical materials are well designed by optical
physicists and engineers, and their performance is generally validated by simulation studies of
physical principles and their boundary conditions. Simulation studies are essential for the
objective examination of the response of the optical equipments. However, such simulation
studies have not been well performed for biological samples. Without the results of simulation
studies for biological samples, the collaboration could easily fail. Then, information on the
optical materials could not be shared. Using whatever form of PSF as realistically as possible, it
is important to estimate experimental accuracy and precision for valuable discussion. We
believe that the simulation toolkit can bridge the gap between biology and optics.
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