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Novel Histone Deacetylase Inhibitors
and HIV-1 Latency-Reversing Agents
Identified by Large-Scale Virtual
Screening
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Khumoekae Richard1, Wolfgang Sippl3, Fidele Ntie-Kang2,3* and Ian Tietjen1,4*
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Current antiretroviral therapies used for HIV management do not target latent viral
reservoirs in humans. The experimental “shock-and-kill” therapeutic approach involves
use of latency-reversal agents (LRAs) that reactivate HIV expression in reservoir-
containing cells, followed by infected cell elimination through viral or host immune
cytopathic effects. Several LRAs that function as histone deacetylase (HDAC) inhibitors
are reported to reverse HIV latency in cells and in clinical trials; however, none to date have
consistently reduced viral reservoirs in humans, prompting a need to identify new LRAs.
Toward this goal, we describe here a virtual screening (VS) approach which uses 14
reported HDAC inhibitors to probe PubChem and identifies 60 LRA candidates.
We then show that four screening “hits” including (S)-N-Hydroxy-4-(3-methyl-2-
phenylbutanamido)benzamide (compound 15), N-(4-Aminophenyl)heptanamide (16), N-
[4-(Heptanoylamino)phenyl]heptanamide (17), and 4-(1,3-Dioxo-1H-benzo[de]
isoquinolin-2(3H)-yl)-N-(2-hydroxyethyl)butanamide (18) inhibit HDAC activity and/or
reverse HIV latency in vitro. This study demonstrates and supports that VS-based
approaches can readily identify novel HDAC inhibitors and LRAs, which in turn may
help toward inhibitor design and chemical optimization efforts for improved HIV shock-
and-kill-based efforts.
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INTRODUCTION

While combination antiretroviral therapy (cART) can durably
suppress HIV replication, it does not act on resting CD4+ T
cells containing latent proviral reservoirs. As these cells can
reactivate at any time to produce infectious virus, they
preclude a readily accessible HIV cure (Finzi et al., 1997;
Siliciano et al., 2003; Cary et al., 2016). As a result, cART
currently must be taken for life.

One proposed therapeutic-based method toward identifying
and eliminating HIV reservoir-containing cells, frequently
termed “shock-and-kill,” involves the use of latency reversal
agents (LRAs) to initially stimulate virus production (i.e.,
“shock”). Following LRA administration, cells expressing
reactivated HIV are then eliminated through apoptosis or
immune-enhancing mechanisms (“kill”), while the concurrent
use of cART prevents reservoir reseeding (Deeks, 2012). Among
numerous LRAs identified to date, one of the most common
functional classes is comprised of inhibitors of class I histone
deacetylases (HDAC; Margolis, 2011; Zaikos et al., 2018). During
proviral latency, HDACs are recruited to the HIV promoter
resulting in transcriptional repression (Archin and Margolis,
2014; Darcis et al., 2017). In the presence of HDAC inhibitors,
lysine acetylation within histone tails results in euchromatin
formation and subsequent binding of transcription factors that
drive provirus expression. Several HDAC inhibitors, including
both natural products (e.g., romidepsin) and synthetic
derivatives of natural product leads (e.g., vorinostat), have been
investigated in clinical trials for their ability to reactivate provirus
expression and reduce HIV reservoir levels in cART-treated,
virally suppressed, HIV-infected individuals (Rasmussen and
Lewin, 2016; Andersen et al., 2018). However, while a subset of
these studies reports transient increases of virus or viral RNA
following HDAC inhibitor administration, no trial to date has
shown a significant reduction of HIV reservoir size in humans
(Abner and Jordan, 2019; Zerbato et al., 2019). These results
suggest that additional HDAC inhibitors with improved efficacy
and/or selectivity for proviral integration sites may be needed to
achieve sufficient HIV latency reversal and viral reservoir
clearance in vivo.

One approach toward identifying new HDAC inhibitor
prototypes, to serve as the basis for developing potentially
improved efficacy and selectivity over existing agents, involves
virtual screening (VS) of compound library databases. This
method frequently entails searching for potential “hit”
molecules which are stored in an electronic format and are
able to interact favorably with a drug target site or otherwise
“fit” into the structural, electronic, and steric features of known
bioactive molecules in silico. Common VS approaches involve
molecular docking of an electronic three dimensional
molecular library toward a drug target site, searching for
Abbreviations: cART, combination antiretroviral therapy; CC50, 50% cytotoxicity
concentration; HDAC, histone deacetylase; LE, ligand efficiency; LRA, latency
reversal agent; OPLS, optimized potentials for liquid simulations; PAIN, pan-assay
interference; PDB, protein data bank; RMSD, root-mean-square deviation; SP,
standard precision; VS, virtual screening; 2D, two dimensional.
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common pharmacophores, and calculating binding free
energies (Chaput et al., 2016; Chen et al., 2017). Previous
efforts by us and others have shown that “hits” identified
from VS are frequently biologically active, for example as
novel inhibitors of HIV replication (Brigo et al., 2005;
Shityakov and Dandekar, 2010; Tietjen et al., 2015; Panwar
and Singh, 2017; Berinyuy and Soliman, 2017). We therefore
hypothesized that similar efforts could be used to identify novel
LRA candidates.

Toward this goal, we describe here the results of a VS
beginning with 5,687 unique compound structures obtained
from ~100 million compounds present in PubChem (Kim
et al., 2016). We describe a designed procedure that combines
similarity searching, docking, and scoring and which resulted in
the identification of 60 hit compounds as potential HDAC
inhibitors. We then confirm that four commercially available
compounds from this list function as HDAC inhibitors and/or
HIV LRAs in vitro.
MATERIALS AND METHODS

Reagents
Jurkat T cells (Clone E6-1) were obtained from the American
Tissue Culture Collection. J-Lat 10.6 cells were obtained from the
NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH
(contributed by Dr. Eric Verdin; Jordan et al., 2003). Cells were
cultured in R10+ media [RPMI 1640 with HEPES and L-
Glutamine, 10% fetal bovine serum, 100 U of penicillin/ml,
and 100 µg of streptomycin/ml (Sigma)] and incubated at 37°C
and 5% CO2.

HDAC-Glo I/II Assay kits were obtained from Promega.
Panobinostat was obtained from Sigma-Aldrich. Compounds
15, 16 and 17, and 18 were purchased from Sellick Chemical,
Enamine, and Molport, respectively. Serpulanine A was
gratefully obtained as a gift from Dr. Raymond J. Andersen
(University of British Columbia). Compounds stocks were
diluted in DMSO and stored at minus 20°C until use.

Dataset Collection
The VS dataset was collected from selected molecules in
PubChem (Kim et al. , 2016). We then searched for
compounds from PubChem having close similarity with 14
known class I HDAC inhibitors including belinostat,
entinostat, givinostat, mocetinostat, oxamflatin, panobinostat,
psammaplin A, romidepsin, scriptaid, serpulanine A,
thiophenyl benzamide, trichostatin A, valproic acid, and
vorinostat (Kiernan et al., 1999; Contreras et al., 2009;
Matalon et al., 2010; Ying et al., 2010; Matalon et al., 2011;
Yin et al., 2011; Archin et al., 2012; Rasmussen et al., 2014; Wei
et al., 2014; Huang et al., 2018; Richard et al., 2018; Williams
et al., 2018; Zaikos et al., 2018; Table 1). A two dimensional
(2D) similarity search was conducted on the PubChem website,
with similarity between chemical structures being quantified by
use of the Tanimoto equation (Chen and Reynolds, 2002;
Holliday et al., 2002; Holliday et al., 2003) in combination
June 2020 | Volume 11 | Article 905
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TABLE 1 | Structures of reported histone deacetylase (HDAC) inhibitors used for virtual screening (VS).

hem Reference N PubChem
compounds with > 95%

similarity

878 Huang et al., 2018 1,365

638 Matalon et al., 2011 169

1 Zaikos et al., 2018 213

992 Matalon et al., 2010 37

515 Zaikos et al., 2018 1,645

852 Yin et al., 2011 114

837 Rasmussen et al.,
2014

640
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TABLE 1 | Continued

he
ID

Reference N PubChem
compounds with > 95%

similarity

074 Richard et al., 2018 77

206 Wei et al., 2014 244

86 Ying et al., 2010 554

/A Williams et al., 2018 29

73 Kiernan et al., 1999 355
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with the PubChem substructure fingerprint (ftp://ftp.ncbi.nlm.
nih.gov/pubchem/specifications/pubchem_fingerprints.pdf).
For 12 of 14 compounds which were listed in PubChem at the
time of study [all except the thiophenylbenzamide (compound
1) and serpulanine A (compound 11)], the canonical SMILES
were used to conduct similarity searches. For the remaining two
compounds (1 and 11), 2D structure files built with ChemDraw
(.cdx) were converted to their respective.mol files, uploaded to
PubChem, and used for the similarity search. Initially, a
random search was carried out for 80%, 90%, and 95%
Tanimoto similarities. The hit lists for similarity searches
with less than 95% similarity cut offs yielded several hundred
thousand entries for some of the 14 HDAC inhibitors; as a
result, we selected a cut off of 95% similarity for all 14 input
compounds. Resulting outputs from the search were collected
into a combined dataset and duplicates were removed, leading
to an initial library of 5,867 unique compound entries.

Protein Preparation
The high-resolution crystal structure of the human histone
deacetylase 1 (hmHDAC1, class I HDAC family), with PDB
ID: 5ICN, chain B, (Resolution: 3.3 Å) was downloaded from the
Protein Databank (PDB; www.rcsb.org; Burley et al., 2018).
Preparation of the protein structure was performed using
protocols similar to what we have previously reported
(Heimburg et al., 2016; Simoben et al., 2018). MOE software
(v. 2016.08) was used to delete all water molecules. Further
preparation steps on the protein were applied using the default
settings of the Protein Preparation Wizard of Schrödinger
software (Sastry et al., 2013). Assignment of the bond orders
and hydrogen atoms as well as protonation of the heteroatom
states were added using Epik-tool (with the pH set at biologically
relevant values, i.e., at 7.0 ± 2.0). Optimization of the H-bond
network was done, and the structure was finally subjected to a
restrained energy minimization step using the Optimized
Potentials for Liquid Simulations (OPLS) 2005 force field. The
root-mean-square deviation (RMSD) of the atom displacement
for terminating the minimization was 0.3 Å (Banks et al., 2005).

Ligand Dataset Preparation
Ligands for docking were prepared using similarly reported
protocols (Heimburg et al., 2016; Simoben et al., 2018).
Preparation of ligands for docking was done using the LigPrep
tool (Schroedinger, 2017-u1), as implemented in Schrödinger's
software (version 2017-1). All possible tautomers, as well as
possible combinations of stereoisomers for molecules without
well-defined stereochemistries, were generated for pH 7.0 ± 2.0
using the Epik ionization method. Additionally, the optimized
integrated OPLS-2005 force field (Banks et al., 2005) was used to
minimize all ligands. Pan-Assay Interference (PAIN) molecules
were subsequently discarded after the application of PAIN filters
implemented in the Schroedinger's Canvas tool. Finally, the
generation of 30 conformers for each of the prepared ligand
molecules, followed by the minimization of each conformer
output, was performed using the settings of ConfGen (Watts
et al., 2010).
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Ligand Docking and Scoring
Prepared protein and ligands were docked using the
standardized Glide program procedure of Schrödinger's
software (version 2017-1; Friesner et al., 2004; Halgren et al.,
2004). The receptor grid preparation for the docking procedure
was carried out by assigning the nonpolymer fraction of the
cocrystallized ligand (6A0) as the centroid of the grid box. The
generated three-dimensional conformers of the prepared ligand
were subsequently docked into the receptor model using the
Glide program. An additional metal constraint on the catalytic
Zn2+ ion was used to optimize our docking results. A total of five
docking poses per ligand conformer were included in the
postdocking minimization step, and a maximum of two
docking poses was generated for each ligand conformer. The
GlideScore Standard Precision (SP) score mode was used as the
scoring function to rank the resulting binding poses (Friesner
et al., 2004; Halgren et al., 2004). The Schroedinger clustering
package was subsequently used to cluster the resulting poses
using an RMSD value of 1.5 Å and the Glide SP score as
properties of interest. Further reduction in the number of
molecules was done by choosing only the top 200,000 docking
poses each from the clustered outcomes after ranking by Glide SP
score and Glide Ligand efficiency (LE) scores. The resulting sets
of molecules were merged and duplicates were removed. The
final set of hits was proposed after manual inspection of each
docking pose and interaction(s) with the conserved amino acid
residues His140, His141, and Tyr303 in the HDAC active site.

HDAC Inhibition Assays
HDAC activity in the presence of compounds was performed
using the HDAC-Glo I/II assay (Promega) according to the
manufacturer's instructions. HDAC reactions were performed
in white 384-well plates with a final volume of 20 µl per well.
Stock compounds and DMSO were diluted in manufacturer
buffer to desired concentrations and added to wells. Jurkat cells
were then resuspended in phenol red-free and fetal bovine
serum-free RPMI 1640 and seeded into wells at 3*103 cells/
well. Wells containing no cells were included as negative controls
for the signal background. Following incubation at 37°C and 5%
CO2 for 90 min, 20 µl of HDAC-Glo I/II Reagent plus 1% Triton-
X100 (prepared as per manufacturer's instructions) was added to
each well. Plates were gently mixed for 30 s and then incubated at
room temperature for an additional 30 min. Luminescence was
detected using an Infinity M200 multimode plate reader (Tecan
Life Sciences). Data were normalized between no-inhibitor
(100%) and no-cell (0%) controls and presented as the mean ±
s.e.m. from three independent experiments.

In Vitro HIV Latency Reversal Assays
J-Lat 10.6 cells were seeded in 96-well plates at 2*105 cells/well
and coincubated with LRAs at defined concentrations or 0.1 to
1.0% DMSO vehicle control for 24 or 72 h. Cells were then
examined for GFP expression by flow cytometry (Guava
EasyCyte 8HT, Millipore). Culture viability was estimated by
flow cytometry and based on the relative percentage of
compound-treated J-Lat cells displaying the characteristic
Frontiers in Pharmacology | www.frontiersin.org 6
forward- and side-scatter parameters of vehicle-treated control
cells (Tietjen et al., 2015). Flow cytometry data were analyzed
using FlowJo v. 10.5.3 software (FlowJo LLC, Ashland, OR),
where background GFP signals in live J-Lat cells treated with
respective DMSO concentrations were set to 0.05%-positive cells.
For all results, data are presented as the mean ± s.e.m. from at
least three independent experiments.
RESULTS

Virtual Screening to Identify Putative
HDAC Inhibitors and LRAs
Table 1 lists the structures of 14 compounds (compounds 1–14)
that were used for similarity searching in PubChem. Table 2 lists
published activities of these 14 compounds to inhibit
recombinant HDAC1. All selected compounds were also
reported to reverse HIV latency in one or more in vitro and/or
primary cell assays with the exception of serpulanine A
(Williams et al., 2018), which we confirmed at 10 µM induced
a 31.0% increase in HIV provirus expression, as measured by the
GFP reporter, in J-Lat 10.6 cells (Jordan et al., 2003 and see
below). A similarity search was then performed to reduce the
virtual chemical space to a manageable number of molecules for
VS (see Materials and Methods), which resulted in 6,175
compounds. After the removal of duplicates and pan assay
interference molecules, we obtained 5,867 molecules for VS.

These 5,867 molecules were next docked into the active site of
the hmHDAC1 protein (PDB ID: 5ICN, chain B; Resolution: 3.3
Å). The proposed docking procedure was able to redock the
cocrystallized inhibitor within the receptor-binding pocket with
RMSD < 1 Å. The redocked inhibitor pose was observed to
reproduce the bidentate coordination to the catalytic Zn-ion as
well as H-bond interaction with the conserved Tyr303 (Figure
1). Further reduction of the compound set was then performed
via clustering of the docking results (generated after sorting by
docking score as well as ligand efficiency) using an average
RMSD of 1.5 Å base on the docking score. The final selection
and proposal of hits were based on visual inspection of the
selected docked poses for conserved interactions (such as
coordination to the conserved catalytic Zn2+ ion and hydrogen
bond interactions) and based on published works (Figure 2).

Figure 3 lists 60 compounds that were identified as putative
hits of the VS. From these 60 compounds, four (6.6%) including
(S)-N-Hydroxy-4-(3-methyl-2-phenylbutanamido)benzamide
(compound 15), N-(4-Aminophenyl)heptanamide (16), N-[4-
(Heptanoylamino)phenyl]heptanamide (17), and 4-(1,3-Dioxo-
1H-benzo[de]isoquinolin-2(3H)-yl)-N-(2-hydroxyethyl)
butanamide (18), were readily available through commercial
sources and therefore selected for further validation in
functional studies (Table 3). Compound 15 contains a
hydroxamic acid and the same core pharmacophore as
compound 1. Also called AR-42, 15 was previously reported to
reverse HIV latency in vitro (Mates et al., 2015) but was not
included in our original list of HDAC inhibitors for VS,
providing initial validation of this experimental approach.
June 2020 | Volume 11 | Article 905
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Compounds 16-17 are both N-phenylheptamides, with 17
almost being the dimeric form of 16 (except for an additional
amine group). 16 and 17 structurally resemble vorinostat (14),
however missing the crucial hydroxamic acid moiety. Finally,
compound 18 resembles scriptaid (compound 10; Ying et al.,
2010) with the difference being that 18 has an amide and a
hydroxyl group, separated by two methylene groups, in place of
the Zinc-binding hydroxamic acid moiety in scriptaid and which
is often found in HDAC inhibitors. The abilities of 16–18 to
inhibit HDAC and reverse HIV latency have not been reported.

Effects of VS Hits on HDAC Inhibition
To examine whether compounds 15–18 inhibit HDAC activity
in vitro, we used the HDAC-Glo I/II assay (Promega). This assay
allows quantification of HDAC I/II activity in live cells via a cell-
permeable, acetylated, luminogenic peptide substrate. The
deacetylated peptide is then cleaved by the addition of a
developer reagent, which releases aminoluciferin from the
peptide. Finally, aminoluciferin release is quantified in a firefly
luciferase reaction. As a result, increased deacetylation of the
substrate by cellular HDACs results in increased firefly luciferase
production, while suppression of HDAC activity with inhibitors
results in decreased luminescence production.

Using this assay, the treatment of Jurkat cells with the control
HDAC inhibitor panobinostat (compound 7) resulted, as
expected, in substantial inhibition of in vitro HDAC activity
(Figure 4). For example, as little as 300 pM of panobinostat
inhibited 55.9% ± 3.5% of HDAC activity (mean ± s.e.m.), with >
99% HDAC inhibition observed at 0.3 µM, which is consistent
with other results from in vitro assays (Scuto et al., 2008). Also
consistent with its known activity as an HDAC inhibitor (Mates
et al., 2015), compound 15 additionally inhibited HDAC activity,
albeit at much higher concentrations (e.g., 52.5% ± 11.2%
inhibition at 0.1 µM and > 99% inhibition at 100 µM; Figure 4).
In contrast, no more than 32.7% ± 9.1% and 27.1% ± 7.2%
inhibition at 300 µM were observed for compounds 16 and 17,
respectively, indicating weak but detectable HDAC inhibition in
vitro. No inhibitory activity was detected for compound 18 at any
concentration up to 300 µM. Thus three of the four assessed VS
hits detectibly inhibit HDAC activity in Jurkat cells, although none
approach the activity of the control HDAC inhibitor panobinostat.

Effects of VS Hits on In Vitro HIV
Latency Reversal
To investigate whether compounds 15–18 reverse HIV latency in
vitro, we used the J-Lat 10.6 cell line. These cells are derived from
Jurkat T cells and contain an inducible latent provirus with a
frameshift mutation in Env, rendering the virus noninfectious, in
addition to a GFP reporter expressed from the deleted viral Nef
locus (Jordan et al., 2003). As such, HIV latency reversal in these
cells can be measured by an increase in GFP expression, as
measured by flow cytometry. Resting J-Lat 10.6 cells feature a
proportion of spontaneously GFP-expressing cells that are not
fully latent; however, they are also highly sensitive to stimulation
by LRAs (Williams et al., 2004; Cummins et al., 2017). In our
hands, we observed an average of 8.0% ± 1.7% GFP-positive cells
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in resting conditions. J-Lat 10.6 cells were therefore treated with
panobinostat, compounds 15–18, or DMSO vehicle control for
24 h. Figure 5A shows representative examples of GFP
expression in J-Lat 10.6 cells plus LRAs.

In parallel, we also estimated cell culture viability by
measuring the percentage of LRA-treated cells displaying the
characteristic forward and side-scatter parameters of control
cultures treated with 0.1% DMSO (Tietjen et al., 2015; Figure
5B). After 24-h incubation, the control HDAC inhibitor
panobinostat was observed to induce substantial cytotoxicity,
consistent with our previous observations (Richard et al., 2018):
for example, treatment with 0.1 µM panobinostat resulted in an
estimated 12.1% ± 3.6% culture viability relative to cells treated
with 0.1% DMSO, and a 50% cytotoxicity concentration (CC50)
of 35.3 ± 4.1 nM (Figure 5B). Compound 15 exhibited a similar
level of toxicity at 30 µM (11.3% ± 2.0% estimated culture
viability), with a CC50 of 1.6 ± 0.3 µM, thereby indicating a
comparable therapeutic window to panobinostat in this assay.
Substantial cellular toxicity (i.e. > 50%) for compounds 16 and
17 were not observed except at 1 mM, where estimated culture
viabilities for both relative to DMSO-treated cells were 2.0% ±
0.0% and 0.0% ± 0.0%, respectively, while no substantial toxicity
was observed for compound 18 at any concentration up to 1 mM
(i.e. minimum 86.1% ± 6.0% estimated culture viability at 100
µM; Figure 5B). Thus, when panobinostat and compounds 15–
18 are rank-ordered, these activities match their respective in
vitro HDAC inhibition efficacies (Figure 4).
FIGURE 1 | Redocking pose of 5ICN_B native ligand (6A0). The backbone of
the protein is shown as a cartoon, and key amino acid residues in the active
site are shown in stick representation. The redocked molecule is shown in
cyan, while the crystalized pose is shown in green. Coordination of Zn2+ ion
(cyan sphere) and hydrogen bond interactions with Tyr303 are shown as
yellow and orange dashed lines, respectively.
A B

C D

FIGURE 2 | Docking poses of commercially available screening hits: (A) (S)-N-Hydroxy-4-(3-methyl-2-phenylbutanamido)benzamide (compound 15); (B) N-(4-
Aminophenyl)heptanamide (16); (C) N-[4-(Heptanoylamino)phenyl]heptanamide (17); and (D) 4-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N-(2-hydroxyethyl)
butanamide (18). Schematics are shown as described in Figure 1.
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Most compounds were also observed to reverse HIV latency
in live cells after 24 h, as measured by GFP expression (Figure
5C). For example, in the presence of panobinostat, GFP was
detected in a maximum of 75.1% ± 3.9% of cells at 1 µM, while a
maximum of 73.0% ± 5.7% of cells were GFP-positive in the
presence of 30 µM of compound 15. In contrast, no more than
16.9% ± 0.2% GFP expression in live cells was observed in the
presence of compound 16, which occurred at 1 mM, reflecting
only a 2.1-fold induction of GFP over spontaneous expression in
DMSO-treated cells (Figure 5C). For compound 17, no GFP
expression was observed at any concentration, although no data
Frontiers in Pharmacology | www.frontiersin.org 9
could be obtained at 1 mM due to complete cytotoxicity.
Interestingly, despite exhibiting no in vitro HDAC inhibition
or toxicity, compound 18 did induce weak but consistent GFP
expression in 19.4% ± 0.2% of cells at 1 mM, or 2.4-fold over
spontaneous expression. These results indicate that compound
15 is a robust LRA, although with efficacy approximately one to
two orders of magnitude lower than control panobinostat, while
compounds 18 and 16 may exhibit latency reversal at very
high concentrations.

To confirm whether compounds 16–18 could consistently
induce latency reversal at levels above spontaneous GFP
June 2020 | Volume 11 | Article 90
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expression in DMSO-treated J-Lat 10.6 cells, we repeated the
assays described above but incubated cells for a total of 72 h. In
these conditions, no more than 50% loss of estimated culture
viability was observed for any compound at up to 300 µM.
(Figure 5D). Notably, at 300 µM, compounds 16 and 17
consistently induced 15.5% ± 4.6% and 8.8% ± 1.4% at 300
µM, respectively, or 2.7 and 1.5-fold increased GFP over
spontaneous expression (5.8% ± 0.2%; Figure 5E) .
Interestingly, 300 µM of compound 18 induced 30.8% ± 8.2%
GFP expression, a 5.3-fold increase over spontaneous expression,
indicating consistent HIV latency reversal despite no activity in
HDAC inhibition assays and no obvious cytotoxicity.
Frontiers in Pharmacology | www.frontiersin.org 10
Taken together, these results indicate that compounds 15–18 all
induce latency reversal and/or cytotoxicity, albeit at concentrations
that are orders of magnitude higher than panobinostat.
DISCUSSION

Current LRAs used in shock-and-kill therapeutic strategies to
date have yet to consistently clear viral reservoirs in humans,
prompting the need to identify new chemical leads to inform
ongoing efforts to improve existing LRA strategies. Toward this
goal, we described here a VS-based approach to probe 5,867
June 2020 | Volume 11 | Article 905
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FIGURE 3 | Structures of virtual screening (VS) hits. Compounds 15–18 are highlighted. For each structure, PubChem ID numbers are located at bottom center.
Values at top right indicate Glide Standard Precision (SP) (top) and Glide Ligand efficiency (LE) (bottom) scores.
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nonredundant molecules from PubChem to identify 60 which
structurally resemble LRAs of the HDAC inhibitor functional
class. The four compounds that were readily commercially
available were further tested and confirmed to inhibit HDAC
activity and/or reverse HIV latency in vitro. In a related
approach, Gallastegui et al. (2012) used the J-Lat A2 cell line
to screen 6,000 small molecules in vitro, and a VS-based
approach was then used to probe 7.5 million compounds to
identify those with similarity to the eight biologically identified
hits. This strategy led to discovery of the novel LRA 8-methoxy-
6-methylquinolin-4-ol (Gallastegui et al., 2012). Our study,
which used VS to discover new LRAs of the HDAC inhibitor
Frontiers in Pharmacology | www.frontiersin.org 11
class, further demonstrates that new LRAs can be readily
identified using similarity-based VS approachesWhile none of
the compounds reached the efficacy of the control HDAC
inhibitor panobinostat in our study, this we demonstrate that
this proof-of-concept approach represents a simple, efficient, and
cost-effective method to identify new LRA leads. The VS
approaches described here are readily transferrable to resource-
constrained researchers and also allow improved access and
ability toward informing worldwide HIV eradication efforts for
even remote and very small research groups. However, while VS
can be faster and more cost-effective than biological laboratory-
based compound screens, care must be taken as several methods
June 2020 | Volume 11 | Article 905
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for scoring active and inactive compounds are often unsuccessful
(Chen, 2015). Another caveat is compound availability for
biological validation; for example, a recent study showed that
only ~10% of compounds contained in electronic libraries
potentially identifiable by VS are accessible as samples through
commercial sources and academic collaborations (Chen et al.,
2017). This clearly impacted our ability to validate all hits
identified in the VS, as only four compounds (6.7%) were
available to us from commercial sources. The low commercial
availability of identified hits is therefore a significant limitation of
Frontiers in Pharmacology | www.frontiersin.org 12
this study and precludes determining statistically whether
identifying hits by VS is likely to translate into functional
effects. However, the published compounds available in
PubChem, even if not commercially available, can still inform
further design studies such as chemical optimization from a
starting point. Future synthetic chemistry efforts beyond the
scope of this work will likely be required to address this question.
Limited availability becomes even more heightened when rare
compounds such as those obtained in natural product-based
isolation efforts are considered, and this highlights the
continuing need for the building and efficient management
and accessibility of consortiums of publicly available synthetic
and natural compound repositories (Ntie-Kang et al., 2014;
Tietjen et al., 2015; Ntie-Kang et al., 2017). Furthermore, as
biological activities for compounds 16–8 were only found at
concentrations > 100 µM, synthetic chemistry efforts are needed
to identify derivatives with improved efficacies before additional
studies are pursued, for example to assess ability to reverse viral
latency in primary cells from donors with HIV. Future VS efforts
should also focus on identifying compounds with structural
similarities to only the most efficacious HDAC inhibitors.

Of the four VS hits validated here, (S)-N-Hydroxy-4-(3-
methyl-2-phenylbutanamido)benzamide (15), also called AR-42,
was previously described as an HDAC inhibitor and HIV LRA
with cell toxicity at single micromolar to high nanomolar
concentrations (Mates et al., 2015). Our results are consistent
with this previous study. As 15 was not included in our initial set
of screening probes, the rediscovery of 15 here supports both the
previously reported results of Mates et al. but also serves as a
positive control for the VS approach described here. In contrast,
compounds 16 and 17 exhibited limited HDAC1 inhibition at 300
TABLE 3 | Compounds hits from virtual screening (VS) selected for biological validation.

Compound Structure Reported HIV latency
reversal?

15 (S)-N-Hydroxy-4-(3-methyl-2-phenylbutanamido)
benzamide

Mates et al., 2015

16 N-(4-Aminophenyl)heptanamide no

17 N-[4-(Heptanoylamino)phenyl]heptanamide no

18 4-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N-(2-
hydroxyethyl)butanamide

no
June 2020 |
FIGURE 4 | Effects of four virtual screening (VS) hits on cellular histone
deacetylase (HDAC) activity, as recorded by HDAC-Glo assay. HDAC activity
in the presence of each compound is presented relative to HDAC activity in
cells treated with 0.1% DMSO vehicle control.
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µM (32.7 ± 9.1 and 27.1% ± 7.2% respectively) which, although
clearly weak functional hits, do place them within the range of
efficacies observed for the established HDAC inhibitor valproic
acid in similarly designed assays (i.e., reported IC50s = 171–400
µM; Table 2; Phiel et al., 2001; Huber et al., 2011). Furthermore,
while 16 and 17 respectively induced only 2.7 or 1.5-fold increased
GFP over spontaneous expression at 300 µM in J-Lat 10.6 cells,
these results are consistent with the ability of valproic acid to
induce latency reversal in the comparable Jurkat-LAT-GFP cell
line, where 1 and 2.5 mM resulted in 1.6- and 2.2-fold increases in
GFP expression, respectively (Pérez et al., 2010). Notably, 4-(1,3-
Frontiers in Pharmacology | www.frontiersin.org 13
Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N-(2-hydroxyethyl)
butanamide (compound 18) was also able to weakly reverse HIV
latency at high concentrations (> 100 µM) but did not inhibit in
vitro HDAC activity at up to 300 µM. This result was unexpected
from a biological perspective, although not from a chemical
perspective as 18 has no zinc-chelating moiety. The reason for
the discrepancy in biological assays for 18 is not immediately clear
but could reflect exceptionally slow binding of HDACs in vitro
which is not captured within the time-course of the HDAC-Glo
assay performed here. However, the parent compound of 18
(scriptaid) has also been reported to act on other biological
June 2020 | Volume 11 | Article 905
A

B C

D E

FIGURE 5 | Effects of four virtual screening (VS) compound hits on HIV latency reversal. (A) Representative flow cytometry data of HIV latency reversal, as measured
by GFP expression, in J-Lat 10.6 cells in the presence of 0.1% DMSO, panobinostat, or select VS hits following 24-h incubation. For each panel, values indicate
percent GFP-positive cells. (B) Dose-response profiles of panobinostat and compounds 15–18 on J-Lat 10.6 estimated cell culture viability following 24-h incubation.
Data are presented relative to culture viability of cells treated with 0.1% DMSO vehicle control. (C) Dose-response profiles of compounds on HIV-1 latency reversal,
as measured by percent GFP-positive cells, following 24-h incubation. Dotted line indicates baseline GFP expression in untreated cells. (D) Effects of compounds
16–18 on J-Lat 10.6 estimated culture viability after 72-h incubation. Data are presented as described in (B). (E) Effects of 16–18 on HIV-1 latency reversal after 72-h
incubation. Data are presented as described in (C).
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pathways which drive HIV latency reversal including inhibition of
histone methyltransferase at H3K9 moieties, induction of PI3K/
AKT signaling, and perhaps other putative activities which allow
scriptaid to synergize with other HDAC inhibitors in vitro (Chen
et al., 2013; Wang et al., 2013; Liang et al., 2015; Andersen et al.,
2018). Thus 18 could function as an LRA through one of these
alternative proviral signaling pathways. However, further studies
with more potent analogs of 18 and detailing of structure-activity
relations based on the scriptaid scaffold are desired to test
this hypothesis.

In summary, we demonstrate that VS-based approaches can
readily identify novel LRA candidates of the HDAC inhibitor
functional class. This approach can be used, in principle, to
identify additional, novel LRAs representing other functional
classes such as PKC activators, BET bromodomain inhibitors,
and others (Andersen et al., 2018). It also identifies new chemical
scaffolds which can serve as starting points to design more potent
LRAs and which may be useful toward improving shock-and-kill
based HIV eradication therapies in humans.
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