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Abstract
Honey is one of the food commodities most frequently affected by fraud. Although addition of extraneous sugars is the most
common type of fraud, analytical methods are also needed to detect originmasking andmisdescription of botanical variety. In this
work, multivariate analysis of the content of certain macro- and trace elements, determined by energy-dispersive X-ray fluores-
cence (ED-XRF) without any type of sample treatment, were used to classify honeys according to botanical variety and
geographical origin. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used
to create classification models for nine different botanical varieties—orange, robinia, lavender, rosemary, thyme, lime, chestnut,
eucalyptus and manuka—and seven different geographical origins—Italy, Romania, Spain, Portugal, France, Hungary and New
Zealand. Although characterised by 100% sensitivity, PCA models lacked specificity. The PLS-DA models constructed for
specific combinations of botanical variety-country (BV-C) allowed the successful classification of honey samples, which was
verified by external validation samples.
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Introduction

Honey is one of the food commodities more frequently affect-
ed by fraudulent activities [1]. This statement was confirmed
by the outcome of a coordinated control plan on honey au-
thenticity organised in 2015 by the European Commission.
Around 20% of the analysed samples (blends of EU honeys,
or originating from one specific Member State (MS)), very
likely contained added sugars, such as corn syrups derived
from starch and inverted sucrose syrup [2]. The outcome of
a recent study carried out with Australian honeys [3] showed
that about 27% of the commercially available honey samples
analysed were of “questionable authenticity.”

In the European Union, Council Directive (2001/11/EC)
[4] relating to honey, provides a definition of the product
and the different accepted types, thresholds for physical and
chemical parameters to be fulfilled by the different honey
types, and kinds of processes that can be applied to honey
without losing its classification as such. Any conflict between
a honey sample and what is stipulated in Council Directive
2001/110/EC is considered a non-compliance.

Probably the most frequent type of adulteration in the hon-
ey sector is the addition of extraneous sugars that resemble the
natural sugar composition of honey. From an analytical point
of view, this type of adulteration can be detected by stable
carbon isotope-ratio mass spectrometry (IRMS) [5], some-
times coupled to liquid chromatography [6, 7].

Council Directive 2001/110/EC requests information on
the geographical origin of honey to be included in the label-
ling. False declarations of the geographical origin of honey
and its botanical variety constitute another frequent type of
adulteration. A thorough review of analytical methods for
the determination of the geographical origin and botanical
variety of honey has been published by Anklam [8].
Determining the elemental composition of honey is one of
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the more frequently used approaches for the characterisation
of honey both in terms of its botanical variety [9] and its
geographical origin [3, 10–12] and for discriminating honey-
dew from blossom honeys [13].

Inductively coupled plasma (ICP) coupled to atomic emis-
sion spectrometry (AES) [9, 11] or to mass spectrometry (MS)
[12] are the analytical techniques most widely used for the
determination of trace elements in honey. The use of other
approaches such as total reflection X-ray fluorescence has also
been described in the literature [10]. All the mentioned
methods provide low limits of detection but require laborious
sample pre-treatment. Those based on the use of ICP need
sample digestion and the use of total reflection X-ray fluores-
cence requires the addition of an internal standard and, after
equilibration, pre-concentration overnight.

The aim of the present work is to explore the possibility of
using the elemental fingerprint of honey determined by
energy-dispersive X-ray fluorescence (ED-XRF) to ascertain
claims made on the label in terms of botanical variety and
geographical origin. ED-XRF was used in the determination
of macro-elements and trace elements in 70 honey samples of
nine different botanical varieties (orange, robinia, lavender,
rosemary, thyme, lime, eucalyptus, chestnut and manuka),
originating from seven different geographical origins (Italy,
Romania, Spain, Portugal, France, Hungary and New
Zealand). Multivariate data analysis, i.e. principal component
analysis (PCA) and partial least square-discriminant analysis
(PLS-DA) was used to reduce the dimensionality of the data
and for developing classification models.

Materials and methods

Honey samples

In 2015, in the frame of a coordinated control plan on honey
authenticity, the JRC carried out a series of analysis whose
main goal was to detect the presence of exogenous sugars in
honey. The JRC had in this way access to several hundreds of
honey samples commercialised in the Member States of the
European Union.

In 2017, with the purpose of evaluating if the elemental
composition could be used to classify them on the basis of
botanical variety and/or geographical origin, some of the sam-
ples were also analysed by ED-XRF. Only mono-floral honey
samples, from one single geographical origin (country) were
selected for this study; poly-floral and mono-floral honeys in
which honeys from different geographical origins had been
blended, were excluded. Honey samples following the men-
tioned requirements purchased in Belgian and Spanish super-
markets in 2018 and 2019 were also included in the study (to
construct and to validate the models), covering in this way
likely variation in the honeys due to production year.

Models for multivariate data analysis using PCA were con-
structed only if five or more honey samples belonging to a
certain class (botanical variety and country of origin) were
available; thus, the study was restricted to the following com-
binations botanical variety-country of origin (BV-C): orange-
Italy (n = 6), orange-Spain (n = 9), lavender-France (n = 5),
lavender-Portugal (n = 7), lavender-Spain (n = 5), rosemary-
Spain (n = 5), robinia-Hungary (n = 11), robinia-Italy (n = 5),
lime-Romania (n = 5), chestnut-Italy (n = 5) and manuka-New
Zealand (n = 7). For PLS-DAmodelling also groups for which
only three samples were available, i.e. robinia-Romania,
thyme-Spain, thyme-New Zealand, chestnut-Spain and
eucalyptus-Spain were included in the study. The small num-
ber of samples available in some of the populations to con-
struct the classification models could be a drawback.
However, the way the samples have been acquired (some
purchased in supermarkets in several countries and including
different brands, some taken by inspectors in the frame of
control plans) and the different production years covered
could made them representative of the maximum variability
to be expected in the different populations.

The botanical variety of a group of the honey samples taken
in the frame of the 2015 coordinated control plan had been
confirmed by pollen analysis (47 in total). For the remaining
samples, the information given on the labels regarding botan-
ical variety and for all of them on geographical origin was
assumed to be correct.

Reagents and standards

Blank measurements were run with deionised water from a
Milli-Q Plus system (> 18.3 MΩ) (Millipore, Billerica, MA,
USA).

A multielemental stock solution containing Ag, Al, B, Ba,
Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb,
Sr, Tl and Zn at 1000 mg kg−1 each (Merck) and individual
solutions of As, Br, Cl, Hg, Mo, P, Rb, S, Se, Sn, Ti and V
1000 mg kg−1 (Merck) were used to evaluate the bias intro-
duced by the built-in Auto Quantify application of the ε5
software (PANalytical, Almelo, The Netherlands) used for
quantification purposes.

Instrumentation and sample preparation

An Epsilon 5 (PANalytical, Almelo, The Netherlands) ED-
XRF instrument was used to carry out the analysis of honey.
A detailed description of the instrument and the performance
characteristics achieved in the analysis of solid samples is
given elsewhere [14]. For the measurements of the honey
samples, holders for liquid samples were used and the mea-
surements were run in a helium atmosphere and not under
vacuum as it is done for the analysis of solids. The bottom
of the holders for liquid samples is a 6-μm polypropylene film
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that gave rise to blank values for P, Ca and Zn. To correct the
contribution of the blank to the P, Ca and Zn results, deionised
water was measured ten times and the mass fractions obtained
were recorded.

Honey samples were kept at room temperature before anal-
ysis and aliquots were also taken at room temperature without
warming up the honey. Approximately 15 g of honey were
taken with a metal-free spatula and transferred into the liquid
holders of the ED-XRF for measurement without undergoing
any other type of pre-treatment.

To mimic the normal analytical process in a routine control
laboratory, each sample was measured once and the mass
fractions of trace elements in the honey samples were calcu-
lated using the calibration curves provided in the Auto
Quantify Liquid application included in the ε5 software pro-
vided by PANalytical to run the Epsilon 5 instrument. Some
experiments were carried out to evaluate the accuracy of the
results measuring the commercial mono- and multielemental
standard solutions of approximately 1000 μg kg−1 described
in the “Reagents and standards” section, without further thor-
ough validation. For multivariate analysis, the raw data ob-
tained with the Auto Quantify application were used without
any correction, avoiding in this way mathematical artefacts
such as negative mass fractions due to the inherent standard
deviation of the blank measurements. This could happen in
honeys with low elemental mass fractions as it is the case for
robinia honeys.

Quantifiable results in all or some of the honey samples
were obtained for Al, P, Cl, K, Ca, Fe, Zn, Mn, Rb and Br.
All of them were used in the multivariate analysis of the ana-
lytical data (construction of models) for classification
purposes.

Reproducibility evaluation

A thorough validation had been previously carried out for the
analysis of solid samples using the ED-XRF instrument de-
scribed above [14] which included the calculation of associated
standard uncertainty.Within-pellet variation accounted for part of
the standard uncertainty in solid sample analysis and since the
measurement of the honey samples as liquids does not imply the
preparation of pellets, the uncertainty of the Auto Quantify
Liquid application used in this work could be different.

To be sure that the difference in the elemental compo-
sition of different honeys is due to true variations between
honeys, and not to the result of poor analytical precision,
reproducibility studies were carried out. Four different
honeys—robinia, orange, lime and chestnut—were mea-
sured in triplicate in three different days. Precision studies
were carried out on the data as directly obtained from the
Auto Quantify Liquid application without correction for
bias and/or blank because those were the data used in the
creation of the models as said above.

Aliquots of approximately 15 g of each one of the four
honey samples were transferred to liquid holders in triplicate
and each holder was measured only once, reproducing in this
way the approach described in the “Instrumentation and sam-
ple preparation” section. Accordingly, the total amount of
samples measured each day was 12. The measurements were
repeated on three different days. At the end of the study nine
results per element and per honey type were available.
ANOVA (95% confidence interval, CI) was used to calculate
the reproducibility values summarised in Table 1, which were
in good agreement with those published earlier for solid sam-
ples [14], keeping in mind the low concentrations of some
elements in honey. The reproducibility values within elements
were quite similar among the different types of honey, the
largest difference being obtained for Cl in lime honey; this
could be due to some dark particles in suspension that were
observed in this honey and that could increase the heteroge-
neity in the sample.

t tests (95% CI) were carried out using the results obtained
during the precision study to evaluate if significantly different
results for the elements analysed were obtained for the four
honey samples: acacia, orange, lime and chestnut. Cl, K and
Fe were significantly different for the four samples. For Fe, the
t test was only run for orange, lime and chestnut because Fe
was not detected in the acacia honey. Chestnut honey was
significantly different from the other honeys for all elements,
with the exception of Ca for which similar contents were
found in chestnut and lime honey. t tests were not run for
Mn and Rb because they were only detected in the chestnut
honey. These preliminary results supported the idea that ele-
mental composition determined by ED-XRF could be used for
the purpose of honey classification. t tests were not carried out
for all the possible BV-C combinations, which would have
been a tedious, time consuming procedure, and multivariate
analysis as described hereafter was used for classification
purposes.

Multivariate analysis

Multivariate analysis was carried out using the software SIMCA
Version 15.0.2, Umetrics (Malmö, Sweden). Principal compo-
nent analysis (PCA)was used to build upmodels for the different
groups of honey defined by BV-C [15]. PCA models were used
to identify outliers in the different populations making use of the
Mahalanobis distance (DModX) (distance between a point and a
distribution) (https://www.itl.nist.gov/div898/software/dataplot/
refman2/auxillar/matrdist.htm) with a 95% significance level
and to reduce the number of variables (elements) used to con-
struct the models by means of loading plots. Elements situated in
the loading plot in the centre of the coordinates or very close to
them were removed, and the model was built up again in an
iterative process. On the basis of DModX, none of the samples

https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/matrdist.htm
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Table 1 Reproducibility values in % for the different elements analysed in robinia, orange, lime and chestnut honey

Pa Cl K Caa Cu Zna Fe Rb Mn

ppm Rep.
(%)

ppm Rep.
(%)

ppm Rep.
(%)

ppm Rep.
(%)

ppm Rep.
(%)

ppm Rep.
(%)

ppm Rep.
(%)

ppm Rep.
(%)

ppm Rep.
(%)

Robinia 362.34 4.1 17.55 8.6 160.56 2 206.35 1.9 3.11 13.8 1.89 7.2 n.d. n.d. n.d.

Orange 351.64 3.3 15.07 12 134.25 1.6 218.15 2.5 3.09 12.2 1.92 7.8 0.89 11.5 n.d. n.d.

Lime 364.65 5 95.64 19 663.55 1.1 245.53 2.9 3.04 13.9 2.08 12.5 3.55 12.9 n.d. n.d.

Chestnut 377.42 4.2 112.71 4 1074.61 0.5 247.73 3.3 3.84 13.6 2.33 6.5 1.29 12.8 3.61 2.7 4.40 4.6

Elemental concentrations as obtained from the Auto Quantify Liquid application, without correction for bias

Rep. reproducibility
a P, Ca and Zn concentrations are not corrected for the blank contributions and so are not those in the honey sample but include the contribution of the
6 μm polypropylene film
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used for the construction of themodels was flagged as outlier and
all of them were kept for further studies.

To avoid overfitting, taking into consideration the rather
limited number of honey samples used to construct the differ-
ent models, the number of principal components used was
kept to a maximum of three in most cases, and only in three
cases (robinia-Hungary, orange-Spain and rosemary-Spain)
four principal components were used.

For some but not for all BV-C combinations, PCA models
alone allowed the successful identification of honey samples that
did not belong to the population for which the model was con-
structed. PLS-DA was used to improve the rate of successful
classifications. The variables used to construct the PLS-DA
models were optimised using the loading plots. The maximum
amount of components used in PLS-DAwas three, and in some
cases, one component was enough for prediction purposes.

The small number of honey samples in most of the models
limited the statistical significance of cross-validation as carried
out by the SIMCA software [16]. For this reason, external vali-
dation was carried out with a restricted number of samples
bought in January–February 2019 in Belgium covering ten dif-
ferent BV-C combinations: orange-Spain (n = 2), lavender-Spain
(n = 1), rosemary-Spain (n = 1), thyme-Spain (n = 1), chestnut-
Spain (n = 1), eucalyptus-Spain (n = 1), eucalyptus-Italy (n = 1),
lime-Romania, robinia-Romania and robinia-Italy (n = 1).
Unfortunately, it was not possible to find appropriate samples
to carry out the external validation of all the constructed classifi-
cation models.

Results and discussion

Determination of trace elements by ED-XRF

It is not the purpose of this work to do a thorough characteri-
sation of the macro- and trace element content of different
honeys on the basis of their botanical variety, geographical

origin or a combination of both but rather to demonstrate that
the elemental fingerprint of honey can be used by routine con-
trol laboratories to classify honeys in the frame of anti-fraud
activities. For this reason, the built-in Auto Quantify Liquid
application of ε5 was used for quantification purposes without
any further validation than what is described in the “Honey
samples” and “Instrumentation and sample preparation” sec-
tions. The Auto Quantify Liquid application has been
optimised by the manufacturer of the instrument for the analy-
sis of industrial oils and fuels, matrices commonly analysed by
ED-XRF and could therefore introduce significant bias when
applied to other type of matrices, such as honey. Indeed, the
recovery on standard aqueous solutions was on average 50 ±
10%, depending on the element. Table 2 shows the mass frac-
tion ranges obtained for the different elements in the different
honey groups after subtraction of the blank mass fractions for
Ca and Zn and application of the correction factors derived
from the analysis of the standard solutions. Since no thorough
validation was carried out for the analysis of liquid samples, the
results given in Table 2 can only be considered as indicative.
ED-XRF does not allow the accurate determination of light
elements. The first element that can be analysed with the in-
strument used in this study is Mg. However, Mg determination
is characterised by high limits of quantification [14] and was
only detected in one Romanian robinia honey. Al and P were
the first elements in the periodic table that were quantified in a
number of honey samples. In the case of P, not all the honeys
provided results clearly distinct from the blank values intro-
duced by the polypropylene film used to hold the liquid sam-
ples. Contrary to P that played an important role in the discrim-
inative power of most of the models, Al was frequently situated
in the centre of the coordinates of the loading plot and was
hence eliminated from most of the models. Although the mass
fractions obtained for Al and P were used for multivariate anal-
ysis (construction of models), they are not included in Table 2
because a thorough validation of the quantification method and
characterisation of the blank would be needed to obtain



Table 2 Ranges of mass fractions of elements found in the different honey groups defined by botanical variety and country

Cl K Ca Fe Zn Mn Rb

Robinia-Hungary (n = 11) 51.2–357.2 132.4–313.9 19.7–126.9 1.5–5.5 0.3–2.4

Robinia-Italy (n = 5) 36.1–96.0 137.0–380.6 4.7–17.2 1.4–2.0 0.6–1.3

Robinia-Romania (n = 3) 65.4–67.6 143.9–160.3 20.9–37.6 2.1–2.3 0.6–1.1

Orange-Italy (n = 6) 50.0–286.3 137.3–368.2 25.9–59.9 1.7–3.4 0.4–1.4 1.8a

Orange-Spain (n = 9) 49.5–68.7 180.0–271.6 39.2–65.5 1.9–3.5 0.4–1.6

Lavender-France (n = 5) 62.6–113.9 167.5–287.9 29.9–46.6 1.7–3.3 0.6–0.9 1.0 a

Lavender-Portugal (n = 6) 93.6–117.0 202.6–316.4 19.5–47.8 1.7–2.2 0.5–2.5 1.6–2.3 (n = 5)b 1.8a

Lavender-Spain (n = 5) 88.9–362.5 295.7–1243.1 20.6–81.3 2.3–6.3 0.8–3.4 1.1–6.2
(n = 3)b

Rosemary-Spain (n = 7) 34.3–119.2 86.4–183.8 17.0–83.7 1.4–2.9 0.2–1.0

Thyme-Spain (n = 3) 128.8–284.0 435.6–599.0 62.3–111.5 3.1–3.7 1.1–1.7 1.9a

Thyme-New Zealand (n = 3) 48.1–100.8 450.0–553.8 21.0–62.9 1.9–3.4 0.1–0.7 1.1–2.5
(n = 2)b

Manuka-New Zealand (n = 7) 180.1–481.6 446.5–1640.4 31.5–59.0 1.5–3.5 1.0–2.0 1.6–12.8
(n = 6)b

4.0–6.0
(n = 5) b

Chestnut-Italy (n = 5) 172.4–575.7 1883.8–3324.1 101.0–182.8 2.2–3.6 0.8–2.2 1.9–16.7 8.6–22.0

Chestnut-Spain (n = 3) 147.1–273.5 1730.5–3451.3 92.3–187.7 2.9–5.8 0.8–2.4 4.3–28.4 7.2–16.14

Eucalyptus-Spain (n = 3) 326.7–443.6 408.1–740.5 92.9–122.9 3.0–5.8 1.13–4.3 3.8–5.8
(n = 2)b

1.8–6.6
(n = 2)b

Lime-Romania (n = 5) 86.5–217.7 193.0–1034.9 41.1–110.7 1.7–10.3 0.3–1.3

Sunflower-Romania (n = 3) 208.6–360.6 293.0–360.6 118.5–127.2 2.2–3.7 1.3–2.6 2.1a 1.6a

aMass fraction found only in one honey in the full group. The mass fractions for that element in the rest of the honeys was < LoD (around 0.1 mg kg−1 )
b Value between brackets: number of honeys in that population in which a certain element was quantified, if different from the total amount of samples in
the population
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accurate results about the concentrations that are characteristic
of the different types of honey included in this study.

Figure 1 shows the medians obtained for the Cl, K, Ca, Fe,
Zn, Mn and Rb mass fractions in the different BV-C popula-
tions. In such small populations as those in this study, the
mean mass fractions would be strongly affected by the pres-
ence of one sample with extremely high or low values. For this
reason, Fig. 1 was constructed using the median as a robust
estimator of location. Figure 1 shows some clear tendencies in
the mass fractions of the different honeys, certainly on the
basis of their botanical variety. As expected [9–11, 13], dark
honeys such as chestnut, eucalyptus, lime and manuka have
higher mass fractions than the typical light honeys (robinia,
orange, lavender and rosemary) for all of the quantified ele-
ments. Chestnut honeys have by far the highest total content
of macro- and trace elements, being particularly rich in K, the
most abundant element in all the honeys analysed. On the
other extreme of the total mass fraction range, robinia and
rosemary honeys were those with the lowest values.
Interestingly, thyme and sunflower honeys are light honeys
with a total content of the quantified elements comparable to
lime honeys which, among the dark ones, are those with the
lowest total elemental mass fraction.

All the thyme honeys analysed have a distinct, characteris-
tic elemental composition; the six samples analysed were very

similar in terms of total elemental content and individual
macro-elemental composition, even if originating from far
apart countries, Spain (n = 3) and New Zealand (n = 3). This
shows once again that the botanical variety has a stronger
impact on the elemental composition of honey than the geo-
graphical region where the honey was produced. It is also
interesting to observe the similar total, macro- and trace ele-
mental composition of manuka and eucalyptus, two species
which are autochthonous to Oceania.

The largest variation in element content was found for K,
while it was lower for Cl, Zn and Fe.

The observed differences in elemental mass fractions
were mainly caused by botanical variety and to a lesser
extent by geographical origin. Nevertheless, some ten-
dencies can be observed: for instance, the lavender
honeys from the Iberian Peninsula were richer in
macro- and trace elements than those from France, and
the Spanish lavender honeys had higher mass fractions
for all the tested elements than those from Portugal.
Generally, the mass fraction of Cl was lower in Spanish
orange and chestnut honeys than in the equivalent
honeys from Italy. The same effect was observed for
eucalyptus honeys (data not shown) which indicates that
in general Spanish honeys have a lower Cl content than
the respective Italian ones.
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Nevertheless, the differences in macro- and trace element
mass fractions among the various populations were not large
enough to be used for classification purposes and for this
reason, multivariate data analysis in the form of PCA (non-
supervised algorithm) and PLS-DA (supervised algorithm)
was carried out.

Multivariate analysis of data

Principal component analysis

The elemental composition of honey has been previously used
to classify honey according to both geographical origin and
botanical composition. In the present study, PCAmodels were
constructed for honeys belonging to a certain botanical variety
irrespective of their geographical origins (countries). The de-
gree of model fit was, however, poor (low explained variation,
R2X) as was the predictive ability of the model (low predicted
variation, Q2X). In a second attempt, honeys were classified

according to their geographical origin (country), each group
combining honeys of different botanical variety. The results
obtained were even less satisfactory than those for the classi-
fication according to botanical variety. However, in the PCA
models for countries from which different botanical varieties
were available, for instance Romania (robinia, sunflower and
lime), tendencies to cluster according to botanical variety were
observed (Fig. 2).

For that reason, models were constructed for honey groups
defined by specific BV-C combinations. PCA models were
constructed only for those groups in which at least five obser-
vations (honeys) were available, those were as follows:
robinia-Hungary (n = 11), robinia-Italy (n = 5), orange-Italy
(n = 6), chestnut-Italy (n = 5), lavender-France (n = 5),
lavender-Portugal (n = 6), lavender-Spain (n = 5), orange-
Spain (n = 9), rosemary-Spain (n = 7), lime-Romania (n = 5)
andmanuka-NewZealand (n = 7). Information about the men-
tioned PCA models is given in Table 3. Other combinations
available with less than 5 honeys per group—chestnut-Spain
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(n = 3), eucalyptus-Spain (n = 3), thyme-Spain (n = 3), thyme-
New Zealand (n = 3), sunflower-Romania (n = 3) and robinia-
Romania (n = 3)—were used for external validation purposes
to test false negatives and to construct PLS-DA models.

The predictive ability of the models for orange-Italy and
manuka-New Zealand was poor and did not improve by in-
creasing the number of principal components. No clear expla-
nation on the basis of the elemental mass fractions was found
for the poor predictive ability of the manuka-New Zealand
model. One possible general explanation could be the differ-
ent regions within a country where the honeys could have
been produced. This hypothesis would also explain the poor
predictive ability of somemodels for Spanish honeys, namely,
orange and rosemary, which can be produced in different re-
gions in Spain. Unfortunately, specific information about the
production region was only available for a limited number of
samples. The botanical variety as such may also play a role.

It needs to be kept in mind that for most of the samples
analysed, the information provided on the labels on botanical
variety and geographical origin was considered to be correct.

Only two out of the six honeys used to construct the orange-
Italy model and three out of the seven included in the manuka
model had been characterised by pollen analysis. If some of
the honeys were misdescribed, they would have been wrongly
included in a certain population affecting the quality of the
model and its prediction capacity.

An accurate classification model is defined by high sensi-
tivity and specificity, sensitivity being the rate of samples
correctly assigned to a certain population (= true positives)
and specificity the rate of samples correctly identified as not
belonging to a population (= true negatives).

The accuracy of the PCA models created for the different
BV-C groups was evaluated by means of the distance of a
sample to the model DModX PS+ (95 % confidence interval):
every sample with a DModX PS+ > Dcrit does not belong to
that population, while samples with a DModX PS+ < Dcrit

belong to that population.
The sensitivity of the PCA models was tested analysing

honey samples that were purchased in Belgium at the begin-
ning of 2019 and that were commercialised under brand
names not used in the construction of the models. Assuming
that the information provided on the labels was correct, the
samples tested were as follows: orange-Spain (n = 2),
lavender-Spain (n = 1), rosemary-Spain (n = 1), thyme-
Spain (n = 1), chestnut-Spain (n = 1), eucalyptus-Spain (n =
1), eucalyptus-Italy (n = 1), robinia-Italy (n = 1), robinia-
Romania (n = 1) and lime-Romania (n = 1). The sensitivity
of the PCA models was 100% because all honeys were cor-
rectly classified by using the respective BV-C models.

Regarding specificity, the results were not always equally
satisfactory. Some models were 100% specific; one example
is shown in Fig. S1 in the Electronic Supplementary Material
(ESM) in which all Spanish lavender honeys were clearly
considered outliers by the orange-Spain and the lavender-
Portugal honeys models. The high specificity of the
lavender-Portugal model was confirmed with further tests (da-
ta not shown), since all the lavender-France honeys were also
considered outliers by the lavender-Portugal PCA model. The
orange-Spain model was also highly specific because all other
Spanish honeys (chestnut, eucalyptus, thyme and rosemary)
were flagged as outliers with the exception of two rosemary
honeys, which corresponds to a specificity of 90%. Also all
orange-Italy honeys were flagged as outliers by the orange-
Spain model.

Unfortunately, not all models were equally specific; for
instance, the lavender-France model did not flag one
lavender-Spain and two lavender-Portugal honeys as outliers,
which correspond to a specificity of 75%, and the rosemary-
Spain model did not consider any of the orange-Spain honeys
as outliers. Figure 3a shows that PCA did not allow the full
resolution of the two populations and that a certain overlap
occurred. Given the poor prediction capability of the orange-
Italy model, all orange-Spain honeys were accepted as being

Table 3 Parameters defining the PCA models for the different honey
populations studied.

R2X [1] R2X [2] R2X [3] R2X [4] Q2X (cum)

Robinia-Hungary 0.559 0.204 0.126 0.0899 0.534

Robinia-Italy 0.643 0.217 0.121 0.577

Orange-Italy 0.425 0.303 0.154 − 0.331

Orange-Spain 0.486 0.284 0.107 0.0811 0.280

Lavender-France 0.658 0.284 0.690

Lavender-Portugal 0.624 0.260 0.0777 0.605

Lavender-Spain 0.667 0.227 0.0894 0.632

Rosemary-Spain 0.391 0.315 0.179 0.0939 0.454

Chestnut-Italy 0.589 0.257 0.114 0.450

Lime-Romania 0.631 0.296 0.0609 0.660

Manuka-New Zealand 0.458 0.262 0.156 − 0.159

R2X explained variation, Q2X predicted variation

Fig. 2 Score plot of three different monovarietal Romanian honeys: 3
sunflower, 5 lime and 3 robinia. t[1] and t[2] refer to the 1st and 2nd
principal components respectively
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part of the orange-Italy population. In summary, several
models showed 100% specificity towards some BV-C combi-
nation but frequently not towards all of them. It was then
concluded that PCA models lacked the required specificity
to scrutinise the correctness of label declarations regarding
botanical variety and geographical origin. The same conclu-
sion has been previously reached by Krops et al. [10] when
classifying robinia, lime and chestnut honeys from different
Slovenian locations, who finally used linear discriminant anal-
ysis (LDA); approach also followed in other works [9, 11].
Also Zhou et al. [3] concluded that no visual clustering of
honeys of different geographical origin was achieved by
PCA, even using six principal components, making use in this
case of canonical discriminant analysis (CDA) for classifica-
tion purposes. Support vector machine, multilayer perceptron
and random forest were used by Batista et al. [12].

Partial least square-discriminant analysis

To improve the classification performance, supervised PLS-
DA models were created to maximise the variance between
classes. Figure 3 provides an example of the increased dis-
crimination power achieved using PLS-DA instead of PCA
when applied to the populations of orange-Spain and
rosemary-Spain honeys.

The approach used is summarised in Fig. 4: each of the
honeys used for external validation was tested against each of
the available PCA models. When a honey sample was not
flagged as an outlier by the model of a BV-C combination dif-
ferent from the one indicated on the label, the PLS-DA model
created for that BV-C combination and the one indicated on the
label (BVL-CL), was used for classification purposes.

For some botanical varieties such as thyme, sunflower and
most dark honeys (chestnut, eucalyptus, lime, manuka, heath-
er), the number of honeys available was low and the pre-
requisite of five honeys available per BV-C group was only
fulfilled in some cases. In the particular case of dark honeys,
five samples were only available for the groups chestnut-Italy,
lime-Romania and manuka-New Zealand. For this reason,
PLS-DA models were created not only for populations with
five or more samples but also for classes for which three
samples were available: chestnut-Spain, eucalyptus-Spain,
thyme-Spain, thyme-New Zealand, robinia-Romania and sun-
flower-Romania. Those models were also validated externally
with honey samples of a different production year and brand
than those used in the construction of the models.

Out of the 11 samples used for external validation, ten were
properly classified using PLS-DA models. Robinia-Romania
was wrongly classified as robinia-Hungary unless five princi-
pal components were used to construct the PLS-DA model. It
needs to be kept in mind that only three robinia-Romania
samples were available for the construction of the model
while, with 11 samples, robinia-Hungary was one of the
groups better represented in our repository.

Predictions were also successful when using PLS-DA
models constructed for populations in which only three sam-
ples were available. For instance, one chestnut-Spain honey
was correctly classified as Spanish honey by a PLS-DAmodel
created for Italian (n = 5) and Spanish (n = 3) chestnut honeys
(Fig. S2 in the ESM) and as chestnut honey by a PLS-DA
model constructed with chestnut-Spain (n = 3) and
eucalyptus-Spain (n = 3) honeys. One lime-Romania honey
was also correctly classified when compared to other dark
honeys from different geographical origin.

The good performance of the PLS-DA models demon-
strates that profiling by ED-XRF is an appropriate tool for
verifying botanical and geographical origin claims. The mass
fractions obtained in this work are in good agreement with
those previously reported in the literature [9, 11, 12] using
more sophisticated techniques such as ICP-AES and ICP-
MS. The method used in this work did not require any sample
treatment, which increases the sample throughput and reduces
the environmental impact of the analysis, since no harsh re-
agents need to be used.

Although the list of elements quantifiable in honey by ICP-
based techniques is larger than by ED-XRF due to the lower
LoQs that characterise the former, only a reduced number of
elements is of real relevance for modelling and classification

Fig. 3 a PCA and b PLS plots of orange-Spain and rosemary-Spain honeys.
t[1] and t[2] refer to the 1st and 2nd principal components respectively
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Fig. 4 Flow chart from analysis to evaluation of label information
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purposes, i.e. Ba, Ca, Fe, Na, Sn, Al, B, Cu, K, Mg, Mn, Ni, P,
Rb, Sr and Zn according to Zhou et al. [3]; Ca, K, Mg, Na, P
and S according to Czipa et al. [9]; and Ca, K, Mg, Li, Na and
Rb for botanical variety and Fe, Zn, Cu, Cr, Ni, Al, Cd and Pb
for geographical origin according to Batista et al. [12] which
can even be reduced further to Mg, Na and K to improve the
prediction capacity although not in all types of honey.

Determination of halogens such as Cl and Br by ED-XRF
is straightforward while careful optimisation of the digestion
procedure is fundamental when ICP-based methods are used
[17]. For all the BV-C populations, Cl contributed strongly to
the definition of the model.

ED-XRF when compared to ICP-based techniques is
characterised by higher LoQs and for this reason only Al, P,
Cl, K, Ca, Fe, Zn, Mn, Rb and Br could be determined in most
honeys, although not in all. Other elements that could be ran-
domly present in some honeys in small quantities, for instance
due to contamination during processing and bottling or to the
use of specific fertilisers in some fields, were not detected. The
mass fractions of those elements would have diluted the im-
portant information increasing the background noise of the
data used for modelling. The amount of quantifiable elements
could be increase with a careful optimisation of the ED-XRF
method and the calibration curve used.

The correct classifications rate achieved in this work is com-
parable to other previously published in the literature ranging
from 90 to 100% [3, 9–12]. It needs to be emphasised that in
this work, the classification capacity of the models was validated
via external validation with samples from different brands and
production year than those used to construct the classification
models.Most otherworks used either cross-validation or splitting
of the available samples in two sets, one to build up the models

and the second one for validation purposes, using only honey
samples perfectly characterised for geographical origin and/or
botanical variety without including unknown samples in the val-
idation. Also some of those works use next to the elemental mass
fractions some other parameters for classification purposes, i.e.
stable isotopic ratios [3, 10], water, total protein content, electric
conductivity, pH, specific rotation, colour, free acids, lactones
[10], ash percentage, insoluble matter, reducing sugars and dia-
stase activity [11].

The approach followed in this work seems to be quite ro-
bust achieving a satisfactory performance with a reduced
number of variables and observations in some models. Few
samples are enough to construct models for classification pur-
poses if the samples are chosen in such a way that they repre-
sent the maximum variability that characterises a certain
population.

Conclusions

Profiling of the elemental composition of honeys by ED-XRF
proved to be an appropriate technique for confirming the bo-
tanical variety and geographical origin of the honeys as indi-
cated on the labels under which they are commercialised. ED-
XRF is a high-throughput multielemental analytical technique
that does not require complicated sample pre-treatment, thus
being ideal for routine control analyses.

The built-in calibration curves provided by the manufacturer
of the ED-XRF instrument have allowed the successful classifi-
cation of a wide variety of European honeys. A careful optimi-
sation of the method, for instance of the irradiation time and of
the amount of honey used for the analysis, could increase the
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sensitivity of the method and therefore also the number of ele-
ments to be used as variables in the multivariate analysis, which
would increase the prediction capability of the models.

Control laboratories should focus on the construction of
models that cover the botanical varieties and geographical
origins most relevant for their routine work. The predictive
capabilities of this chemometric approach will benefit an ini-
tial effort to collect a representative number of authentic sam-
ples whose botanical and geographical origin is sufficiently
documented.
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