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Abstract
Stroke is a leading cause of death and a major cause of permanent disability. Its management is demanding because of variety of
protocols, imaging modalities, pulse sequences, hemodynamic maps, criteria for treatment, and time constraints to promptly
evaluate and treat. To cope with some of these issues, we propose novel, patented solutions in stroke management by employing
multiple brain atlases for diagnosis, treatment, and prediction. Numerous and diverse CT and MRI scans are used: ARIC cohort,
ischemic and hemorrhagic stroke CTcases, MRI cases with multiple pulse sequences, and 128 stroke CT patients, each with 170
variables and one year follow-up. The method employs brain atlases of anatomy, blood supply territories, and probabilistic stroke
atlas. It rapidly maps an atlas to scan and provides atlas-assisted scan processing. Atlas-to-scanmapping is application-dependent
and handles three types of regions of interest (ROIs): atlas-defined ROIs, atlas-quantified ROIs, and ROIs creating an atlas. An
ROI is defined by atlas-guided anatomy or scan-derived pathology. The atlas defines ROI or quantifies it. A brain atlas potential
has been illustrated in four atlas-assisted applications for stroke occurrence prediction and screening, rapid and automatic stroke
diagnosis in emergency room, quantitative decision support in thrombolysis in ischemic stroke, and stroke outcome prediction
and treatment assessment. The use of brain atlases in stroke has many potential advantages, including rapid processing, auto-
mated and robust handling, wide range of applications, and quantitative assessment. Further work is needed to enhance the
developed prototypes, clinically validate proposed solutions, and introduce them to clinical practice.
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Introduction

Stroke is the most common life-threatening neurologic disor-
der. It is a leading cause of death and a major cause of perma-
nent disability. Stroke has a profound effect on public health
and generates huge costs for primary treatment, hospitaliza-
tion, rehabilitation, and chronic care. Its management is de-
manding because of variety of protocols, imaging modalities,
pulse sequences, hemodynamic maps, techniques and criteria
for treatment, definitions of a mismatch and penumbra as well
as time constraints to promptly evaluate, make decision and
treat, among others (Mohr et al. 2004).

Neuroinformatics and neuroimaging play a crucial role in
stroke management. In order to make diagnosis and

therapeutic decision Computed Tomography (CT) and/or
Magnetic Resonance (MR) imaging are used to: 1) differenti-
ate stroke from non-strokes and stroke mimicking conditions,
such as brain tumor, brain abscess or encephalitis; 2) distin-
guish between an ischemic and hemorrhagic stroke; 3) iden-
tify or exclude vessel occlusion; 4) identify in acute ischemic
stroke the infarct (i.e., already dead tissue) and penumbra (i.e.,
tissue at risk of progressing to infarction, still salvageable if re-
perfused); 5) identify any chronic infarct(s); and 6) identify
stroke subtypes. CTscanning is usually unenhanced followed,
if necessary and available, by CT angiography (CTA) and CT
perfusion (CTP). Then, perfusion maps with various hemody-
namics parameters can be derived from CTP including cere-
bral blood volume (CBV), cerebral blood flow (CBF), mean
transit time (MTT), peak height (PKHT), and time to peak
(TTP). Conventional and advanced MR multiple studies de-
pict anatomy, angiography, diffusion, and perfusion. They in-
clude T1-weighted, T2-weighted, T2* gradient echo (GRE),
fluid-attenuated inversion recovery (FLAIR), MR angiogra-
phy (MRA), MR diffusion-weighted imaging (DWI) along
with the apparent diffusion coefficient (ADC) to detect and
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assess the infarct, and/or MR perfusion-weighted imaging
(PWI) to calculate the perfusion maps in order to delineate
the penumbra.

A typical clinical practice is to process all these multiple
studies individually by visual inspection. This causes the pro-
cess to be time consuming in the situation when “time is
brain” and not quantitative, while certain conditions have to
be calculated accurately to make the therapeutic decision. In
order to copewith some of these problemswe have proposed a
paradigm shift in stroke image processing by employing hu-
man brain atlases. This shift is from a 2D visual inspection of
individual scans to atlas-assisted quantification and simulta-
neous visualization of multiple 2D and 3D images (Nowinski
et al. 2008).

Human brain atlases are central to this approach. Over the
last century brain atlases and maps have progressed tremen-
dously from a few print cortical maps to a plethora of elec-
tronic, deformable, probabilistic, multi-modal, and multi-scale
brain atlases in health and disease (Toga et al. 2006; Evans
et al. 2012; Amunts et al. 2014; Nowinski 2017a). The brain
atlases have been employed in a wide scope of applications
ranging from medical education to research to clinics as
reviewed in (Nowinski 2017a). One of clinical applications
of brain atlases is neuroradiology (Nowinski 2016) and, con-
sequently, stroke image handling. The use of human brain
atlases in stroke management opens new application avenues
which subject is addressed below.

I propose here some novel concepts and methods in stroke
management by employing multiple human brain atlases. This
novelty is confirmed by our numerous patents granted (and 17
US stroke-related patents are listed in Appendix). The way of
using brain atlases in handing stroke images is also new and it
has several advantages. I address a potential usefulness of and
summarize our preliminary experience in the development of
prototypes equipped with various brain atlases for stroke oc-
currence prediction and screening, rapid and automatic stroke
diagnosis in emergency room (ER), quantitative decision sup-
port in thrombolysis in ischemic stroke, and stroke outcome
prediction and treatment assessment.

Methods, Materials and Applications

Methods

The stroke applications employ three various brain atlases.
These are the atlas of anatomy (Nowinski 2005), atlas of blood
supply territories (Nowinski et al. 2006a), and Probabilistic
Stroke Atlas (PSA) (Nowinski et al. 2014a).

The atlas of anatomy was derived from the Talairach and
Tournoux (1988) brain atlas by its postprocessing, extensions,
and color coding (Nowinski et al. 1997) followed by its con-
tinuous enhancements (Nowinski 2005). The atlas of blood

supply territories was created to spatially correspond to the
atlas of anatomy. Both atlases have the same shape of the
cortex and ventricular system, share outlines of the cerebellum
and brainstem, and have the same image size, number of the
corresponding images, and image resolution. Consequently,
these two atlases are in natural spatial registration.

The PSA combines neurological parameters with patholo-
gy localized on neuroimages for a population of stroke pa-
tients. This atlas aggregates a multiplicity of diverse parame-
ters and presents the distribution of each parameter as a 3D
image. The PSA is a special case of the probabilistic brain
damage atlas for stroke lesions discussed below.

The overall method has, generally, two major steps: 1)
mapping of the atlas(es) to a patient’s scan (or vice versa),
and 2) atlas-assisted scan (or perfusion map) processing.

Atlas-to-scan mapping (or spatial registration) methods,
producing an individualized atlas, have been reviewed in
(Nowinski 2017b), and any known methods can be employed
in the stroke applications discussed below. In our stroke pro-
totypes developed we used our own atlas-to-scan mapping
methods because they are very fast (of a few seconds), auto-
matic with no parameter setting, conceptually simple (also for
the clinicians to understand the underlying processing), and
easier to us to modify, extend and integrate them into stroke
applications. Moreover their validation, although tedious and
time consuming, is conceptually straightforward. Two main
methods used for atlas-to-scan mapping are the Fast Talairach
Transformation (FTT) (Nowinski et al. 2006b) and an ellipse-
based fitting method (Volkau et al. 2012).

The FTT is a rapid version of the Talairach transformation
(Talairach and Tournoux 1988) with the modified Talairach
landmarks introduced by Nowinski (2001). The original
Talairach transformation subdivides the brain into 12 cuboidal
regions and scales it piece-wise linearly. The FTTwas imple-
mented and its performance evaluated for MR neuroimages.
The identification of the point and distributed landmarks in the
scan by the FTT is fully automatic and performed in three
steps: calculation of the midsagittal plane (MSP), computing
of the anterior (AC) and posterior commissure (PC) point
landmarks, and calculation of the six external cortical land-
marks. Having the MSP and the landmarks calculated, the
processed scan is reformatted in the AC-PC plane, and the
atlas is scaled piecewise linearly and superimposed on the
scan.

The algorithm for the MSP extraction localizes the inter-
hemispheric fissure line segments by sampling the vicinity of
this fissure with five pairs of sampling parallel line segments
(that cover the white and gray matters and cerebrospinal fluid
regions around the interhemispheric fissure) in a coarse and
fine steps, selects fissure line segment inliers by applying a
histogram-based angular and distance outlier removal, and
calculates the equation of the MSP from the selected inliers
bymeans of the least square error fit (Hu and Nowinski 2003).
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The algorithm for a rapid and automatic localization of the
AC and PC point landmarks combines anatomic and radiolog-
ic properties of the AC and PC and their surrounding struc-
tures (Bhanu Prakash et al. 2006). These landmarks are local-
ized in two stages, coarse and fine. In the coarse stage the
landmarks are identified on the given MSP by analyzing their
relationships with the corpus callosum, fornix, and brainstem.
Subsequently, in the fine stage their positions are refined in a
well-defined volume of interest by analyzing locations of the
lateral and third ventricles, interhemispheric fissure, and mas-
sa intermedia. The algorithm exploits simple operations in-
cluding histogramming, thresholding, region growing, and
1D projections.

The modified Talairach cortical landmarks are calculated
on three 2D planes, the AC-PC axial plane and two perpen-
dicular coronal planes passing through the AC and PC land-
marks, in contrast to the need of processing the entire brain in
3D as in the original Talairach transformation (Nowinski
2001). Then, for each modified cortical landmark a single
coordinate is calculated, as opposed to three coordinates re-
quired for the corresponding original cortical landmark. For
the calculated MSP, AC and PC, these three planes are deter-
mined, and the brain images on them are segmented based on
range-constrained thresholding and morphological operations
followed by local refinement to determine their extents in
order to locate the cortical landmarks (Hu et al. 2005). This
algorithm also exploits anatomic knowledge and employs on-
ly simple operations, like thresholding, basic morphological
operations, and distance transform.

In order to increase the accuracy of the FTT without
compromising its performance, we introduced two additional
landmarks calculated automatically: the top of the corpus
callosum and the most ventral point of the orbito-frontal cor-
tex (Nowinski and Bhanuprakash 2005), doubling in this way
the subdivision of the cerebrum from 12 to 24 cuboidal re-
gions and increasing the number of degrees of freedom of the
FTT from 13 to 15. Another extension of the FTT aimed to
compensate against a variable size of the ventricular system.
The standard FTTwas followed by the complete and automat-
ic extraction of the ventricular system (Xia et al. 2004) along
with the determination of some point landmarks on its surface
and, subsequently, by nonlinear warping based on radial func-
tions (Nowinski et al. 2006b).

In general, the use of anatomic and radiologic domain
knowledge makes the FTTcomponent algorithms more rapid,
accurate, and robust. On the other hand, these algorithms be-
come acquisition-dependent and may require additional de-
velopment. For instance, to calculate the MSP for the diffu-
sion images and perfusion maps, we developed a dedicated
algorithm based on the Kullback-Leibler’s (KL) measure
quantifying the difference between two intensity distributions
(Nowinski et al. 2006c). Then, theMSP is a sagittal plane with
the highest KL measure.

Besides being acquisition-dependent, another limitation of
the FTT (similarly to the original Talairach transformation) is
that it requires the landmarks to be present in the scan. This
may not be the case in the ER where typically high slice
thickness CT scans are acquired. In order to overcome these
limitations, while keeping the conceptual simplicity and speed
of the atlas-to-scan mapping, an ellipse-based fitting method
was devised (Volkau et al. 2012). The method is based on an
observation that the shape of the cortex on the MSP can be
well approximated by an ellipse, so practically this approach
applies to any image modality as long as the cortex is visible.
In addition, anatomic positions of some cortical and subcorti-
cal landmarks are related to the parameters of this elliptical
approximation. The ellipse-based method applies an atlas
transformation similar to that of the FTT, but the landmarks
are determined differently. The method enables a statistical
localization of landmarks in any, including sparse, scans,
where the landmark points are hardly discernible or even ab-
sent. The method performs the following steps: calculation of
the MSP by means of the KL-measure (Volkau et al. 2006a),
setting a sagittal slab around the MSP and computing the
maximum intensity projection (MIP) slice with the outline of
the cortex (to compensate for a variable width of the inter-
hemispheric fissure), identification of the fiducial points on
the outline of the cortex on the MIP slice, fitting an ellipse
to the cortex, calculation of the ellipse parameters, computa-
tion of the point landmarks, and atlas-to-scan mapping
(Volkau et al. 2012). The algorithm for the calculation of the
MSP based on the KL-measure works in two stages, coarse
and fine (Volkau et al. 2006a). In the coarse stage the central
slice in the volume along the sagittal direction is identified, a
volume of interest (VOI) around this central slice in the sag-
ittal direction is determined, the first slice of the VOI is taken
as the reference slice, the KL-measure for all the slices in the
VOI with respect to the reference slice is computed, and the
slice with the maximum KL-measure is selected as the coarse
MSP. In the fine stage, three corner points selected on the
coarse MSP are perturbed and the KL-measure is iteratively
calculated for a decreasing VOI. The set of the corner points
giving the maximum value of the KL-measure defines the fine
MSP. The outline of the cortex on the MIP slice may be set
quickly interactively or any automatic skull-stripping algo-
rithm can be used, such as (Hu et al. 2005; Sadananthan
et al. 2010) for MR scans and skull-based thresholding
(Puspitasari et al. 2009) for CT scans. The later approach
may take longer time, be acquisition-dependent (in contrast
to the whole mapping method) and create some artifacts, es-
pecially in the skull base region, whereas the fiducial points
should preferably cover the entire region between the
orbitofrontal and occipital cortex. The statistically determined
point landmarks are ellipse-dependent; for instance, the loca-
tions of the AC and PC are simply calculated in terms of the
major and minor axes of the fitted ellipse.
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CT scans are infrequently acquired in the ER with a con-
siderable head tilt, large slice thickness and high partial vol-
ume effect. In order to cope with these acquisitions, the algo-
rithm for calculation of the MSP was extended by estimating
patient’s head orientation by means of a model fitting (a skull-
based fitting on the axial plane), image processing and atlas-
based techniques, followed by volume reorientation for a bet-
ter initialization and a subsequent MSP calculation based on
the KL-measure (Puspitasari et al. 2009).

Processing of the scan with the individualized
(superimposed) atlas is application-dependent. In order to pro-
cess a stroke scan (or generally scans and/or maps), a combi-
nation of methods is applied including image processing, sta-
tistical modeling, atlas-assisted analysis, and population-
based atlases. What is common in these applications is that
the processing handles certain regions of interest (ROIs) in the
scan or map. These ROIs can be two-dimensional (2D, planar)
or three-dimensional (3D, volumetric). The ROIs can be de-
termined by some characteristics of a healthy brain like anat-
omy or by pathology. Three situations of an ROI employment
are considered here and, consequently, three types of ROIs are
distinguished: atlas-defined ROIs (type I), atlas-quantified
ROIs (type II), and ROIs creating an atlas (type III).

The atlas-defined ROI is a region in the scan determined by
the superimposed atlas on it, such as the hippocampus, central
sulcus, or Brodmann’s area 17. Then, certain operations per-
formed over the scan can be limited only to this ROI.
Subsequently, the results of operations over the atlas-defined
ROIs can be further processed including their comparison or
aggregation.

The atlas-quantified ROI is a particular region (typically a
lesion) or regions delineated in the scan that is/are subsequent-
ly quantified by the individualized atlas or atlases. This quan-
tification is in terms of a list of all atlas structures overlapping
with this ROI, and for each structure its quantitative contribu-
tion to this ROI in terms of a volume and percentage of
occupancy.

In type III ROIs (i.e., ROIs creating an atlas) the content of
all the ROIs is aggregated across a patient population to form
an atlas. For this purpose I introduce here a concept of a
probabilistic brain damage atlas (PBDA). The PBDA is a
means of aggregating data and knowledge from the previously
treated patients with local brain damage. A brain damaged can
result from disease or injury, such as brain tumor, stroke, trau-
ma or infection. For each patient, the damaged (single or
multi-focal) region is segmented (delineated) in the scan and
some measure or parameter quantifying the brain damage or
its state related to this specific region is assigned to it. The
simplest way of aggregation of patient population data is by
averaging, although more sophisticated aggregations taking
into account the size, shape, location, and mutual overlapping
of the contributing ROIs can be employed as analyzed in
(Nowinski et al. 2014a). The PBDA forms a set of 3D

volumes and each volume corresponding to the examined pa-
rameter is calculated as follows:

For each parameter
For each case/scan
Delineate ROI and create its contour file
Normalize spatially the contour file
For each voxel within the normalized contour file
Aggregate the parameter value

Divide the aggregated values by the number of cases

The PBDAvolumes can be processed, analyzed, and visu-
alized as well as trends and knowledge extracted from them.

Materials

Numerous and diverse cases have been used in the implement-
ed stroke systems (prototypes) for validation. They can be
arranged in four groups: 1) the ARIC (Atherosclerosis Risk
in Communities) large longitudinal epidemiologic cohort
study [URL, ARIC, 2020] with T1-, T2- and PD-weighted,
spatially corresponding scans employed for the stroke occur-
rence prediction; 2) ischemic stroke and hemorrhagic stroke
CT cases used for the ischemic stroke CT system and the
stroke system in the ER; 3) MRI cases with multiple pulse
sequences including T1-weighted, T2-weighted, FLAIR,
MRA, DWI, and PWI maps (including CBV, CBF, MTT,
PKHT and TTP) employed for the ischemic stroke MR sys-
tem; and 4) 128 stroke cases used for the creation and valida-
tion of the PSA (selected from the cohort of 458 clinically
confirmed ischemic stroke patients, chosen from a larger
group of more than 700 patients), each case with CT scans
(at admission and follow-up), contoured infarct(s), 170 vari-
ables (demographic, laboratory (including biochemical), and
clinical measures and outcomes (including stroke scales))
gathered within one year follow-up.

Atlas-Assisted Stroke Applications

Four stroke preliminary applications are developed and de-
scribed below, where the brain atlases are critical core compo-
nents, aiming to support stroke occurrence prediction, stroke
detection in the ER, making treatment decision in ischemic
stroke, and stroke treatment assessment and outcome
prediction.

Atlas-Assisted Stroke Occurrence Prediction

White matter hyperintensities (WMHs) or leukoaraiosis is
considered the main imaging sign of cerebral small vessel
diseases. WMHs are hyperintense on FLAIR and T2-
weighted sequences, and isointense or hypointense on T1-
weighted sequences with respect to normal brain (Pantoni
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2010). A number of studies have demonstrated that WMHs
are associated with an increased stroke risk (Moran et al.
2012) and its recurrence (Kim et al. 2014). WMHs are quan-
tified typically by the Fazekas scale (Fazekas et al. 1987)
which divides the white matter in the periventricular and deep
white matter, and each region is given a grade between 0 and 3
depending on the size and confluence of lesions. This grading
is performed visually. Our goal was to attempt to automate this
assessment and make it more quantitative and objective.

The processing for atlas-assisted stroke occurrence predic-
tion contains the following steps:

1. Segmentation of WMHs, generally, by any method. Here,
because of the nature of the available data, we employed a
multi-modal segmentation of T1-, T2- and PD-weighted
images with a simple, user-controlled thresholding based
on the known intensity ranges (i.e., bright, iso and dark) of
WMHs for these three pulse sequences.

2. Creating contours around the segmented (binary) regions
with the control points for potential editing to enhance the
segmented WMHs by employing the contour editor de-
scribed in (Nowinski et al. 2012a).

3. Extraction of the ventricular system in 3D by an automat-
ic, domain knowledge-driven algorithm (Xia et al. 2004).
Then, the ventricular system is subdivided into multiple
ROIs, and in each of them local statistics is calculated, a
seed point is determined and directional region growing
applied while checking anti-leakage conditions. All the
unconnected regions grown are subsequently connected
by relaxing the original growing conditions.

4. Quantification of the extracted binarized WMHs in terms
of the number of loci, their volume, and spatial relation-
ships with respect to the ventricular system.

5. Mapping of the anatomic atlas on the images by means of
the FTT (Nowinski et al. 2006b).

6. Atlas-assisted analysis based on type II ROIs.

Atlas-Assisted Stroke Diagnosis in the Emergency Room

The first-line diagnosis for emergency evaluation of acute
stroke is unenhanced (non-contrast) CT (Lövblad and Baird
2010). However, its sensitivity is only 25% versus 86% in
MR; moreover, within the first 3 h, it is lowered to 7% for
CT and 46% for MR (Chalela et al. 2007). In addition, the
scans are frequently viewed initially by non-stroke clinicians
(including emergency physicians, non-neuroradiologists, or
even neurology or radiology residents, or junior staff on
duty) before being interpreted by stroke neuroradiologists
(Brown et al. 2004). Therefore, an automatic and fast detec-
tion and localization of ischemic infarcts in non-contrast CT
could assist in enhancing and expediting diagnosis. Our goal

is to address these issues by providing a relevant enhancing
tool.

Any pathology in a brain scan typically results in asymme-
try between the left and right hemispheres, so by identifying
this asymmetry, a pathology in the scan can be detected
(Volkau et al. 2006b). This global comparison of the hemi-
spheres can be followed by a more specific local comparison
for a set of numerous pairs of ROIs placed on both hemi-
spheres, and those ROIs can be generated by a brain atlas.
The developed atlas-assisted stroke system in the ER exploits
two atlases to define such pairs of ROIs: atlases of anatomy
and atlas of blood supply territories. The system supports rap-
id and automatic stroke detection, distinguishes between an
ischemic and hemorrhagic stroke, and localizes an infarct or
hemorrhage. It analyzes statistically the differences between
the left and right hemispheres in multiple ROIs delineated by
the brain atlases of anatomy and blood supply territories. The
comparison between the left and right hemispheres is per-
formed in 3D within the corresponding atlas ROIs rather than
in acquired images, avoiding image asymmetry resulting from
a potential head tilt.

The processing steps for atlas-assisted stroke diagnosis in
the ER exploit fast and dedicated algorithms and are as
follows:

1. Calculation of the midsagittal plane (Volkau et al. 2006a;
Puspitasari et al. 2009).

2. Extraction of the ventricular system to determine cerebro-
spinal fluid regions. Three algorithms have been devel-
oped for this purpose, 1) the abovementioned algorithm
for extraction of the ventricular system from MR scans
(Xia et al. 2004), 2) an algorithm for extraction of the
ventricular system from CT scans (Liu et al. 2010), and
3) a dedicated algorithm for ventricular system extraction
from ischemic stroke CT scans (Poh et al. 2012). The
algorithm by Liu et al. (2010) is model-guided and em-
ploys domain knowledge about the anatomy, shape vari-
ation and intensity distribution of the normal ventricular
system in CT neuroimages. A 3D model of the ventricles
derived from the anatomy atlas is first registered to the
scan linearly against the brain’s bounding box. The regis-
tered model defines multiple regions in the ventricular
system. Then, in each region thresholds are calculated
and the cerebrospinal fluid segmented. The automated
algorithm by Poh et al. (2012) is template-based and em-
ploys two ventricular templates: one is for the normal
brain and the other is pathologic built from several brains
with substantially enlarged ventricles. The templates are
registered piece-wise linearly to the scan by employing
the ellipse-fitting method (Volkau et al. 2012) with the
MSP calculation algorithm by Puspitasari et al. (2009)
to accommodate for large head tilts. AnROI is determined
by means of the pathologic template, which limits
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potential “leakage” of the cerebrospinal fluid region into
the ischemic region, as their densities overlap. A suitable
threshold is computed taking into account the distribu-
tions of cerebrospinal fluid, white matter and gray matter
calculated by means of the algorithm by Gupta et al.
(2010), and a thresholding is performed in the ROI,
followed by artifact removal.

3. Skull removal and brain extraction by performing skull-
based thresholding (Puspitasari et al. 2009).

4. Removal of the cerebrospinal fluid regions from the ex-
tracted brain because the cerebrospinal fluid density range
overlaps with that of infarcts.

5. Rapid atlas to CT scan mapping using the ellipse-fitting
method (Volkau et al. 2012).

6. Atlas-assisted analysis based on type I ROIs by compar-
ison of all the corresponding left and right ROIs for both
atlases, and a diagnosis is made based on testing of mul-
tiple statistical conditions (like a mismatch between the
ROIs density distribution curves).

7. Producing a report with the diagnosis (infarct, hemor-
rhage, infarct with hemorrhagic transformation, or not
detected) and lesion location details (CT slices, anatomic
structures and blood supply territories).

Atlas-Assisted Treatment Decision Making in Ischemic Stroke

Thrombolysis is the main treatment for acute ischemic stroke
delivered by administering tissue plasminogen activator (t-
PA) intravenously and/or intra-arterially through a
microcatheter (Mohr et al. 2004). Intravenous (IV) thrombol-
ysis is the most direct treatment of most ischemic strokes.
Uncontrolled thrombolysis may result in hemorrhagic trans-
formation, so the procedure is applied provided that certain
thrombolysis conditions are met. Depending on a protocol
employed, three conditions are checked: 1) the size of the
infarct to that of the middle cerebral artery (MCA) territory,
2) the presence of a diffusion-perfusionmismatchmeasured as
the perfusion lesion to the diffusion lesion (infarct) ratio, and
3) the site of vessel occlusion, if any. The ratio of an infarct
volume to that of the MCA territory predicts hemorrhagic
transformation when greater than, depending of various au-
thors, one half (Parsons and Davis 2006) or one third (Hacke
et al. 2004). It should be noted that these conditions do not
take into account locations of the infarct and penumbra. Our
goal is to automate the calculation of the thrombolytic condi-
tions and to extend the procedure by taking into account in-
farct and penumbra locations.

The atlases of anatomy and blood supply territories are
employed for automatic and quantitative assessment of the
infarct and penumbra taken as ROIs and, additionally, to cal-
culate the ratio of the infarct volume to that of the MCA
territory in 3D in contrast to standard procedure of assessing

it on some (usually one or two) selected slice(s). An atlas-
assisted analysis provides the complete list of anatomic struc-
tures and blood supply territories, along with their volume and
percentage of contributions to the infarct and penumbra
regions.

The processing for atlas-assisted treatment decision mak-
ing in ischemic stroke is the following:

1. Calculation of the midsagittal plane by means of various
algorithms depending on the pulse sequence (Hu and
Nowinski 2003; Nowinski et al. 2006c; Volkau et al.
2006a).

2. Rapid atlas to scan mapping by means of the FTT for MR
scans (Nowinski et al. 2006b) or by the ellipse-based
method for CT scans (Volkau et al. 2012).

3. Infarct and penumbra (ROIs) segmentation. The infarct is
segmented automatically by means of a divergence mea-
sure taken here as a ratio of the intensity probability den-
sity functions for the left and right hemispheres (Bhanu
Prakash et al. 2008). The penumbra is delineated interac-
tively by employing a dedicated contour editor (Nowinski
et al. 2012a). These operations are followed by the calcu-
lation of the infarct and penumbra volumes and their ratio.

4. Atlas-assisted analysis based on type II ROIs and decision
making support (Nowinski et al. 2006a).

Atlas-Assisted Treatment Assessment and Outcome
Prediction

For an atlas-assisted treatment assessment and outcome pre-
diction, the probabilistic stroke atlas (PSA) is employed. We
have created the PSA and studied its properties for ischemic
stroke (Nowinski et al. 2014a). The PSA is a special case of
the PBDA. Then, a set of PSA volumes has been constructed
taking non-contrast CT as a scan, an ischemic lesion (infarct)
delineated on the scan taken as an ROI (of type III), and
numerous parameters (out of 170 acquired) assigned for ROI
quantification, including the modified Ranking Scale and the
Barthel Index at day 7, 30, 90, 180 and 360.

For any studied parameter, the patient’s CT scan is
superimposed on its corresponding PSA volume, the infarct
is delineated on the scan forming the ROI in 3D, and the
predicted values of this parameter are read from the PSAwith-
in the ROI.

The processing steps for atlas-assisted treatment assess-
ment and outcome prediction are the following:

1. Delineate an infarct in the scan forming the ROI in 3D; it
was done rapidly interactively by using a dedicated con-
tour editor (Nowinski et al. 2012a).

2. Select a suitable PSA map or maps with the parameter(s)
to be predicted.
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3. Map the patient’s scan to the PSA map(s) by means of the
ellipse-based method (Volkau et al. 2012); additionally,
the anatomic atlas can also be superimposed on the scan
to provide anatomic localization.

4. Read the prediction (parameter values) in the ROI from
the selected PSA maps (Nowinski et al. 2014a).

It shall be noted that type III ROIs are employed for atlas
creation, whereas type II ROIs for atlas use in prediction.

Results

The stroke applications presented below this is work in prog-
ress and some preliminary results are given. All four stroke
applications were implemented as working prototypes (proofs
of concept) resulting from integration of multiple methods and
brain atlases. These prototypes were presented to both neuro-
radiological and neurological communities. All four proto-
types were demonstrated as education exhibits at RSNA
(Radiological Society of North America) annual meetings re-
ceiving four awards. The prototypes were also demonstrated
at the European Congress of Radiology, World Congress of
Neurology, and American Society of Neuroradiology.
Moreover, some of them have been trial licensed globally to
numerous industrial (including Siemens and Philips) as well
as clinical and research institutions in USA, Canada, France,
Germany, Poland, Italy, Belgium, Singapore, India, and
Australia. In addition, our stroke-related work was nominated
for Asian Innovation Award as well as resulted in numerous
patents granted (see Appendix) and pending.

The prototype for the atlas-assisted stroke occurrence pre-
diction employs the FTT for mapping of the anatomic atlas to
T1-, T2- and PD-weighted scans. The component algorithms
for atlas-to-scan mapping, including the calculation of the
MSP, AC and PC point landmarks, and the external cortical
landmarks, were validated first followed by the validation of
the entire FTT.

The algorithm for the localization of the AC and PC point
landmarks was initially validated on 94 diversified datasets
resulting in the mean distance errors of 1.02 mm for the AC
and 0.97 mm for the PC (Bhanu Prakash et al. 2006). The fine
stage processing doubles the accuracy. The validation also
revealed some limitations of the algorithm, namely, it is not
applicable for modalities unable to clearly delineate the corpus
callosum, fornix and/or brainstem, it is not able to localize the
AC and PC when the MSP is rotated for more than 35°, and
the results may be incorrect for the slice thickness greater than
3.5 mm and the pixel size larger than 2 × 2 mm (taking into
account a small size of the AC and PC structures).

The algorithm for the extraction of the MSP was initially
validated on 125 MR and CT normal and pathological diverse
cases (from 10 centers in 3 continents). In addition, its

robustness to noise, asymmetry, rotation, bias field and sensi-
tivity to parameters was studied. The algorithm extracts the
MSP with the average angular and distance errors of (0.40°,
0.63 mm) for normal and (0.59°, 0.73 mm) for pathological
cases (Hu and Nowinski 2003).

The algorithm for the extraction of the modified Talairach
cortical landmarks was validated on 62 diversified MR scans
resulting in the average landmark location errors below
0.9 mm (Hu et al. 2005).

The algorithm for extraction of the ventricular system was
validated qualitatively on 68 and quantitatively on 38 MRI
normal and pathological cases. It runs successfully for normal
and pathological cases provided that the slice thickness is
lower than 3.0 mm in axial and 2.0 mm in coronal directions,
and there is no high inter-slice intensity variability. The algo-
rithm also works satisfactorily in the presence of up to 9%
noise and up to 40% image inhomogeneity. The mean overlap
metric between the results of a radiology expert and the algo-
rithm was 0.97 (Xia et al. 2004). The extraction time is below
6 s.

Subsequently, these components algorithms were integrat-
ed within the FFT platform and the accuracy of all the land-
marks was assessed on a bigger set of 215 diversified MR
cases. For each case the ground truth was set in terms the
interhemispheric fissure and all eight point landmarks. The
average distance errors in point landmark localization were
(in mm): 1.16 (AC), 1.49 (PC), 0.08 (cortical left), 0.13 (cor-
tical right), 0.48 (cortical anterior), 0.16 (cortical posterior),
0.35 (cortical superior), and 0.52 (cortical inferior) (Nowinski
et al. 2006b). The FTT calculations took about 5 s. When
radial functions-based nonlinear warping was included along
with the calculation of the ventricular system, this time in-
creased a few times depending on the number of the ventric-
ular landmarks. Quality-wise, when excluding certain distor-
tion artifacts that occurred, generally the atlas-to-scan corre-
spondence for subcortical structures was improved, but its
quantitative anatomic validation for patient-specific scans is
not straightforward.

These methods proposed for the atlas-assisted stroke occur-
rence prediction are novel, as confirmed by the US patents
granted (listed in the Appendix); namely, Patent 3 (AC and
PC calculation), Patent 6 (external cortical landmarks extrac-
tion), Patent 7 (MSP calculation), Patent 12 (the FTT), and
Patent 14 (ventricular system extraction).

All the component algorithms and the prototype of the
atlas-assisted stroke occurrence prediction systemwere imple-
mented in C++. The prototype was preliminarily evaluated on
a few cases from the ARIC cohort study, and some resulting
images along with a few windows of the user interface of the
prototype are illustrated in Fig. 1. This figure shows T1-, T2-
and PD-weighted images along with their corresponding his-
tograms on which the thresholds are marked; the process of
multi-modal extraction of the WMHs; the extracted WMHs in
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a contour form with the control point for potential interactive
enhancement; and an individualized anatomic atlas with atlas-
assisted analysis. This analysis provides the list of structures
and for each structure its volume and percentage contributing
to the WMHs is calculated (in this way the anatomic brain
atlas provides quantification of the WMHs). The prototype
is also equipped with numerous functions for image manipu-
lation, display and result editing.

This application is able to provide a wealth of information.
It quantifies directly the WMHs themselves (in terms of size
and numbers) and provides atlas-enabled quantitative assess-
ment of the complete underlying anatomy involved in the
WMHs. As the ventricular system and the WMHs are both
extracted in 3D, their spatial relationship can also be easily
calculated.

The prototype for the atlas-assisted stroke diagnosis in the
ER employs the ellipse fitting method with the statistical cal-
culation of the landmarks for mapping of the mutually co-
registered atlases of anatomy and blood supply territories to
a scan. The ellipse-based method exploits the MSP calculated
by means of the KL-measure (MSP-KL). The algorithm for
MSP-KL calculation was evaluated on 75 MRI cases, addi-
tional CTandMRA datasets, and the phantom data to study its
robustness against rotation, inhomogeneity and noise. The
average distance and angular deviation from the ground truth
were 1.25 pixels and 0.63°; moreover, the algorithm works for
various modalities, pulse sequences and copes with patholog-
ical cases, and its processing time is less than 5 s for a typical
dataset (Volkau et al. 2006a). The robustness of the algorithm
to rotation for the phantom data was from −15° to 15° in each

Fig. 1 Atlas-assisted stroke occurrence prediction: a) histograms (on the
left) of the T1- (top), T2- (middle), and PD-weighted (bottom) images of a
selected axial plane shown alongwith themarked lower and upper thresh-
olds (as the vertical lines on the histograms) and the resulting correspond-
ing accumulated segmented WMHs regions (on the right); b) WMHs
contoured on an PD axial image along with the control points enabling
contour editing by the user by the provided Contour Editor; c) atlas-

assisted analysis containing the individualized anatomic brain atlas in a
contour format (to avoid blocking of the scan by the atlas colored regions)
superimposed on a PD axial imagewith the segmentedWMHs alongwith
the list of structures, and for each structure its volume and percentage
contributing to the WMHs is calculated (in this way the atlas provides
quantification of theWMHs). Note the availability of numerous functions
for image manipulation, display and result editing
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of yaw, pitch and roll directions, and from −7° to 7° in roll
direction combined with any other. As this robustness was
insufficient for handling ER acquisitions, the algorithm was
subsequently extended to cope with a high head tilt by
performing volume pre-rotation before MSP-KL calculation.

The extended algorithmwas validated on 208 clinical scans
acquired mostly in the ER with a substantial head tilt and the
slice thickness ranging from 1.5 to 6 mm (with 95% cases
having the slice thickness of 5 mm or more). The mean dis-
tance and angular errors (the discrepancies between the calcu-
lated MSP and the ground truth MSP) were 0.15 mm and
0.03°, and the maximum errors were 2.58 mm and 3.45°
(Puspitasari et al. 2009). When tested against data rotation,
the algorithm was able to successfully extract the MSP up to
40° in yaw, 30° in pitch, and 25° in roll directions, with the
mean distance and angular errors of 0.64 mm and 0.71°. The
algorithm takes in average 10 s to process a typical CT case.

The formulae for statistical landmark localization were de-
termined based on analysis of 53 structural scans without de-
tectable pathology, yielding the mean localization errors (in
mm) of 2.57 for the AC and 2.69 for the PC (Volkau et al.
2012). These (AC;PC) errors are inter-slice gap dependent
amounting (0.82;1.41) for gap = 0 mm and (2.93;2.06) for
gap = 7 mm. Ellipse-based registration was studied for several
multi-modal (CT, MR, PET) scans and hemorrhagic stroke
time-series CT, and the process takes less than 15 s.

The algorithm for extraction of the ventricular system from
CT scans was tested on 50 stroke patients from various sites
achieving an average overlap between the extracted and
ground truth ventricles of 85% in about 10 s (Liu et al. 2010).

The performance of this standard algorithm seemed suffi-
cient in speed and accuracy. However, the accuracy of
removal of the cerebrospinal fluid from the ischemic stroke
images impacts stroke detection, and therefore a new
dedicated algorithm was developed and a more thorough
testing carried out. The algorithm dedicated for extraction of
the ventricular system from ischemic stroke CT scans by Poh
et al. (2012) was tested on 102 ischemic stroke scans of a slice
thickness variable between 3 and 6 mm, and significant vari-
ations in the image quality, orientation, size and shape of the
ventricles. More than 80% of the CT scans had visible ische-
mic infarcts of various size, shape and location, with their
density overlapping or close to that of the cerebrospinal
fluid. The sensitivity and the Dice similarity coefficients of
the algorithm were 0.74 and 0.80, compared to those by Liu
et al. (2010) of 0.83 and 0.69. The calculations took less than
30 s. Thus, the dedicated algorithm runs 3 times longer than
that by Liu et al. (2010) and both have a comparable
sensitivity and dice similarity coefficient. However, other
metrics show a substantial advantage of the stroke dedicated
algorithm by Poh et al. (2012) over the standard algorithm by
Liu et al. (2010). Namely, conformity was 0.45 for the dedi-
cated algorithm versus −3.09 for the standard algorithm,

where a negative value in conformity means that the total
number of erroneous voxels is greater than the total number
of correctly segmented voxels. Sensibility was 0.88 for the
dedicated algorithm versus −2.40 for the standard algorithm,
where a negative value in sensibility means that the total num-
ber of over segmented voxels is greater than the total number
of voxels in the ground truth.

These methods proposed for the atlas-assisted stroke diag-
nosis in the ER are novel, as confirmed by the US patents
granted; namely Patent 2 (MSP-KL calculation), Patent 4 (im-
age density distribution calculation), Patents 9, 11, 15 (related
to pathology detection), Patent 16 (statistical landmark local-
ization), and Patent 17 (ellipse-based registration).

All the component algorithms and the prototype of the
atlas-assisted stroke diagnosis in the ER system were imple-
mented in C++. This prototype was preliminarily evaluated on
a several ischemic and hemorrhagic stroke cases providing for
each case a correct decision. Several resulting images and the
user interface along with some windows of the prototype are
presented in Fig. 2. It illustrates the results of the component
operations including the midsagittal plane extraction, segmen-
tation of the ventricular system, brain extraction with a vol-
ume rendered ischemic infarct, and atlas-to-scan mapping by
the ellipse-fittingmethod. The prototype works in three modes
selectable from the top bar of the user interface: 1) Select case
to enable the user to choose a scan for detection, 2) View to
show the selected scan and scroll images, and 3)Detect to run
the scan detection and display the report on atlas-assisted anal-
ysis with diagnosis. The generated report contains two option-
al parts: Infarct detected and Hemorrhage detected. Each part
has two sections, one with the analysis of the blood supply
territories atlas (BSTs) and the other with the analysis of the
atlas of anatomy (TTBA). For any left-right hemisphere mis-
match, information from all slices involved is displayed and
for every slice its number is shown, the list of names of the
blood supply territories or anatomic structures involved is giv-
en, and for every name the averaged values of image intensity
(scaled to 8 bits) in the corresponding ROIs in the right and
left hemispheres are provided. In addition, the user can display
the left-right ROI mismatch as a pair of intensity distribution
curves and is able to set the ROI values that discriminate
between normality and pathology by setting the differences
between the mean values, standard deviations, and peak
heights.

The prototype of the atlas-assisted treatment decision mak-
ing in ischemic stroke system employs the atlas-to-scan map-
ping algorithms whose validation was addressed above. The
novel component algorithms are for an automatic infarct seg-
mentation (Bhanu Prakash et al. 2008) and for a calculation of
the MSP in diffusion and perfusion images (Nowinski et al.
2006c).

The algorithm for infarct segmentation was validated on 57
DWI volumes with intra 5–14 mm plane resolutions. Its
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median sensitivity, specificity, and Dice similarity coefficient
were 86.34%, 99.83%, and 0.72, respectively (Bhanu Prakash
et al. 2008). The algorithm takes 3–5 s per volume.

The algorithm for calculation of the MSP in diffusion and
perfusion images was validated quantitatively on 11 DWI
scans, and 50 (10 × 5) perfusion maps including CBF, CBV,
MTT, PKHT, and TTP acquired for 11 stroke patients with
both small and large ischemic lesions. The average angular
errors were less than 1° for DWI and less than 2° for CBF and
CBV; the average distance errors measured in the worst case
(i.e., on the brain’s bounding box) were less than 2.5 mm for
DWI and less than 5 mm for CBF and CBV (Nowinski et al.
2006c). The results obtained for the other perfusions maps
(MTT, PKHT, TTP) were inferior; hence, processing of CBF
or CBV is preferred for an accurate and robust calculation of
the MSP. The calculation of the MSP takes about half a
second.

The same stroke cases with diffusion and perfusion
images were used for testing of the whole system. For

all of them, the thrombolysis conditions were successfully
calculated including the perfusion to diffusion lesion ratio
and the size of the infarct to that of the middle cerebral
artery territory (and additionally, to those of the anterior
and posterior cerebral arteries). The third condition of
thrombolysis regarding the vessel occlusion was initially
attempted to be checked by performing vessel segmenta-
tion, 3D modeling and their subsequent surface rending,
but this approach was too time consuming (an alternative
solution was presented in Patent 9). Finally, the infarct
and penumbra regions were quantified by means of the
both atlases.

These methods proposed for the atlas-assisted treatment
decision making in ischemic stroke are novel, as confirmed
by the US patents granted; namely those patents related to
atlas-scan-mapping mentioned above, and additionally
Patent 1 (infarct segmentation) and Patents 10 and 13 (specific
to atlas-based processing of diffusion and perfusion stroke
images).

Fig. 2 Atlas-assisted stroke diagnosis in the emergency room: a)
midsagittal line extracted on a sample axial unenhanced CT image; b)
ventricular system segmented in 3D along with the midsagittal plane; c)
extracted brain in 3D that is volume rendered with a clearly discernible
ischemic infarct; d) atlas to CT scan mapping by means of the ellipse-
fittingmethod (the positions of the anterior and posterior commissures are
also marked on this scan having a high slice thickness); and e) results of
atlas-assisted analysis: left) hemorrhage detection (an axial image with a
hemorrhage is shown on the left with the report for the whole brain on the

right containing the details regarding the numbers of the hemorrhagic
slices, affected blood supply territories (top) and anatomic structures
(bottom) along with the corresponding intensity values (scaled to 8 bits)
for the right and left hemispheres), center) infarct detection (an image
with a part of the report), and right) left-right ROI intensity distribution
curves with an axial image showing the infarcted areas (note a substantial
mismatch in the corresponding curves in terms of their height, mean, and
standard deviation)
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All the component algorithms and the prototype of the
atlas-assisted treatment decision making in ischemic stroke
systemwere implemented in C++. This prototype is illustrated
in Fig. 3 showing the individualized anatomic and blood sup-
ply territories atlases superimposed on a DWI image with a
delineated infarct as well as an atlas-assisted analysis with a
contribution of the anatomic structures and blood supply ter-
ritories to the infarct in terms of name, volume and percentage.
Moreover, the assessment of the ratio of the infarct to the
middle cerebral artery (MCA) territory is calculated for whole
MCA and its terminal and penetrating branches.

The prototype of the atlas-assisted treatment assessment
and outcome prediction system employs scan normalization
algorithms whose validation was addressed above. The fol-
lowing major PSA maps were created: modified Ranking
Scale (mRS) maps at day 7, 30, 90, 180 and 360, Barthel
Index (BI) maps at day 7, 30, 90, 180 and 360, NIH Stroke
Scale (NIHSS) at admission, NIHSS at day 7, Stroke (infarct)
frequency map, Age map, White blood cell count map,
Glucose ERmap, and C reactive proteinmap. Note that except
the infarct frequency maps, all the other maps were created
from textual parameters.

Prediction properties of the PSA were studied in terms of
data aggregation and data selection. The PSA was examined
for eight variants of different data aggregation schemes and
three selection variables (infarct volume, NIHSS at admission,
and NIHSS at day 7), with each variable in four ranges
resulting in (8x4x4x4) 512 instances. The outcome was pre-
dicted for 9 parameters (mRS at day 7, and mRS and BI at day
30, 90, 180, and 360). Therefore, to predict all 128 cases,
589,824 PSA instances were calculated. The prediction was
done using a leave-one-out approach, meaning that each pa-
tient was predicted based on the PSA constructed from the

remaining 127 patients (i.e., excluding the predicted patient).
Hence in total, during these analyses the cases were processed
74,907,648 times. Then, for instance, the average prediction
error (the absolute difference between the predicted and actual
values) for mRS in the grade range of [2–5] was around one
grade, i.e., 1.096 ± 0.564. In general, the PSA constrained by
two parameters (the infarct volume and NIHSS at admission)
reduced the average prediction error by a fraction of 0.796; the
use of three patient-specific parameters further lowered it by
0.538 (Nowinski et al. 2014a). Prediction takes about 8.5 s per
patients.

The method used for scan normalization employed in the
PSA construction and PSA-based prediction are novel and
they are patented as already mentioned above. In addition,
patent applications US (20,120,246,181 A1) and EU
(EP2504781 A4) have been filed on the construction and
use of the PFA for diagnosis and prediction.

The prototype of the atlas-assisted treatment assessment
and outcome prediction system was developed in C++.
The user interface of this prototype along with some results
are illustrated in Fig. 4. It shows three sample axial PSA
mRS maps at the same level corresponding to day 7, 180
and 360, as well as a PSA-based prediction. For prediction,
a suitable PSA volume is selected from the list (in this case
the Barthel Index at day 360) followed by the selection of
the patient’s ID. The selected PSA map along with the nor-
malized delineated ischemic infarct, and the outlines of the
anatomic atlas are displayed. The calculated prediction val-
ue of the selected parameter along with its actual value
(measured in the one-year time followed-up neurologic as-
sessment) are both given for comparison. In addition, the
user interface provides functions for data selection, image
manipulation, and display.

Fig. 3 Atlas-assisted treatment
decision making in ischemic
stroke: left) a DWI axial image
with a delineated infarct (in blue)
and the individualized anatomic
and blood supply territories
atlases in contour representation
superimposed on the image; right)
atlas-assisted analysis with a con-
tribution of the blood supply ter-
ritories (top) and anatomic struc-
tures (middle) to the infarct in
terms of name, volume in cm3 and
percentage as well as the assess-
ment of the ratio of the infarct to
the whole middle cerebral artery
(MCA) territory including that for
the terminal and penetrating
branches (bottom)
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Discussion

I have proposed novel concepts and methods in stroke han-
dling assisted by human brain atlases. Their novelty has also
been confirmed by numerous patents granted. The proposed
solutions are discussed here mainly from a brain atlas perspec-
tive in order to create an awareness and present a still unex-
ploited potential of human brain atlases in stroke
management.

We have employed multiple human brain atlases to handle
various problems in stroke and, to our best knowledge, our
work is the first use of human brain atlases in stroke manage-
ment. In addition, this kind of atlas use is novel, going beyond
a standard atlas-aided segmentation and labeling of
neuroimages. Atlas-assisted stroke image processing is ROI-

related and three types of ROIs are distinguished: atlas-
defined ROIs (type I), atlas-quantified ROIs (type II), and
ROIs creating an atlas (type III). An ROI can be defined either
by atlas-guided anatomy (including blood supply territories)
or scan-derived pathology. The atlas can be applied either to
define ROI or to quantify it.

There are only a few works on human brain atlases in
stroke. A stroke atlas as a collection of unregistered stroke
images was developed by Liew et al. (2018). It is called
ATLAS (Anatomical Tracings of Lesions After Stroke) and
contains 304 T1-weighted MRIs with manually segmented
lesions and metadata. It may be useful to train and test stroke
lesion segmentation algorithms in machine-learning. A
pioneering work on a population stroke atlas was done by
Bilello et al. (2006). The developed atlas contains the spatial

Fig. 4 Atlas-assisted treatment
assessment and outcome
prediction: a) examples of PSA
mRS (modified Rankin Scale)
axial maps, all at the same level
(shown in the radiologic
convention) at day 7 (left), 180
(middle) and 360 (right); note the
trends over time at the same lo-
cations demonstrating the de-
crease in intensity corresponding
to the improvement of outcomes
over time (due to the patients with
longer survival); b) user interface
of the systemwith a patient infarct
contour in blue (the examined
ROI) superimposed on a PSA BI
(Barthel Index) at day 360 axial
map along with the anatomic atlas
(left) and the prediction results
read in the ROI with the mean,
standard deviation, and 25%,
50% (BI of 95) and 75% percen-
tile values along with the actual
value of BI of 95 for this patient
(bottom-right). Note that the atlas
of anatomy facilitates anatomic
localization of the infarct on the
PSA map. Top-right: the select-
able list of the PSA maps; center-
right: the selectable list of exam-
ined patients
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distribution of acute infarcts in the human brain. It was created
from 22 subjects with manually segmented infarcts that were
subsequently registered to a common coordinate system.
Another population stroke atlas was developed by Wang
et al. (2019). This atlas was created from a much larger pop-
ulation of 793 infarct lesions of 458 patients. The infarcts were
segmented and co-registered to a standard brain space. In ad-
dition, the infarcts were clustered hierarchically. It should be
noted that these two approaches to creation of a population
stroke atlas use ROIs type III and are simple instances of the
PSA as a stroke (infarct) frequency map with averaging as an
aggregation strategy. All the above stroke atlases are examples
of research applications. Payabvash et al. (2010) carried out an
atlas-assisted analysis of 58 consecutive stroke patients with
aphasia due to first-time ischemic stroke. The authors modi-
fied the Talairach and Tournoux (1988) brain atlas in order to
subdivide large subcortical areas into sub-regions for a more
precise evaluation of different brain areas.

Here, we have considered four various, clinically-
relevant situations concerning stroke occurrence predic-
tion, diagnosis in the ER, decision support in thromboly-
sis and outcome prediction, and presented the preliminary
solutions in a form of developed stroke prototypes. It
should be noted that the algorithms devised to support
the atlas use along with the systems developed as proof-
of-concepts serve as an illustration of atlas potential.
Below we discuss this preliminary work in terms of ad-
vantages, limitations, continuous enhancement, as well as
potential extensions and future directions.

Potential advantages. The use of brain atlases in stroke has
many potential advantages, such as an automated and robust
handling, speed of processing, wide range of applications, and
quantitative assessment.

Atlas-related operations are automated, including atlas to
scanmapping and atlas-assisted analysis. These operations are
also very rapid making them suitable to handle time-sensitive
situations, such as stroke. For instance, the atlas to scan map-
ping by using the FTT takes less than 5 s (Nowinski et al.
2006b) and by employing the ellipse-based method able to
handle sparse and multi-modals scans less than 15 s (Volkau
et al. 2012). The atlases are color-coded so atlas-assisted anal-
ysis is fast, primary limited to traversing and comparing re-
gions of a similar color. The PSA-based prediction requires
only reading of values within a given contour from a selected
PSA map (or maps). The range of atlas applications is broad
and covers here prediction, diagnosis and treatment. Though
not addressed in this analysis, the brain atlas is also a useful
education aid in stroke, and for this purpose we have devel-
oped the Stroke Atlas as a 3D interactive tool correlating ce-
rebrovascular pathology with the underlying neuroanatomy
and the resulting neurological deficits (Nowinski and Chua
2013) (this stroke atlas was also trial licensed to the World
Stroke Organization).

The atlas-assisted stroke occurrence prediction approach
provides a wealth of measurable information, much more
that is required by the traditional qualitative Fazekas scale.
This information includes the number and size of WMH le-
sions, their spatial relationships with respect to the ventricular
system, as well as their locations and contribution to the un-
derlying anatomy including white matter tracts. To make this
information clinically useful, it has to be linked to some quan-
titative scale. We see at least three avenues of development.
First is to make the Fazekas scale quantitative by taking into
account the number and size of WMH lesions. Second is to
increase the granularity of the Fazekas scale, for instance, by
introducing 10 quantitative grades. And third is to propose a
new scale, for instance, by correlating locations and size of
WMH lesions with the underlying white matter tracts obtained
from the atlas. Any avenue taken, from the first, the easiest, to
the last, most advanced, require much more effort. At this
stage, only a preliminary enabling tool is available opening
new possibilities.

The system for atlas-assisted stroke diagnosis in the ER has
been designed to rapidly detect stroke and distinguish type of
stroke (ischemic, hemorrhagic, or hemorrhagic transforma-
tion). It also provides lesion localization and its location with
respect to anatomy and blood supply territories. The applica-
tion potentially facilitates interpretation of stroke images by
non-neuroradiologists in the ER (which occurs frequently be-
fore being viewed by stroke neuroradiologists) and may in-
crease their confidence of interpretation, while enhancing a
triage.

The system for atlas-assisted treatment decision making in
ischemic stroke is able to calculate thrombolytic conditions. It
contains two atlas-related components: calculation of the in-
farct to theMCA territory ratio and atlas-assisted analysis. The
ratio is calculated rapidly and automatically in 3D. Note that
the non-atlas determination of the MCA territory in 3D is not
easy as practically it can be assessed on a single or a few
images only. In fact this stroke system calculates also the other
two ratios: the infarct to the territories of the anterior cerebral
and posterior cerebral arteries. These two other ratios have not
been applied in clinical practice yet.

The atlases make a critical difference enabling a localiza-
tion analysis of infarct and penumbra, which at present is not a
part of the standard procedure. The closest approach in the
current state-of-the-art is the ASPECTS (Alberta Stroke
Program early CT Score) aiming to standardize the detection
and reporting of ischemic stroke by visually identifying an
ischemic hypodensity on the MCA territory divided into ten
regions on two axial CT slices (Barber et al. 2000). Our ap-
proach is conceptually superior because it quantifies both the
infarct and penumbra on MR or CT by means of numerous
atlas-derived regions in 3D, meaning that on all the slices or
maps. Its another advantage is a possibility of a quick assess-
ment of what functions are already lost and what are at risk by
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employing that version of the anatomy atlas which provides a
functional description of structures (Nowinski and
Thirunavuukarasuu 2004).

The main advantage of the PSA is probably its generality
and flexibility. The PSA, or largely the PBDA whose con-
struction by data aggregation mimics human experience, is a
novel concept with a wide scope of potential applications. The
prediction accuracy of the PSA increases with the number of
cases used to construct it (Nowinski et al. 2014a). The PSA
can easily be extended with new cases to increase its power
and this extension can be done simply and rapidly in an incre-
mental way provided that the averaging is used for data ag-
gregation. However, for other aggregation approaches, the
complete PSA has to be recalculated from all the previous
and new cases. Another way to increase the power of the
PSA is to employ a dedicated, limited and constrained PSA
instance by selecting relevant parameters, determining their
values or ranges, and restricting the dataset used for the PSA
construction only to the cases fulfilling certain requirements.
For instance, suitable limiting parameters of a patient to be
predicted can be gender, age and its range, infarct volume and
its range, and a stroke score at admission and its range. Then,
the higher the number of limiting parameters, the lower the
average prediction error (Nowinski et al. 2014a). Additionally,
the employment of the anatomic atlas along with the PSA is
advantageous, facilitates localization of the infarct on the PSA
maps, and enables anatomic atlas-assisted analysis. A useful-
ness of aggregation of anatomic and neurologic information
for prediction was also demonstrated by Payabvash et al.
(2010) who developed a multivariate logistic regression mod-
el that could estimate the probability of early improvement in
aphasia and predict functional outcome. This prediction mod-
el employs four variables: CBF of the angular gyrus and the
lower third of the insular ribbon, proximal cerebral artery oc-
clusion on admission, and aphasia score on the admission
NIHSS examination.

Limitations. This preliminary work in progress has several
limitations in terms of employed atlases, devised methods,
developed stroke applications, and validation. The limitations
along with their proposed overcoming regarding atlases,
methods, and applications are addressed below in sections
the Continuous enhancement, and Extensions and future work.

In general, validation is difficult, if possible at all in a re-
search laboratory setting. It is a complicated, costly, tedious,
and time-consuming process which additionally requires mas-
sive, heterogeneous and usually expensive data. Validation
can be performed at least at three levels: research validation,
clinical validation, and regulatory (FDA) validation. For in-
stance, the cost of regulatory validation of brain-related de-
vices is enormous, in a range of $100–200 million (BRAIN
Working Group 2014).

The developed stroke systems are merely proofs of concept
rather than clinically validated CAD (computer-aided

diagnosis/detection/decision) systems. Consequently, a sys-
tem validation and performance measurement in clinical set-
ting is not available despite the fact that some of these stroke
systems have been installed in multiple centers worldwide, yet
with no reports about their clinical performance.

The methods and component algorithms employed in these
stroke applications have been validated and their performance
measured with numerous diverse clinical data, including the
calculation of the midsagittal plane, calculation of point land-
marks, fast atlas-to-scan mapping, and extraction of the ven-
tricular system. Quite frequently these validations resulted in
new, enhanced solutions (as discussed in the Continuous en-
hancement section).

In order to generate gold standards (ground truths) for al-
gorithm validation, an accurate contouring of infarcts, penum-
bras and structures (like the cerebral ventricles) as well as the
setting of point and distributed landmarks on numerous, var-
iable scans and maps are required. Gold standard setting is
time-consuming, demands attention to details, and involves
the use of dedicated tools which we designed and developed.
Besides the development of the dedicated validation tools, we
have employed a contour editor (developed originally for atlas
creation) enabling raters to accurately generate zoomed con-
tours on axial, coronal and sagittal planes, and correlate them
with the corresponding 3D polygonal models (Nowinski et al.
2012a). For instance, the FTT was validated on 215 MR
datasets with a variable 0.8–3.5 mm slice thickness, requiring
for each scan to set the ground truth for the midsagittal plane
as a sequence of midsagittal lines on individual slices, anterior
and posterior commissures and six cortical landmarks, all
these resulting in the manually specifying of thousands of
midsagittal lines and 1720 points in 3D (Nowinski et al.
2006b).

Some validations required a time consuming and tedious
acquisition, selection and checking of suitable data. For in-
stance, in order to build the initial version of the PSA, the data
of more than 700 stroke patients were analyzed, however, to
create the actual atlas only 128 of themwere selected and used
with a complete set of 170 parameters with one-year follow up
and without other pathologies such as WMHs or hemorrhagic
transformations.

Based on our experience, I believe that the problem of a
successful completing of the validation of the presented stroke
solutions is strictly linked to that of “crossing the chasm”, as
research funding is usually limited. We tried to cross three
times. In one case, a group of venture capitalists experienced
in medical market from the West Coast was eager to acquire
our stroke technology and start a company. However, there
was a disagreement between them and my funding agency
about the value of technology which blocked the conclusion
of the deal. In another case, a venture capitalist from the East
Coast signed a contract with my funding agency and formed a
stroke company in the US. However, he was unable to secure
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funding from other investors to do clinical trials. In both cases,
major USmedical universities/hospitals were involved as clin-
ical research partners. In addition, we negotiated with one of
the companies that trial licensed one of our stroke prototypes,
and the company was interested to acquire it provided that we
do an FDA clearance first.

Continuous enhancement. This work has been continu-
ously enhanced in terms of concepts, methods, component
algorithms, and brain atlases.

We have developed several methods for mapping of atlases
to scans, including (Xu and Nowinski 2001; Liu et al. 2009;
Nowinski et al. 2006b; Volkau et al. 2012). The initial devel-
opment was guided by applications in stereotactic and func-
tional neurosurgery (Nowinski 2009). Although we have de-
vised non-rigid methods for mapping of the employed here
atlas of anatomy to scans, such as (Xu and Nowinski 2001;
Liu et al. 2009 including Patent 8), we decided to use in stroke
applications very fast and conceptually simple methods that
are also potentially understandable to clinicians, including the
FTT (Nowinski et al. 2006b) and the ellipse-based fitting
method (Volkau et al. 2012). The FTT requires 5 s only but
it was devised for MR scans. Therefore, the FTTwas supple-
mented with the ellipse-based fitting method, although
performing three times longer but being modality
independent.

The component algorithms employed in the stroke applica-
tions also have been continuously enhanced, including the
calculation of the midsagittal plane, calculation of landmarks
for atlas-to-scan mapping, and extraction of the ventricular
system. Multiple versions of the critical component algo-
rithms have been developed to enable their performance
across multiple modalities and pulse sequences as well as to
handle wide and typical ranges of parameters.

The calculation of the midsagittal plane is often the first
step in stroke image handling whose accuracy is critical, es-
pecially in the left to right comparison for pathology detection
and for atlas-to-scan registration. We devised four algorithms
for a fast, robust and accurate calculation of the midsagittal
plane to accommodate to various modalities, pulse sequences
and parameter ranges, namely, for MRI (Hu and Nowinski
2003), morphologic and non-morphologic images (Volkau
et al. 2006a), DWI and perfusion maps (Nowinski et al.
2006c), and CT with a large head tilt (Puspitasari et al.
2009). The development of new algorithms was often driven
by validation on heterogeneous, clinical data. For instance, as
unenhanced CT scans in the ER have often large head tilts, so
a suitable algorithm for the MSP extraction handling a large
head tilt and enabling comparison of the left and right hemi-
sphere structures was developed (Puspitasari et al. 2009).
Similarly the FTT, developed originally for neurosurgery
planning (Nowinski 2009) with high-resolution MR scans
where the AC and PC were clearly discernible, was not suit-
able for scans with large slice thickness and, consequently,

missing commissures. Hence, a new method based on an el-
lipse fitting was devised estimating these landmark locations
statistically (Volkau et al. 2012).

Three algorithms were developed for the extraction of the
ventricular system fromMR scans (Xia et al. 2004), CT scans
(Liu et al. 2010), and ischemic stroke CT scans (Poh et al.
2012). Making an algorithm anatomy and modality-
dependent usually causes it to be fast (e.g., below 6 s for
MR versus 10 s for CT versus 30 s for ischemic stroke CT)
but often unsuitable for new applications. Moreover, a better
performance for some specific task is usually at the expense of
a longer execution time (in this case 3 times longer for ische-
mic stroke CT).

Our brain atlases have been also continuously enhanced in
terms of content, quality, and creation of new atlases as ad-
dressed in (Nowinski 2005; Nowinski 2017a).

Extensions and future work. Future work aims to cope
with the limitations in the current four stroke applications
and to explore potential new atlas-assisted applications.

The proposed atlas-assisted stroke occurrence prediction
approach requires more efforts in terms of definition of a
new scale, atlases, and validation. As this stroke system pro-
vides a wealth of measurable information, it has to be associ-
ated to a new, manageable, quantitative, objective, more ef-
fective and useful clinical scale. The new scale has to be
linked with the outcomes and its prediction performance
assessed. A quantitative comparison of this new scale and
the Fazekas scale shall be done. As the anatomic atlas
employed so far has limited white matter tracts, a more de-
tailed atlas of brain connections shall be employed tomake the
atlas-assisted analysis more specific, such as a 2D atlas by
Mori et al. (2005) or a 3D atlas by Nowinski et al. (2012b).
Moreover, the use of probabilistic connectional atlases, such
as (Yeh et al. 2018), shall be considered. After completing this
atlas extension and a performance evaluation of the new scale,
a large population trial shall be performed to quantitatively
link this new scale with the predicted outcomes, before this
stroke system could potentially be applied prospectively for
stroke occurrence screening.

Although it has been illustrated that the system for atlas-
assisted stroke diagnosis in ER is able to rapidly detect stroke
and distinguish type of stroke, its performance is missing.
Therefore, the system sensitivity and specificity shall be deter-
mined. The detection accuracy of the atlas-assisted analysis could
potentially be increased by combining it with the stroke imaging
marker (SIM) whose overall detection accuracy was 83% exam-
ined on 576 stroke patients with unenhanced CT (Nowinski et al.
2013). Then the SIM calculation, performed originally for the
complete hemisphere, could be restricted to blood supply and
other territories making it more sensitive and specific. Another
advantage of the SIM in the ER is that the SIM-based stroke
detection also substantially outperformed novice readers and
was able to detect early infarcts (with the time after the onset of
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symptoms at acquisition not longer than 3 h) that were missed by
stroke neuroradiologists (Nowinski et al. 2013).

The system for atlas-assisted treatment decision making in
ischemic stroke is probably the most novel. However, despite
being awarded at several clinical meetings, and most frequent-
ly trial licensed to companies such as Philips and Siemens and
numerous hospitals worldwide, its clinical validation has not
been completed. Its performance shall be compared with that
of the ASPECTS scale, which may be a turning point in its
clinical acceptance. Moreover, a finer parcellation of the atlas
of blood supply territories could improve an atlas-assisted
analysis. An automatic delineation of the penumbra shall also
be included. Finally, more advanced brain atlases shall be
employed in terms of population, specimen age range span,
and age appropriateness, such as the atlas developed by Liang
et al. (2015) that contains a large number of 2020 specimens
whose age spans from 20 to 75 years at 5 year interval.

In order to make the PSA useful clinically, and in particular
to be able to generate dedicated PSA versions with a suitable
statistical power, probably tens of thousands of cases shall be
employed (in contrast to the current 128 cases selected from
more than 700 patients). To test the performance of the PSA,
about 75 millions of combinations resulting from the current
number of cases as well as various situations and ROI aggre-
gation approaches were analyzed (Nowinski et al. 2014a).
This number would escalate dramatically should the number
of cases be drastically increased.

Similarly, the PSA can also be created for hemorrhagic
stroke, although the scan normalization will be more demand-
ing because of substantial anatomical distortions caused by
hemorrhages of variable size, shape and location (then, for
instance, a fast method of atlas-to-scan registration for brain
tumors causing mass effect could be attempted (Nowinski and
Belov 2005)). A suitable environment for the creation of the
hemorrhagic PSA could be the hemorrhagic stroke CAD
(Nowinski et al. 2014b) which provides clot segmentation,
quantification, and visualization. The system has been devel-
oped to handle intraventricular hemorrhagic stroke cases from
the CLEAR III Interventricular Hemorrhage Clinical Trial
[URL, CLEAR 2020] and intracerebral hemorrhagic stroke
cases from the MISTIE III Clinical Trial (Minimally
Invasive Surgery Plus rt-PA for Intracerebral Hemorrhage
Evacuation) [URL, MISTIE 2020]. The CLEAR and
MISTIE are international stroke phase III multicenter clinical
trials with multi-million funding that acquire imaging data and
functional outcomes defined with the modified Rankin Scale.
The wealth of data, including scans, segmented hemorrhages
and long term functional outcomes, acquired by the MISTIE
and CLEAR potentially enable the construction of
a hemorrhagic PSA. Then, the hemorrhagic CAD could also
be extended with PSA-based outcome prediction capabilities.

A natural extension of this work is a combination of these
four stroke applications into a single stroke suite, a sort of

pipeline for stroke occurrence screening, detection, treatment,
and outcome prediction. Moreover, the atlas-based ap-
proaches can be combined with other methods, such as artifi-
cial intelligence besides advanced image processing and
analysis.

In summary, we have presented novel concepts and
methods in stroke management by employing multiple human
brain atlases applied in a new way. We have also addressed a
potential usefulness of and summarized our experience in
using various brain atlases for stroke prediction, diagnosis
and treatment.

The method employs three brain atlases: atlas of anatomy,
atlas of blood supply territories, and probabilistic stroke atlas
(which is a special case of a probabilistic brain damage atlas).
It rapidly superimposes an atlas to a scan or perfusionmap and
provides atlas-assisted scan processing. An atlas-to-scan map-
ping is application-dependent and handles certain regions of
interest (ROIs) in the scan or map. An ROI can be defined
either by atlas-guided anatomy (including blood supply terri-
tories) or scan-derived pathology. The atlas can be applied
either to define an ROI or to quantify it. Three situations of
an ROI employment have been considered and, consequently,
three types of ROIs distinguished: atlas-defined ROIs (type I),
atlas-quantified ROIs (type II), and ROIs creating an atlas
(type III).

An atlas potential has been illustrated in four atlas-assisted
applications for stroke occurrence prediction and screening
(based on type II ROIs), rapid and automatic stroke diagnosis
in the ER (based on type I ROIs), quantitative decision support
in thrombolysis in ischemic stroke (based on type II ROIs),
and stroke outcome prediction and treatment assessment (with
type III ROIs employed for atlas creation and type II ROIs
used in prediction).

The application of brain atlases in stroke has many poten-
tial advantages, including an automated and robust handling,
speed of processing, wide range of applications, and quantita-
tive assessment.

Future directions are determined in terms of atlases,
methods, validation, and stroke applications. Further exten-
sive work is needed to enhance the developed methods and
prototypes, clinically validate the proposed solutions, and to
introduce them to clinical practice.
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Appendix: Related US patents granted
in neuroimage processing, brain atlases
and stroke (out of total 71 patents granted
and 68 pending)

1. Bhanu Prakash KN, Gupta V, Nowinski WL:
Segmenting infarct in diffusion-weighted imaging
volumes. US Patent No.: US 8125223 B2, Date of
Patent: Feb. 28, 2012. https://patents.google.com/
patent/US8125223B2

2. Bhanu Prakash K N, Volkov I, Nowinski WL: Locating
a mid-sagittal plane. US Patent No.: US 7822,456 B2,
Date of Patent : Oct . 26, 2010. ht tp : / /www.
freepatentsonline.com/7822456.html

3. Bhanu Prakash K N, Nowinski WL: Automatic identifi-
cation of the anterior and posterior commissure
landmarks. US Patent No. US7,783,090 B2 granted on
24 Aug. 2010; www.freepatentsonline.com/7783090.
html

4. Gupta V, Nowinski WL: Method and system for
segmenting a brain image. US Patent No.: US
8,831,328 B2, Date of Patent: Sep. 9, 2014. https://
patents.google.com/patent/US8831328B2

5. Gupta V, Bhanu Prakash KN, NowinskiWL:Method for
identifying a pathological region of a scan, such as an
ischemic stroke region of an MRI scan. US Patent No.:
US 8,369,598 B2, Date of Patent: Feb 5, 2013. https://
patents.google.com/patent/US8369598B2

6. Hu Q, Nowinski WL: Automated method for identifying
landmarks within an image of the brain. US Patent No.
US 7,715,607 B2 granted on 11 May 2010; www.
freepatentsonline.com/7715607.html

7. Hu Q, Nowinski WL: Method and apparatus for deter-
mining symmetry in 2D and 3D images. US Patent No.:
7,409,085 B2, Date of Patent: 5 August 2008. https://
patents.google.com/patent/US7409085B2

8. Liu JM, Huang S, NowinskiWL:Method and apparatus
for registration of an atlas to an image. US Patent No.:
US 8,687,917 B2, Date of Patent: Apr. 1, 2014. https://
patents.google.com/patent/US8687917B2

9. Nowinski WL: Detection and localization of vascular
occlusion from angiography data. US patent no. US
8,050,475 granted on 1 Nov 2011. https://patents.
google.com/patent/US8050475B2

10. Nowinski WL, Beauchamp N: Superimposing brain at-
las images and brain images with delineation of infarct
and penumbra for stroke diagnosis. US patent No.: US
8,019,142 B2, Date of Patent: Sep 13, 2011. https://
patents.google.com/patent/US8019142B2

11. Nowinski WL, Hu Q:Method and apparatus for identi-
fying pathology in brain images. US Patent No.: US
7,889,895 B2, Date of Patent: Feb. 15, 2011. https://
patents.google.com/patent/US7889895B2

12. Nowinski WL, Thirunavuukarasuu A: Method and ap-
paratus for processing medical images. US patent No.
7646898 B1, Date of Patent: 12 Jan 2010. https://patents.
google.com/patent/US7646898B1

13. Nowinski WL, Bhanu Prakash KN, Volkau I,
Ananthasubramaniam A: Method and apparatus for
atlas-assisted interpretation of magnetic resonance dif-
fusion and perfusion images. US patent No.: US
7,783,132 B2, Date of Patent: 24 August 2010. https://
patents.google.com/patent/US7783132B2

14. Nowinski WL, Xia Y, Aziz A, Hu Q:Method and appa-
ratus for extracting cerebral ventricular system from
images. US Patent No.: US 7,756,306 B2, Date of
Patent: Jul. 13, 2010. http://www.freepatentsonline.
com/7756306.html

15. Volkau I, Nowinski WL: Method and apparatus for de-
termining asymmetry in an image. US Patent No.: U
S7,805,001 B2, Date of Patent: 28 Sep 2010. https://
patents.google.com/patent/US7805001B2

16. Volkau I, Bhanu Prakash KN, Ng TT, Gupta V,
Nowinski WL: Localization of brain landmarks such
as the anterior and posterior commissures based on
geometrical fitting. US Patent No.: US8,045,775 B2,
Date of Patent: 25 Oct 2011. https://patents.google.
com/patent/US8045775B2

17. Volkau I, Bhanu Prakash KN, Ng TT, Gupta V,
Nowinski WL: Registering brain images by aligning
reference ellipses. US Patent No.: US 8,311,359 B2,
Date of Patent: Nov. 13, 2012. https://patents.google.
com/patent/US8311359B2

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

565Neuroinform (2020) 18:549–567

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


References

Amunts, K., Hawrylycz, M. J., Van Essen, D. C., Van Horn, J. D., Harel,
N., Poline, J. B., De Martino, F., Bjaalie, J. G., Dehaene-Lambertz,
G., Dehaene, S., Valdes-Sosa, P., Thirion, B., Zilles, K., Hill, S. L.,
Abrams, M. B., Tass, P. A., Vanduffel, E. A. C., & Eickhoff, S. B.
(2014). Interoperable atlases of the human brain. Neuroimage, 99,
525–532.

Barber, P. A., Demchuk, A. M., Zhang, J., & Buchan, A. M. (2000).
Validity and reliability of a quantitative computed tomography score
in predicting outcome of hyperacute stroke before thrombolytic ther-
apy. ASPECTS study group. Alberta stroke Programme early CT
score. Lancet., 355(9216), 1670–1674.

Bhanu Prakash, K. N., Hu, Q., Aziz, A., &Nowinski,W. L. (2006). Rapid
and automatic identification of the anterior and posterior commis-
sure point landmarks in MR volumetric neuroimages. Acad Radiol,
13(1), 36–54.

Bhanu Prakash, K. N., Gupta, V., Hu, J., & Nowinski, W. L. (2008).
Automatic processing of diffusion-weighted ischemic stroke images
based on divergence measures: Slice and hemisphere identification,
and stroke region segmentation. Int J Comput Assist Radiol Surg, 3,
559–570.

Bilello, M., Lao, Z., Krejza, J., Hillis, A. E., & Herskovits, E. H. (2006).
Statistical atlas of acute stroke from magnetic resonance diffusion-
weighted-images of the brain. Neuroinformatics., 4(3), 235–242.

BRAIN Working Group. BRAIN 2025. A Scientific Vision. NIH 2014;
https://www.braininitiative.nih.gov/pdf/BRAIN2025_508C.pdf
(accessed 7 Feb 2020).

Brown, D. L., Lisabeth, L. D., Garcia, N. M., et al. (2004). Emergency
department evaluation of ischemic stroke and TIA: The BASIC
project. Neurology., 63, 2250–2254.

Chalela, J. A., Kidwell, C. S., Nentwich, L. M., Luby, M., Butman, J. A.,
Demchuk, A.M., Hill, M. D., Patronas, N., Latour, L., &Warach, S.
(2007). Magnetic resonance imaging and computed tomography in
emergency assessment of patients with suspected acute stroke: A
prospective comparison. Lancet., 369, 293–298.

Evans, A. C., Janke, A. L., Collins, D. L., & Baillet, S. (2012). Brain
templates and atlases. Neuroimage, 62(2), 911–922.

Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H. I., & Zimmerman, R. A.
(1987). MR signal abnormalities at 1.5 T in Alzheimer’s dementia
and normal aging. Am J Roentgenol, 149(2), 351–356.

Gupta, V., Ambrosius, W., Qian, G., Blazejewska, A., Kazmierski, R.,
Urbanik, A., & Nowinski, W. L. (2010). Automatic segmentation of
cerebrospinal fluid, white and gray matter in unenhanced computed
tomography images. Acad Radiol, 17(11), 1350–1358.

HackeW, Donnan G, Fieschi C, KasteM, von Kummer R, Broderick J. P,
Brott T, FrankelM,Grotta J. C, Haley EC Jr, Kwiatkowski T, Levine
S. R, Lewandowski C, LuM, Lyden P, Marler J. R, Patel S, Tilley B.
C, Albers G, Bluhmki E, Wilhelm M, Hamilton S, ATLANTIS
Trials Investigators, ECASS Trials Investigators, NINDS rt-PA
Study Group Investigators Association of outcome with early stroke
treatment: Pooled analysis of ATLANTIS, ECASS and NINDS rt-
PA stroke trials. Lancet 2004363:768–774

Hu, Q., & Nowinski, W. L. (2003). A rapid algorithm for robust and
automatic extraction of the midsagittal plane of the human cerebrum
from neuroimages based on local symmetry and outlier removal.
NeuroImage, 20(4), 2154–2166.

Hu, Q., Qian, G., & Nowinski,W. L. (2005). Fast, accurate and automatic
extraction of the modified Talairach cortical landmarks from MR
images. Magn Reson Med, 53, 970–976.

Kim, G. M., Park, K. Y., Avery, R., Helenius, J., Rost, N., Rosand, J.,
Rosen, B., & Ay, H. (2014 Feb). Extensive leukoaraiosis is associ-
ated with high early risk of recurrence after ischemic stroke. Stroke.,
45(2), 479–485.

Liang, P., Shi, L., Chen, N., Luo, Y., Wang, X., Liu, K., Mok, V. C., Chu,
W. C., Wang, D., & Li, K. (2015). Construction of brain atlases
based on a multi-center MRI dataset of 2020 Chinese adults.
Science Reporter, 5, 18216. https://doi.org/10.1038/srep18216.

Liew S. L, Anglin J. M, Banks N.W, SondagM, Ito K. L, KimH, Chan J,
Ito J, Jung C, Khoshab N (2), Lefebvre S, Nakamura W, Saldana D,
Schmiesing A, Tran C, Vo D, Ard T, Heydari P, Kim B, Aziz-Zadeh
L, Cramer S. C, Liu J, Soekadar S, Nordvik J. E,Westlye L. T,Wang
J, Winstein C, Yu C, Ai L, Koo B, Craddock R. C, Milham M,
LakichM, Pienta A, StroudA. A large, open source dataset of stroke
anatomical brain images and manual lesion. Earth System Science
Data . 2018;5:180011. doi: https://doi.org/10.1038/sdata.2018.11.

Liu, J., Huang, S., & Nowinski, W. L. (2009). Registration of brain atlas
to MR images using topology preserving front propagation. J Signal
Process, 55, 209–216.

Liu, J., Huang, S., Volkau, I., Ambrosius, W., Lee, L. C., & Nowinski, W.
L. (2010). Automatic model-guided segmentation of the human
brain ventricular system from CT images. Acad Radiol, 17(6),
718–726.

Lövblad, K. O., & Baird, A. E. (2010). Computed tomography in acute
ischemic stroke. Neuroradiology., 52, 175–187.

Mohr J. P, Choi D. W, Grotta J. G, Weir B, Wolf P. A. Stroke pathophys-
iology, diagnosis, and management. 4th Edition. Churchill
Livingstone, Philadelphia, 2004.

Moran, C., Phan, T. G., & Srikanth, V. K. (2012). Cerebral small vessel
disease: A review of clinical, radiological, and histopathological
phenotypes. Int J Stroke, 7(1), 36–46.

Mori S, Wakana S, van Zijl P. C. M, Nagae-Poetscher L. M. MRI atlas of
the human white matter. Elsevier, Amsterdam 2005.

Nowinski, W. L. (2001). Modified Talairach landmarks. Acta
Neurochirurgica, 143(10), 1045–1057.

Nowinski, W. L. (2005). The Cerefy brain atlases: Continuous enhance-
ment of the electronic Talairach-Tournoux brain atlas.
Neuroinformatics, 3(4), 293–300.

Nowinski W. L: Anatomical and probabilistic functional atlases in stereo-
tactic and functional neurosurgery. In: Textbook of Stereotactic and
Functional Neurosurgery (eds. Lozano A, Gildenberg P, Tasker R),
2ed edition. Springer, Berlin 2009:395–441.

Nowinski, W. L. (2016). Usefulness of brain atlases in neuroradiology:
Current status and future potential. Neuroradiol J, 29(4), 260–268.

Nowinski, W. L. (2017a). Human brain atlasing: Past, present and future.
Neuroradiol J, 30(6), 504–519.

Nowinski, W. L. (2017b). Computational and mathematical methods in
brain atlasing. Neuroradiol J, 30(6), 520–534.

Nowinski W. L, Belov D. Towards atlas-assisted automatic interpretation
of MRI morphological brain scans in the presence of tumor.
Academic Radiology 2005 Aug;12(8):1049–1057 (Erratum
2005;12(10):1355).

Nowinski, W. L., & Bhanuprakash, K. N. (2005). Dorso-ventral exten-
sion of the Talairach transformation and its automatic calculation for
MR Neuroimages. J Comp Assisted Tomogr, 29(6), 863–879.

Nowinski, W. L., & Chua, B. C. (2013). Stroke atlas: A 3D interactive
tool correlating cerebrovascular pathology with underlying neuro-
anatomy and resulting neurological deficits. Neuroradiol J, 26(1),
56–65.

Nowinski W. L, Thirunavuukarasuu A. The Cerefy clinical brain atlas.
Thieme, New York, 2004.

Nowinski, W. L., Fang, A., Nguyen, B. T., Raphel, J. K., Jagannathan, L.,
Raghavan, R., Bryan, R. N., & Miller, G. (1997). Multiple brain
atlas database and atlas-based neuroimaging system. Computer
Aided Surgery, 2(1), 42–66.

Nowinski, W. L., Qian, G., Bhanu Prakash, K. N., Thirunavuukarasuu,
A., Hu, Q. M., Ivanov, N., Parimal, A. S., Runge, V. M., &
Beauchamp, N. J. (2006a). Analysis of ischemic stroke MR images
by means of brain atlases of anatomy and blood supply territories.
Acad Radiol, 13(8), 1025–1034.

566 Neuroinform (2020) 18:549–567

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/srep18216
https://doi.org/10.1038/sdata.2018.11


Nowinski, W. L., Qian, G., Bhanu Prakash, K. N., Hu, Q., & Aziz, A.
(2006b). Fast Talairach transformation for magnetic resonance
neuroimages. J Comput Assist Tomogr, 30(4), 629–641.

Now in sk i , W. L . , Bhanu P r ak a sh , K . N . , Vo l k au , I . ,
Ananthasubramaniam, A., & Beauchamp, N. J. (2006c). Rapid
and automatic calculation of the midsagittal plane in magnetic res-
onance diffusion and perfusion images. Acad Radiol, 13(5), 652–
663.

Nowinski, W. L., Qian, G., Bhanu Prakash, K. N., et al. (2008). Stroke
Suite: CAD systems for acute ischemic stroke, hemorrhagic stroke,
and stroke in ER. In: Medical Imaging and Informatics. In X. Gao,
H. Muller, M. Loomers, R. Comley, & S. Luo (Eds.), Lecture Notes
in Computer Science (Vol. 4987, pp. 377–386). https://doi.org/10.
1007/978-3-540-79490-5_44.

Nowinski, W. L., Chua, B. C., Qian, G. Y., & Nowinska, N. G. (2012a).
The human brain in 1700 pieces: design and development of a three-
dimensional, interactive and reference atlas. Journal of
Neuroscience Methods, 15;204(1), 44–60.

Nowinski, W. L., Chua, B. C., Yang, G. L., & Qian, G. Y. (2012b). Three-
dimensional interactive human brain atlas of white matter tracts.
Neuroinformatics, 10(1), 33–55.

Nowinski, W. L., Gupta, V., Qian, G. Y., He, J., Poh, L. E., Ambrosius,
W., Chrzan, R. M., Polonara, G., Mazzoni, C., Mol, M., Salvolini,
L., Walecki, J., Salvolini, U., Urbanik, A., & Kazmierski, R. (2013).
Automatic detection, localization and volume estimation of ische-
mic infarcts in non-contrast CT scans: Method and preliminary re-
sults. Investig Radiol, 48(9), 661–670.

Nowinski, W. L., Gupta, V., Qian, G. Y., Ambrosius, W., & Kazmierski,
R. (2014a). Population-based stroke atlas for outcome prediction:
Method and preliminary results for ischemic stroke from CT. PLoS
One, 9(8), e102048. https://doi.org/10.1371/journal.pone.0102048
eCollection 2014.

Nowinski, W. L., Qian, G. Y., & Hanley, D. F. (2014b). A CAD system
for hemorrhagic stroke. Neuroradiol J, 27(4), 409–416.

Pantoni, L. (2010). Cerebral small vessel disease: From pathogenesis and
clinical characteristics to therapeutic challenges. Lancet Neurology,
9(7), 689–701.

Parsons, M. W., & Davis, S. M. (2006). Therapeutic impact of MRI in
acute stroke. In R. von Kummer & T. Back (Eds.), Magnetic reso-
nance imaging in ischemic stroke (pp. 23–40). Berlin: Springer.

Payabvash, S., Kamalian, S., Fung, S.,Wang, Y., Passanese, J., Kamalian,
S., Souza, L. C., Kemmling, A., Harris, G. J., Halpern, E. F.,
González, R. G., Furie, K. L., & Lev, M. H. (2010). Predicting
language improvement in acute stroke patients presenting with
aphasia: A multivariate logistic model using location-weighted at-
las-based analysis of admission CT perfusion scans. AJNR.
American Journal of Neuroradiology, 31(9), 1661–1668.

Poh, L. E., Gupta, V., Johnson, A., Kazmierski, R., & Nowinski, W. L.
(2012). Automatic segmentation of ventricular CSF from ischemic
stroke CT images. Neuroinformatics, 10(2), 159–172.

Puspitasari, F., Volkau, I., Ambrosius, W., & Nowinski, W. L. (2009).
Robust calculation of the midsagittal plane in CT scans using the
Kullback-Leibler’s measure. International Journal of Computer
Assisted Radiology and Surgery, 4(6), 535–547.

Sadananthan, S. A., Zheng, W., Chee, M. W. L., & Zagorodnov, V.
(2010). Skull stripping using graph cuts.NeuroImage., 49, 225–239.

Talairach, J., Tournoux, P. (1988). Co-Planar Stereotactic Atlas of the
Human Brain. Stuttgart - New York: Georg Thieme Verlag/Thieme
Medical Publishers.

Toga, A.W., Thompson, P.M., Mori, S., Amunts, K., & Zilles, K. (2006).
Towards multimodal atlases of the human brain. Nature Reviews
Neuroscience, 7(12), 952–966.

URL, ARIC. https://sites.cscc.unc.edu/aric/ (accessed 7 Feb 2020).
URL, CLEAR. http://braininjuryoutcomes.com/clear-about (accessed 7

Feb 2020).
URL, MISTIE. http://braininjuryoutcomes.com/mistie-iii-about

(accessed 7 Feb 2020).
Volkau, I., Bhanu Prakash, K. N., Ananthasubramaniam, A., Aziz, A., &

Nowinski, W. L. (2006a). Extraction of the midsagittal plane from
morphological neuroimages using the Kullback-Leibler’s measure.
Medical Image Analysis, 10(6), 863–874.

Volkau, I., Bhanu Prakash, K. N., Ananthasubramaniam, A., Gupta, V.,
Aziz, A., & Nowinski, W. L. (2006b). Quantitative analysis of brain
asymmetry by using the divergence measure: Normal-pathological
brain discrimination. Academic Radiology, 13(6), 762–768.

Volkau, I., Puspitasari, F., Bhanu Prakash, K. N., TT., N. G., Gupta, V., &
Nowinski, W. L. (2012). A simple and fast method of 3D registra-
tion and statistical landmark localization for sparse multi-modal/
time-series neuroimages based on cortex ellipse fitting.
Neuroradiol J, 25(1), 98–111.

Wang, Y., Juliano, J. M., Liew, S. L., McKinney, A. M., & Payabvash, S.
(2019). Stroke atlas of the brain: Voxel-wise density-based cluster-
ing of infarct lesions topographic distribution. Neuroimage Clin, 24,
101981. https://doi.org/10.1016/j.nicl.2019.101981.

Xia, Y., Hu, Q., & Aziz, N. W. L. (2004). A knowledge-driven algorithm
for a rapid and automatic extraction of the human cerebral ventric-
ular system from MR neuroimages. NeuroImage, 21, 269–283.

Xu, M., & Nowinski, W. L. (2001). Talairach-Tournoux brain atlas reg-
istration using a metalforming principle-based finite element meth-
od. Med Image Anal, 5(4), 271–279.

Yeh, F. C., Panesar, S., Fernandes, D., Meola, A., Yoshino, M.,
Fernandez-Miranda, J. C., Vettel, J. M., & Verstynen, T. (2018).
Population-averaged atlas of the macroscale human structural
connectome and its network topology. Neuroimage, 178, 57–68.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

567Neuroinform (2020) 18:549–567

https://doi.org/10.1007/978-3-540-79490-5_44
https://doi.org/10.1007/978-3-540-79490-5_44
https://doi.org/10.1371/journal.pone.0102048
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nicl.2019.101981

	Human Brain Atlases in Stroke Management
	Abstract
	Introduction
	Methods, Materials and Applications
	Methods
	Materials
	Atlas-Assisted Stroke Applications
	Atlas-Assisted Stroke Occurrence Prediction
	Atlas-Assisted Stroke Diagnosis in the Emergency Room
	Atlas-Assisted Treatment Decision Making in Ischemic Stroke
	Atlas-Assisted Treatment Assessment and Outcome Prediction


	Results
	Discussion
	Information Sharing Statement

	Appendix: Related US patents granted in neuroimage processing, brain atlases and stroke (out of total 71 patents granted and 68 pending)
	References


