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Years of research revealed that crosstalk extensively existed among kidney cells, cell

factors and metabolites and played an important role in the development of diabetic

kidney disease (DKD). In the last few years, single-cell RNA sequencing (scRNA-seq)

technology provided new insight into cellular heterogeneity and genetic susceptibility

regarding DKD at cell-specific level. The studies based on scRNA-seq enable a much

deeper understanding of cell-specific processes such as interaction between cells. In this

paper, we aim to review recent progress in single cell transcriptomic analyses of DKD,

particularly highlighting on intra- or extra-glomerular cell crosstalk, cellular targets and

potential therapeutic strategies for DKD.
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INTRODUCTION

Diabetic Kidney Disease (DKD) is a microvascular complication associated with type I or
type II diabetes. It has become a public issue and seriously threaten human health and
lives. As the leading single cause of end-stage renal disease (ESRD) in many countries, such
as the United States, DKD accounts for more than half of all patients enrolled in renal
replacement therapy (RRT) programs (1). Although there has been a decline in the incidence
of DKD over the past 30 years due to improved diabetes managements, the absolute risk
of renal and cardiovascular morbidity and mortality remains overwhelmingly high (2–6). A
deeper insight into the pathogenesis of DKD is required for innovative treatment strategies
to prevent, arrest, and reverse DKD. Hyperglycemia is thought to be a major factor for
diabetic complications and causes accumulation of toxic glucose derivatives (7, 8). However,
hyperglycemia alone is not sufficient to the development of DKD since about only 30%
of patients with type 1 diabetes mellitus (DM1) and 40% of patients with type 2 diabetes
mellitus (DM2) develop this microvascular complication (1, 9). Family aggregation of DKD
shown by independent familial studies in different populations suggests a genetic predisposition
to DKD (10, 11). Moreover, patients with DKD are not always present with micro/macro-
albuminuria. A large proportion of diabetic patients have declined renal function in absence of
substantial proteinuria (12). The DKD heterogeneity suggested by the aforementioned evidences
implies variant modulation of kidney function in diabetes and highlights the need for better
biomarkers to predict the progressive kidney failure in the patients without heavy proteinuria.
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Kidney is a highly complex organ consisting of about a
million nephrons in humans which is composed of more than
40 different cell types (13, 14). The need for better understanding
of the complex cell-to-cell interaction within or even beyond the
heterogeneous kidney milieu comes naturally and rationally to
reveal the complex mechanism underlying kidney organization,
function and disease. The current clinical diagnoses for renal
diseases as well as experimental researches on kidney depend
largely on morphological cell identification and their known
biomarkers. However, some important disease discriminative
and prognostic features may not be effectively captured due to
the highly operator-dependent microscopical observation and
the limited biomarkers available. A single cell transcriptional
profiling by a new set of technologies–single cell RNA-sequencing
(scRNA-seq) has emerged in the last 10 years as a powerful
approach helping to decipher complex information in cells and
organs (15, 16). Here we aim to review cell-to-cell cross talk
in DKD, particularly highlighting the latest insight gained by
scRNA-seq researches.

BRIFE INTRODUCTION OF SINGLE CELL
RNA SEQUENCING

scRNA-seq is a new set of technologies for genome wide
RNA profiling of individual cells based on whole-genome-
amplification (WGA) methods and next-generation sequencing
(NGS) technologies (17–20). Before the invention of scRNA-
seq, the genome-wide transcriptomic information primarily
came from “bulk” RNA-seq, whose data represent an average
of gene expression across individual cells and thus may
mask some transcriptional information from less representative
subpopulation. Compared with bulk RNA-seq, scRNA-seq
provides more unbiased gene expression profiles at a single-cell
resolution. The scRNA-seq methods have gained considerable
progress over the last decade while the single cell DNA
sequencing (scDNA-seq) has proven to be more challenging
than RNA due to the fact that a single cell contains
only two copies of each DNA molecule, but thousands
of copies of most RNA molecules, which result in more
technical error in scDNA-seq (15). All scRNA-seq techniques
include several common steps: single cell isolation, cell lysis
and RNA capture, reverse transcription and transcriptome
amplification, cDNA library preparation, and sequencing and
quantification. The most challenge for scRNA-seq is cell isolation
and individualized RNA capture (individual transcriptome
barcoding). Two barcoding strategies are suggested, either (1)
the addition of a cell-specific barcode to each transcriptome
following cell isolation (Microfluidics-based scRNA-seq), or
alternatively (2) the addition of a unique index combination
to each cell transcriptome without physical partitioning (e.g.,
Split-seq) (21–25) (Figure 1). Bio information from sequencing
is intensively analyzed by computer and the final result is
generation of a digital expression matrix including all detected
gene expression in each individual cell. High throughput scRNA-
seq data are processed to cluster cells and visualized by
dimensionality reduction graph. Cell types are identified by

examining known marker gene expression in each cluster and
shown by the heatmap. Gene-gene correlation analysis helps
to clarify the relationship between two marker genes within a
cluster as well as the relationship of two marker genes from
different clusters. Dynamic gene expression in single cell can
be tracked along pseudotemporal trajectory corresponding to a
biological process (e.g., development, differentiation, and disease
progression). Key regulators for the dynamic gene expression can
also be revealed by regulatory network analysis on transcription
factors (26).

APPLICATIONS OF SINGLE CELL RNA
SEQUENCING ON KIDNEY DISEASES

The knowledge regarding the transcriptional landscape of kidney
in last 20 years was achieved largely from the “bulk” RNA-seq,
which, though highly informative, is limited to describing an
average transcriptome across a cell population in a bulk renal
tissue or even in finely separated kidney compartments and thus
masks or skews signals of interest (26–29). The comprehensive
definition of cell types and states cooperating with examination
of gene expression in specific cells by scRNA-seq makes it
possible for determining specific disease-causal cells and genes.
Park et al. performed scRNA-seq on kidneys from healthy
male mice and unexpectedly identified a transitional cell type
between intercalated cells (ICs) and principal cells (PCs) in
collecting duct (30). They further demonstrated this IC-to-PC
transition is mediated by Notch signaling and the shift toward
the PC fate is the likely cause of metabolic acidosis in chronic
kidney disease (CKD) (30). Recently Liao et al. delineated a
transcriptomic map of human kidney cells basing on scRNA-
seq analysis of normal human kidney (31). Another single-cell
transcriptome profiling performed on human kidney allograft
biopsy specimens (32) helped mapping previously defined
rejection-associated genes to single cell types and revealed
paracrine signaling pathway between infiltrating leukocytes and
kidney parenchyma (33). A more recent scRNA-seq performed
on purified glomeruli from four common kidney injury models
(nephrotoxic serum nephritis, diabetes, doxorubicin toxicity
and CD2AP deficiency) generated comprehensive snapshots of
the altered genetic landscapes in multiple models (34). This
research provided new insights into kidney injuries, such as that
mesangial cell may shape the characters of the inflammation
and wound healing programs in response to distinct types of
injuries; persistent mesangial reaction may drive the chronic
decline of kidney function in many disease; Hippo pathway is
critical for podocyte repair in kidney injuries (34). In a scRNA-
seq research on isolated glomerular cells from experimental
diabetic mice, the unique trajectory analysis of scRNA-seq
revealed dynamic changes of gene expression in endothelial and
mesangial cells in diabetic mice (35). Subramanian et al. in a
research regarding kidney organoids presented a comprehensive
census of human organoids enabled by scRNA-seq in comparison
to human adult and fetal kidneys (36). This census achieved
some quantitative insight into organoid reproducibility and
the data validated the faithfulness of kidney organoids from
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FIGURE 1 | scRNA-seq experimental workflow. All scRNA-seq techniques include several common steps: enzymatic dissociation of the sample into a single cell

suspension; individualized RNA capture (individual transcriptome barcoding); reverse transcription and transcriptome amplification; cDNA library

preparation; sequencing.

four different patient-derived induced pluripotent stem cell
(iPSC) lines (AS, N1, N2, and ThF), which serve as surrogates
of human kidney tissue for the study of a broad array of
kidney diseases. The census data also addressed an issue of
organoid quality, suggesting that the elimination of off-target
cells may also benefit organoid maturity (36). In renal tumor
research field, Young et al. studied Wilms’ tumor, clear cell,
and papillary renal cell carcinoma in relation to healthy fetal,
pediatric, adolescent, and adult kidneys, as well as ureters
(37). By analyzing tumor composition with scRNA-seq, they
verified the hypothesis that Wilms’ tumor cells are aberrant
fetal cells and defined cancer-associated normal cells as well
as delineated a complex VEGF signaling circuit (38). The
power of scRNA-seq is not just to identify or catalog cells. It
can help predict treatment outcomes and guide therapy. In a
scRNA-seq research carried out by Park group, intratumoral
heterogeneity was examined between a pair of primary renal cell
carcinoma and its lung metastasis (37). The activation of drug
target pathways demonstrated considerable variability between
the primary and metastatic sites, as well as among individual
cancer cells within each site. Guided by scRNA-seq analysis,
a combinatorial regimen co-targeting two mutually exclusive
pathways for the metastatic cancer cells gained better treatment
efficacy over monotherapy (37).

More recently, Humphreys group (39) and Susztak group
(40) both profiled kidney transcriptome and chromatin
accessibility with sc/nRNA-seq and single nucleus assay
for transposase-accessible chromatin using sequencing
(snATAC-seq) respectively in their researches. These two
multi-omics researches revealed the powerful potential of joint
profiling with scRNA-seq in understanding kidney disease
and development.

CHALLENGES TO SINGLE CELL RNA
SEQUENCING ON KIDNEY RESEARCH

Despite the tremendous development of technology, scRNA-
seq research is still facing many challenges. Cell isolation and
individualized RNA capture remain to be the most challenges,
since enzymatic dissociation protocols usually compromise cell
viability and adult kidneys are relatively dense with matrix, thus
the quality of single cell suspension does not accurately reflect
the transcriptional state of each cell before dissociation (26). The
possibility of selective cell loss during tissue dissociation and
the transcriptional stress response induced by the proteolytic
process as well as RNA degradation lead to bias. This may partly
account for the failure in detecting about 25% of single kidney
cells in sequencing in the work by Park et al. (30). The failure
in detecting podocytes in transplant biopsy might be explained
by the similar reason (33). The dissociation protocols need to
be optimized responding to different kidney origins, since in
some diseases, the injured podocytes are more susceptible to
loss during enzymatic digestion whereas mesangial cells are less
effectively isolated and captured due to the increased matrix.
Cold dissociation was recommended by researchers as digestion
on ice avoided stress and achieved more abundant cell types
than warm dissociation at 37◦C (41). The strategy adopted by
Chen et al. and Karaiskos et al. in their experiments may partly
correct some dissociative artifacts by dissecting specific portion
of kidney tissues (e.g., proximal tubules or glomeruli) (42, 43).
Human biopsy from patient is another challenge to scRNA-seq
since scRNA-seq requires a relatively large number of cells for
the automatic cell separation and capture system.

Recently, single nuclear sequencing (snRNASeq) rise popular
as an alternative to scRNA-seq for its obvious advantages in
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gaining good quality nuclei from snap frozen sample while
bypassing the proteolytic process at 37◦C (44–46). But there
were researches implied T, B, and NK lymphocytes were
underrepresented in the single-nucleus libraries (40, 42, 44).
When interpreting the results of scRNA-seq, protocol-specific
biases must be taken into consideration as cryopreservation of
dissociated cells results in amajor loss of epithelial cell types while
methanol fixation maintains the cellular composition but suffers
from ambient RNA leakage (41).

In addition to the crucial step of cell dissociation, a successful
scRNA-seq is also challenged through the computational
workflow. Depending on the platform of choice, researchers
individualize their own procedural steps and choose specific
analytic tools for data processing from the step of raw counts
normalization to feature selection, dimensionality reduction,
and clustering. When inferring cell-cell communication from
transcriptomics, most of the researchers built the lists of
ligand-receptor pairs from multiple databases and literature
curation. Armingol et al. collated publicly available lists into
a single ligand-receptor pair repository to facilitate further use
and comparison (47). However, integrating multiple sources
of data is challenging and requires reconciliation of the
different ways ligand–receptor pair confidence was assessed
or how orthologs were determined (47). To identify the
genes associated with cell communication, the gene expression
matrix generated by scRNA-seq is filtered by ligand-receptor
pairs and a communication score for each ligand-receptor
pair is computed using their gene expression levels [function
f(L, R), where L and R are the expression values of the
ligand and the receptor, respectively] (47). An aggregated
communication score is also computed to estimate the overall
state of interaction between respective samples or cells and
the final results are visualized as Circos plot, network,
Heatmap, etc. (47). There may exist some false positives or
negatives in the inferred cell communication due to the data-
driven inference process, which can lead to different results
depending on the strategy adopted (47). Although some powerful
computational tools such as CellChat, CellPhoneDB, NicheNet
help to minimize the false discoveries (48–50), the findings
derived from scRNA-seq need to be validated by experimental
tests including immunohistochemistry, western blot and other
functional assessment.

INTRAGLOMERULAR CROSSTALK IN DKD

Glomerulus is a highly organized complex with two major
compartments, the glomerular capillary tuft and the so-called
Bowman’s capsule which surrounds the capillary tuft. Podocytes
wrap around the glomerular capillary with foot processes, which
are connected by slit diaphragms bridging the filtration slits.
The intraglomerular mesangial cells reside between capillary
loops in close contact with glomerular endothelium. Parietal
epithelial cells (PECs) compose the outer layer of the capsule,
directly connecting to proximal tubules. The formation and
maintenance of the glomerular filtration barrier require the
communication within glomerulus including a multidirectional

crosstalk between podocytes, mesangial cells and endothelial cells
as well as PECs (51–57). The normal glomerular structure is
shown in Figure 2 (9).

In DKD, the glomeruli are exposed to various noxious stimuli
such as high glucose, fatty acids, uric acid, growth factors,
cytokines, and hormones, which dysregulate the communication
in glomerulus.

Crosstalk Between Podocyte and
Glomerular Endothelial Cell (GEC)
Studies have shown that the severity of DKD is correlated
with endothelial dysfunction in T1DM and T2DM (58, 59).
The growth and survival of GECs are regulated by paracrine
vascular endothelial growth factor alpha signaling (VEGFA-
VEGFR) (60, 61). Podocyte VEGFA deletion results in the
development of heavy proteinuria, marked glomerulosclerosis
and glomerular cell apoptosis (62). Conversely, increased
podocyte-derived VEGFA was shown to be deleterious in
non-diabetic mice, and the injury was further exacerbated
with diabetes induction, resulting in advanced glomerulopathy
with massive proteinuria (63). Podocyte-produced angiopoietins,
functioning as endothelial cell-protective factors in diabetes,
mediate podocyte-to-endothelial crosstalk and are critical for
modulating the vascular response after the onset of diabetes
(61, 64). Angiopoietin-1 (Angpt1) is expressed by podocytes
and mesangial cells and its cognate tyrosine kinase receptor,
Tie2/Tek is expressed by the glomerular endothelial cells. Angpt1
and Angpt2 both bind to Tie2 receptor and have classically
been viewed as having opposing effects on microvascular
development, with Angpt1 stabilizing the vasculature, and
Angpt2 antagonizing these effects by binding to the Tie2 receptor
in a competitive manner (52). Endothelin-1 (Edn-1)/endothelin
receptor type A (EdnRA) axis has been demonstrated to be a
causative regulator in promoting endothelial cell dysfunction
in human biopsies and experimental model of FSGS, and is
responsible for the loss of glomerular endothelial glycocalyx
by increased degradation of glycosaminoglycans (65–67). In
diabetes, EdnRA in GECs is activated by increased circulating
Edn-1 or local Edn-1, resulting in mitochondrial stress and
endothelial dysfunction (68, 69).

A similar stressed endothelial-to-podocyte crosstalk via
mitochondrial oxidative stress in endothelial cells downstream
from Edn-1/EdnRA could also underlie segmental lesions
in DKD and highlighted a potential mechanism for the
proven renoprotective activities of EdnRA inhibitors (70, 71).
Activated protein C (APC) formation, which is regulated by
endothelial thrombomodulin, is required for podocyte viability
(72). Loss of thrombomodulin-dependent APC formation
interrupts crosstalk between the vascular compartment
and podocytes, causing glomerular apoptosis and diabetic
nephropathy (72). Krüppel-like factor 2 (KLF2) is a shear
stress-inducible transcription factor and has endoprotective
effects on podocytes. Endothelial cell knockout of KLF2
resulted in reduction of the endothelial glycocalyx and
podocyte injury in diabetes (73). Recently, a study showed
that endothelial derived exosomes, which are enriched with
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FIGURE 2 | Diagrammed normal glomerular structure.

TGF-β1 mRNA, could mediate epithelial-to-mesenchymal
transition (EMT) and induce dysfunction of podocytes in a
paracrine manner with activation of canonical Wnt/β-catenin
signaling (74).

Crosstalk Between Podocyte and Parietal
Epithelial Cell (PECs)
Enlightened by delicate balance between visceral and parietal
epithelial cells across Bowman’s space, the crosstalk between
podocytes and PECs are thought to be as equally important as
the tight interaction between endothelial cells and podocytes
across the glomerular basement membrane (GBM) (75). Indeed,
multiple studies have consistently corroborated that the depleted
podocytes can be regenerated via differentiation of the adjacent
PECs, which serve as the local progenitors of podocytes to
reconstitute the podocyte population upon glomerular injury and
podocyte loss (53, 76–83). Injured podocytes secrete heparin-
binding epidermal growth factor-like growth factor (HB-EGF),
which in turn stimulates and promotes the proliferation of
PECs while disturbs their compensatory differentiation toward
podocytes (77, 83). Another growth factor, insulin-like growth

factor-1(IGF-1) has been proved more critical for promoting the
differentiation of PECs into podocytes (83). A 3D multiscale
modeling study suggested that promoting PECs differentiation
are as equivalently important as amelioration of glomerulus stress
for podocyte regeneration (83).

Crosstalk Between Glomerular Mesangial
Cell (GMC) and Other Glomerular Cell
Types
Mesangial cells are considered to be specialized pericytes due to
their spatial intimacy with endothelial cells, thus functioning in
stabilizing vasculature, synthesizing components of the basement
membrane, and participating in controlling capillary vascular
tone (84). The tight link between the fates of mesangial cell
and endothelial cell has been well established by demonstrating
the importance of platelet-derived growth factor B (PDGF-B)
and its receptor PDGFR-β in the interaction of endothelial
and mesangial cells (84–87). Recent evidences have revealed
a significant role of exosomes as the messenger cargos for
intercellular communications within glomerulus in DKD (88).
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TABLE 1 | Summary of the mediators for intraglomerular crosstalk in DKD.

Crosstalk Ligand/Receptor Extracellular vesicles Signal pathway Pathological role in DKD Reference

Podocyte-GEC VEGFA–VEGFR2 The expression of VEGFA and VEGFR2 is

increased in early DKD, but with the loss of

podocytes at later stage of DKD, the

expression of VEGFA is also significantly

decreased. The VEGFA-VEGFR2 signaling

contribute to vascular rarefication and renal

fibrosis in the development of DKD.

(3, 60–63, 91)

Angpt1/2–Tie2 Decreased ratio of Angpt-1/Angpt-2

contributes to the development of DKD.

Angpt-1 could retard the development of

albuminuria as well as glomerular endothelial

cell proliferation, whereas Angpt-2 has the

opposite effects in DKD.

(3, 64)

Edn-1–EdnRA The expression of Edn-1 is upregulated in DKD

and combined with the receptor EdnRA, which

contributes to the mitochondrial dysfunction of

endothelial cell and podocyte apoptosis.

(64, 66–69)

SDF-1–CXCR4 SDF-1/CXCR4 axis is involved in the

pathogenesis of glomerulosclerosis in case of

type 2 diabetes. Inhibition of SDF-1significantly

reduced diffuse glomerulosclerosis and

prevented albuminuria in the diabetic model.

(70)

ANGPTL4 An upregulation of podocyte secreted Angptl4

has described in experimental diabetic animal,

which contributed to proteinuria and

endothelial injury.

(3)

GEC-Podocyte APC–PAR1/

EPCR/S1PR1

A loss of thrombomodulin-dependent protein C

activation and aggravated glomerular

apoptosis is described in diabetic mice.

Increased levels of APC formation prevent

podocyte apoptosis and downregulates

coagulation and inflammation in DKD.

(72)

KLF2 The expression of KLF2 is reduced in diabetic

kidneys and it lack aggravates endothelial and

podocyte injury in diabetic nephropathy.

(73)

eNOS A tight relation has been found between eNOS

deficiency and a podocyte-specific injury and

heavy albuminuria in advanced DKD.

(75)

Endothelial glycocalyx The damage of endothelial glycocalyx and

shear-stress is observed in early DKD, and this

damage altered organization of extracellular

matrix.

(67)

TGF-β1 The increased secretion of exosomes enriched

with TGF-β1 mRNA probably mediates the

EMT and dysfunction of podocytes through the

Wnt/β-catenin signaling pathway.

(74)

Podocyte-PEC HB-EGF–c-MET Injured podocytes secrete HB-EGF, which in

turn stimulates and promotes the proliferation

of PECs while disturbs their compensatory

differentiation toward podocytes.

(77, 82)

IGF–IGFBPs Dysregulation of the growth hormone/IGF

system is found in early DKD and is associated

with both glomerular hypertrophy and

microalbuminuria.

(82)

(Continued)
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TABLE 1 | Continued

Crosstalk Ligand/Receptor Extracellular vesicles signal pathway Pathological role in DKD Reference

GEC-GMC PDGFB–PDGFR-β PDGFR-β signaling is activated in glomeruli and

tubule of diabetic mice.

It may contribute to the progress of diabetic

nephropathy, with an increase in oxidative

stress and mesangial expansion.

(86, 87)

TGF-β1 The increased secretion of exosomes enriched

with TGF-β1 mRNA can promote α-SMA

expression, proliferation and extracellular matrix

protein overproduction in GMCs through the

TGFβ1/Smad3 signaling pathway.

(88)

GMC-GEC Integrin αvβ8 The integrin is expressed by mesangial cells,

where it sequesters TGF-β, thereby reducing

TGF-β signaling. Integrin αvβ8 and its ligand

latent TGF-β protect kidney from glomerular

dysfunction, endothelial apoptosis, and

development of proteinuria, but the role of

Integrin αvβ8 in DKD is unknown.

(91)

Podocyte-GMC VEGF The diabetic podocyte produces excessive

VEGF in the setting of low endothelial NO and

stimulates growth and proliferation of

mesangial and endothelial cells, leading to

increased extracellular matrix accumulation,

hyperfiltration, and proteinuria.

(83)

GMC-Podocyte TGF-β1 Exosomes derived from high-glucose-induced

mesangial cells induced podocyte injury

through the increased secretion of TGF-β and

TGF-β1/PI3K-Akt signaling.

(83, 89)

ERAD ERAD-associated genes are downregulated in

diabetic Glomeruli, and inhibition of ERAD

processes could leading to the suppression of

nephrin phosphorylation and podocytes injury

under diabetic conditions.

(92)

DKD, diabetic kidney disease; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2; Angpt1/2, angiopoietin-1/2; Tie2, angiopoietin 1 receptor;

Edn-1, Endothelin-1; EdnRA, Endothelin receptor A; SDF-1, stromal cell-derived factor 1; CXCR4, C-X-C Chemokine Receptor Type 4; ANGPTL4, angiopoietin-like 4; IGF, insulin-like

growth factor; IGFBP, insulin-like growth factor binding protein; HB-EGF, heparin-binding epidermal growth factor-like growth factor; c-MET, mesenchymal epithelial transition factor; APC,

Activated protein C; PAR1, Protease-activated receptor 1; Sirt1, Sirtuin 1; EPCR, endothelial protein C receptor; S1PR1, Sphingosine 1-phosphate receptor 1; TGF-β1, Transforming

growth factor β1; KLF2, Krüppel-like factor 2; eNOS, endothelial nitric oxide synthase; PDGFB, Platelet-derived growth factor B; PDGFRβ, platelet-derived growth factor receptor beta;

IL-1β, Interleukin 1β; Integrin αvβ8, Integrin alphavbeta8; CCN1, Cellular communication network factor1; INSR, insulin receptors; ERAD, ER-associated protein degradation; NMN,

nicotinamide mononucleotide; CCL2, C-C motif chemokine ligand 2; EMT, epithelial-mesenchymal transition; α-SMA, α-smooth muscle actin; GMC, glomerular mesangial cell; GEC,

glomerular endothelial cell; PEC, parietal epithelial cell.

Wu et al. demonstrated exosomes released by high glucose-
treated GECs could promote α-smooth muscle actin (α-
SMA) expression, proliferation and extracellular matrix protein
overproduction in GMCs through the TGF-β1/Smad3 signaling
pathway (89). In respect of the crosstalk between podocyte and

mesangial cell, several signaling pathways have been suggested

to be involved including VEGF, Edn-1, CCR7, and its ligand

SLC/CCL21, PDGF, connective tissue growth factor (CTGF),

hepatocyte growth factor (HGF) and TGF-β (84, 90). Among

these signalings, VEGFA and nitric oxide (NO) are considered

to play a pivotal role in driving the development of typical
DKD lesions, causing as important effects on GMCs as those on
endothelial cells. (91). The diabetic podocyte produces excessive
VEGF in the setting of low endothelial NO and stimulates growth
and proliferation of mesangial and endothelial cells, leading
to increased extracellular matrix accumulation, hyperfiltration,
and proteinuria (92). A recent research has shown that an

intraglomerular crosstalk between mesangial cells and podocytes
can inhibit physiological endoplasmic reticulum stress-associated
degradation (ERAD) and suppress the phosphorylation of
nephrin in podocytes, which thereby lead to podocyte injury
under diabetic conditions (92).

The intraglomerular crosstalks are summarized in Table 1.

Findings Based on scRNA-Seq
By comparing the differential gene expression detected by
scRNA-seq between specific cell types with the existing
ligand-receptor database (http://fantom.gsc.riken.jp/5/) or the
potential paracrine secreted ligand-to-membrane receptor pair
list obtained by using Human Protein Atlas (https://www.
proteinatlas.org/humanproteome/ secretome) and BIOGRID
v3.5.165 (https://thebiogrid.org), the researchers can identify
cell-cell crosstalk between glomerular cell types. To date,
crosstalk data from scRNA-seq research regarding DKD are
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FIGURE 3 | Intraglomerular crosstalk based on ligand-receptor pair analysis of scRNA-seq. Pairs in orange frames come from the analysis of kidney of human with

early diabetic nephropathy. Pairs in purple frames come from the analysis of kidney of diabetic mice. SLIT3, slit guidance ligand 3; ROBO2, roundabout guidance

receptor 2; NAMPT, Nicotinamide phosphoribosyltransferase; INSR, insulin receptors; CCN1, cellular communication network factor1; ITGB3/5, integrin beta3/5;

ITGAV, integrin subunit alpha-V; Tgfb3, Transforming growth factor 3; Sdc4, syndecan 4; Notch3, notch reporter 3; Tmem108, transmembrane protein 108; NRG3,

neuregulin-3; ERBB4, Erb-B2 receptor tyrosine kinase 4; Bmp2, bone morphogenetic protein 2; Bmp7, bone morphogenetic protein 7; Bmpr2, bone morphogenetic

protein receptor 2; Epha3, erythropoietin-producing hepatocellular carcinoma A3; VEGFA, vascular endothelial growth factor A; Flt1(VEGFR1, vascular endothelial

growth factor receptor 1; Kdr (VEGFR2), vascular endothelial growth factor receptor 2; Angpt, angiopoietin; Tie (Tek): angiopoietin 1 receptor; Efnb2, ephrin B2; Efna1,

ephrin A1; LTBP1, latent transforming growth factor (TGF)-beta binding protein-1; Cdh5, cadherin 5; Dag1, dystroglycan 1; Sema6a, semaphorin 6a; Itm2b, Integral

membrane protein 2B; Cdf5, cycling dof factors 5; EFEMP1, Epidermal Growth Factor-containing Fibulin-like Extracellular Matrix Protein 1; EGFR, Epidermal Growth

Factor Receptor. [Pairs in orange are summarized from Mitu et al. (93) and pairs in purple are summarized from Fu et al. (35)].

quite limited. Fu et al. performed scRNA-seq analysis on
isolated glomerular cells from induced diabetic eNOS−/− mice
(35). They analyzed a total of 644 cells (326 control and 318
diabetic) with a median of 3,457 genes per cell (3,417 control
and 3,509 diabetic). With less cells capture but much greater
sequencing depth per cell (five-fold) in a plate-based platform,
as the researchers mentioned, compared with the microdroplet-
based platform, several ligand-receptor pairs in the glomerular
cell were identified, some of which are well established (e.g.,
podocyte VEGFA-endothelial Flt1 and Kdr) while the others
are less well characterized in the glomerular homeostasis (e.g.,
mesangial Epha3-endothelial Efna1) (35). The ligand-receptor
pair analysis in scRNA-seq is unprecedentedly informative to

suggest almost all the potential direct cell-to-cell crosstalks.
Taking Fu et al.’s research for example, this analysis not only
identified the established crosstalks such as VEGFA pair, which
can be subjected to cross validation with the existing literatures,
but also guide future exploration for those less established
interaction, such as podocyte BMP7-mesangial BMPR2 pair
and mesangial Angpt4-endothelial Tie1 pair, which are implied
by insufficient literature, yet to be validated (35). Unlike the
above-mentioned crosstalk of podocyte VEGFA-endothelial Flt1
and Kdr having handful supportive evidences, the literatures in
respect of the cellular crosstalk involving bone morphogenetic
protein-7 (BMP-7) in DKD are limited. BMP-7 in podocytes
was reported possibly having protective effects against renal
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damage produced by hyperglycemia via the interaction with
receptor BMPR2 (93, 94). But its cellular crosstalk in DKD via
the interaction with its receptor needs more solid evidences. So
does the pair of mesangial Angpt4- endothelial Tie1. Moreover,
by comparing the diabetic ligand-receptor pairs with control,
the changed crosstalk can be revealed, for example, the pairs
of mesangial Angpt4-endothelia receptors were not detected in
control, but showed in diabetes, even more prominent than other
Angpt pairs (35).

In another scRNA-seq on cryopreserved human diabetic
kidney samples, 23,980 single-nucleus transcriptomes were
generated from three control and three early diabetic
nephropathy samples (91). The researchers examined
differentially expressed ligand–receptor pairs in glomerular
cell types and found human diabetic mesangial cells had
increased expression of CCN1 and SLIT3 (95). CCN1 responding
extracellular protein, ITGAV, ITGB3, ITGB5 were expressed
by podocytes, which interact with CCN1 and subsequently
regulate tissue repair. Another CCN1 responding protein, ITGB3
was expressed by endothelial cells. ROBO2 was expressed by
podocytes and endothelial cells, which interacted with SLIT3 to
modulate cell migration. Diabetic endothelial cells also expressed
increased LTBP1, which regulated targeting of latent TGF-β
complexes (95). A scRNA-seq on mouse GMCs revealed GMCs
having a high enrichment of genes involved in endothelial
activity, supporting the long-existing notion that mesangial cells
are specialized pericytes (96). Interestingly, the researchers also
found that some mesangial cells express podocyte marker genes
(e.g., Wt1) as well as endothelial cell marker genes (Tie2, Flk1,
Flt1/ Vegfr1) (96).

When interpreting the data of ligand-receptor pair analysis,
bias coming from misrepresented cell population must be taken
into consideration. Podocytes, especially the injured podocytes
are susceptible to loss during the dissociation process, which
leads to limited podocytes detected, therefore results in the
podocyte population underrepresented in most of the scRNA-
seq research. It is also difficult to clearly identify mesangial
cells due to the similarity between mesangial cells and stromal
mesenchymal cells. Chung et al. found that several genes which
were used in their study to identify mesangial cells are not specific
while in some cases are specific to smooth muscle cells (SMCs)
(Myh11, Rergl, Pln, and Olfr558) (34). They pointed that the
study by Fu et al. was limited by the small number of cells,
as the reason they referred were that the authors were unable
to distinguish mesangial cells from SMCs/JG cells and neither
obtain sufficient numbers of podocytes from diabetic mice for
analysis (34).

Intraglomerular crosstalk based on ligand-receptor pair
analysis of scRNA-seq are shown in Figure 3.

EXTRAGLOMERULAR CROSSTALK IN
DKD

Tubular-glomerular interplay, which includes two well-known
components, glomerular-tubular balance and tubuloglomerular
feedback (TGF), has been demonstrated to play important

roles in physiological renal function as well as in DKD
(97). Proteins leak from glomeruli and arrive at tubular
regions, then leading to further tubular injury, which is
caused by the accumulation of proteinuria-inducing reactive
oxygen species and various cytokines (98). Sirtuin 1 (SIRT1), a
nuclear deacetylating enzyme, which mediates deacetylation of
transcription factors and histone, is found being downregulated
in proximal tubules preceding podocyte injury in DKD (99).
Claudin-1 is a membrane protein involved in the formation
of tight junctions and is normally expressed in parietal
epithelial cells, which creates tight junctions that might
prevent leakage from Bowman’s capsule (100). In DKD, the
downregulated proximal tubular SIRT1 decreases SIRT1 level in
podocytes, thereby leading to the ectopic expression of claudin-
1 in podocytes and causing albuminuria (101). Glomerular
hyperfiltration is proposed to be resulted from tubular growth
and upregulates sodium-glucose cotransporter 2 (SGLT2), which
enhances proximal tubular reabsorption, leading a reduction of
sodium chloride (NaCl) delivery to the macula densa, therefore
increasing GFR via TGF response (SGLT2-NaCl pathway) (99–
101).

Recently Hasegawa group also reported SGLT2 was elevated
during early stages of DKD, which could upregulate intracellular
glucose levels in proximal tubules and subsequently decrease
SIRT1 expression whereas SGLT2 inhibitors preserved SIRT1
expression (102). SGLT2 inhibitors, suggested Hasegawa,
might maintain the proximal tubule-podocyte communication.
Other tubular-glomerular communications include a group of
exosomes enriched with microRNA (miR) mediating podocyte
or proximal tubular cell damage (103).

The communications between macrophages and kidney cells
rely much on extracellular vesicles (EV). It was reported that
miR-21-5p in macrophage-derived EVs regulated pyroptosis-
mediated podocyte injury by A20 in DKD (104). It was
also suggested that exosomal miR-19b-3p mediated the
communication between injured tubular cells and macrophages,
leading to M1 macrophage activation (105). Exosomes from high
glucose-treated macrophages were implied to activate GMCs via
TGF-β1/Smad3 pathway (106).

Findings Based on scRNA-Seq
A scRNA-seq performed on whole kidney cells from healthy
mice revealed specific cell types responding to specific kidney
related disorders (30). CKD related genes are strongly enriched
in proximal tubules. The researchers identified a transitional
cell type between principle cell (PC) and intercalated cell (IC)
in collecting duct. Notch regulates the cellular identity of
neighboring cells by the expression of either Notch ligands or
Notch receptors. Genes encoding Notch ligands were highly
expressed in ICs while Notch2 receptor and its transcriptional
target Hes1 were shown in PCs with high expression level,
suggesting that PCs are the Notch signal-receiving cells in
the collecting duct. A higher ratio of PCs to ICs in human
diabetic kidney biopsy with increased Notch signaling and HES1
expression suggested a shift toward PCs, which is likely the
cause of metabolic acidosis in mouse models and patients with
CKD (30). A human kidney scRNA-seq research identified

Frontiers in Medicine | www.frontiersin.org 9 August 2021 | Volume 8 | Article 657614

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Du et al. Review for Crosstalk in DKD

TABLE 2 | Summary of the mediators for extraglomerular crosstalk in DKD.

Crosstalk Ligand/Receptor Extracellular vesicles Signal pathway Pathological role in DKD Reference

Podocyte-Tubular

epithelial cell

miR-6538, miR-3474,

miR-1981-3p,

miR-7224-3p.

Let-7f-2-3p

Upregulation of Let-7f-2-3p and

downregulation of miR-1981-3p, miR-3474,

miR-7224-3p and miR-6538 were detected by

RT-qPCR in DKD. These EVs from podocyte

may travel through the urinary tract and

involved in the extrinsic apoptotic signaling

pathway of TECs.

(88)

miR-221 Podocyte-derived EVs in diabetes acted as key

mediators of proximal tubule cell injury and the

miR-221 in EVs mediated the cells damage

through Wnt/β-catenin signaling.

(103)

Tubular epithelial

cell-Podocyte

Sirt1 Sirt1 in tubular epithelial cell protects against

albuminuria in diabetes by maintaining NMN

concentrations around glomeruli, thus

influencing podocyte function.

(102)

SGLT2-NaCl Glomerular hyperfiltration is proposed to be

resulted from tubular growth and upregulates

sodium-glucose cotransporter 2 (SGLT2),

which enhances proximal tubular reabsorption,

leading a reduction of sodium chloride (NaCl)

delivery to the macula densa, therefore

increasing GFR via TGF response.

(99–101)

Macrophage-

Podocyte

miR-21-5p EVs miR-21-5p secreted from macrophage

through inhibition of A20 elevate the

inflammasome NLRP3, caspases-1 and IL-1β

related to pyroptosis, and augment the

production of ROS, thereby causing podocyte

injury.

(104)

Tubular epithelial

cell- Macrophage

miR-19b-3p Exosomes enriched with miR-19b-3p mediated

the communication between injured TECs and

macrophages, leading to M1 macrophage

activation and tubulointerstitial inflammation

though SOCS-1 pathway.

(105)

Intercalated

cell-Principle cell

Notch2-Hes1 Genes encoding Notch ligands were highly

expressed in ICs while Notch2 receptor and its

transcriptional target Hes1 were shown in PCs

with high expression level, suggesting that PCs

are the Notch signal-receiving cells in the

collecting duct.

(3)

DKD, diabetic kidney disease; TEC, Tubular epithelial cell; RT-qPCR, real-time polymerase chain reaction; EVs, Extracellular vesicles; IL-1β, Interleukin 1β; ROS, Reactive oxygen species;

NLRP3, NACHT, LRR, and PYD domains-containing protein 3; SOCS-1, Suppressor of cytokine signaling-1; Sirt1, Silencing information regulator 2 related enzyme 1; NMN, nicotinamide

mononucleotide; SGLT2, sodium-glucose cotransporter 2; NaCl, sodium chloride; Hes1, Hairy and enhancer of split homolog-1; PCs, principle cells; ICs, principle cell.

NAMPT expressed in mesangial cells, which regulates insulin
secretion in pancreatic β-cells, while uncovered a decreased
expression of insulin receptors in diabetic podocytes (95).
Interestingly, a single-cell transcriptome profiling performed
on BTBR ob/ob mice, which do not develop hypertension,
showed those animals had no major changes in endothelial
cell gene expression while surprisingly gave the vascular disease
stereotype of diabetes (34). The researchers suggested that
rather hypertension not diabetes induce transcriptional changes
in endothelial cells given the prevalence of hypertension in
patients with diabetes (34). They thought hypertension might
be more important in injuring endothelial cells. However,
there remains confusion since findings to date about kidney
crosstalk much developed from researches set under the

diabetic milieu. The extraglomerular crosstalks are summarized
in Table 2.

DISCUSSION

scRNA-seq is a powerful tool providing unprecedented insight
into cell transcriptome, including deciphering cell-to-cell
communication in diseases such as DKD. With the aid of
scRNA-seq, some new and complicated cellular interactive in
DKD have been revealed as well as some new cell subpopulations
have been identified in kidney, which imply some key regulators
and therapeutic targets for DKD. Though the technology has
achieved great advances, the researchers have to face several
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challenges during seRNA-seq. The cell isolation protocol
needs to be optimized to be more efficient when balancing
between cell dissociative efficacy and viability since kidney
has relatively dense matrix and some of kidney cells under
abnormal conditions are susceptible to loss. The big discrepancy
on kidney cell numbers and gene expressions gained in different
kidney seRNA-seq researches by now is attributed much to
their different dissociation protocols. The types of kidney cell
identified in scRNA-seq researches primarily depend on the
available cell markers, which may not be specific enough or
even yet be revealed. Moreover, the huge volume of complex
data generated by seRNA-seq needs appropriate analytical
and statistical methods and the interpretation of raw data is
determined by the choices of computational tools and databases.
Of the most importance, the findings drawn from scRNA-seq
need to be validated by subsequent experimental tests.

More researches of scRNA-seq coupled with multiomic
approaches are expected in future to gain closer access to

profound pathogenesis of DKD and contribute to develop new
therapeutic strategies.
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