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Reward anticipation is essential for directing behavior toward positively valenced stimuli,
creating motivational salience. Task-related activation of the ventral striatum (VS) has
long been used as a target for understanding reward function. However, some subjects
may not be able to perform the respective tasks because of their complexity or subjects’
physical or mental disabilities. Moreover, task implementations may differ, which results
in limited comparability. Hence, developing a task-free method for evaluating neural
gain circuits is essential. Research has shown that fluctuations in neuronal activity at
rest denoted individual differences in the brain functional networks. Here, we proposed
novel models to predict the activation of the VS during gain anticipation, using the
functional magnetic resonance imaging data of 45 healthy subjects acquired during a
monetary incentive delay task and under rest. In-sample validation and held-out data
were used to estimate the generalizability of the models. It was possible to predict
three measures of reward activation (sensitivity, average, maximum) from resting-state
functional connectivity (Pearson’s r = 0.38–0.54 in validation data). Especially high
contributions to the models were observed from the default mode network. These
findings highlight the potential of using functional connectivity at rest as a task-free
alternative for predicting activation in the VS, offering a possibility to estimate reward
response in the broader sampling of subject populations.

Keywords: ventral striatum, MRI, rest, monetary incentive delay task, prediction

INTRODUCTION

Reward processing is an essential function of adaptive behavior in our everyday lives (Knutson et al.,
2008). The ability to anticipate a positive incentive allows us to organize our behavior in accordance
with the salience of the stimuli. Many researchers have investigated the neurobiological basis of
reward processing using the well validated monetary incentive delay (MID) task in combination
with functional magnetic resonance imaging (fMRI) across healthy and clinical populations (Lutz
and Widmer, 2014; Oldham et al., 2018; Wilson et al., 2018).

The MID task allows for investigating the different stages of reward processing as well the
different incentive amounts (Knutson et al., 2003). Specifically, activity in the ventral striatum (VS)
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during gain anticipation has been extensively investigated,
particularly in relation to various aspects such as positive
arousal (Wu et al., 2014) and reward sensitivity (van Hulst
et al., 2015). The MID task has been used to uncover
dysfunction in anticipation in various psychiatric disorders such
as anhedonia in depression (Stoy et al., 2012; Takamura et al.,
2017; Hoflich et al., 2018), schizophrenia (Grimm et al., 2014),
attention-deficit/hyperactivity disorder (Plichta and Scheres,
2014), and in adolescents at risk of depression (Stringaris
et al., 2015). The task has also been used in elderly people
when investigating the aging-related alterations of motivation
(Geddes et al., 2018). Thus, this task has the potential to
be utilized as a trans-diagnostic indicator of neural reward
anticipation across healthy population and psychiatric diseases.
However, performance of the MID task may be quite difficult
for some populations such as the elderly, children, and people
with disabilities as these populations are not always capable of
conducting tasks correctly. In addition, the implemented tasks
may vary between institutions, thus causing comparability issues.
Therefore, constructing a task-free method for evaluating neural
reward processing would be crucial.

Resting-state fMRI (rsfMRI) has attracted attention as it
does not require additional interfaces like a keyboard or
screen compared to task-fMRI and allows investigating a
broader sample participants almost irrespective of their physical
and mental capabilities. Research has shown that rsfMRI
captures each subject’s individual variability (Mueller et al.,
2013) and could predict one’s brain activation during task-
based fMRI (Tavor et al., 2016). However, as Tavor et al.
(2016) used a gambling task the question remains unanswered
whether VS activation to different reward amounts could be
predicted using rsfMRI.

Here, we aimed to assess whether functional connectivity of
the brain at rest allows for prediction of task-evoked VS activation
during reward anticipation with the MID task. It might allow
for predicting VS activation during reward anticipation without
the need to acquire task-fMRI, potentially opening the doors to a
useful approach to investigate neural reward function in various
populations. We aimed to predict VS activation in regard to
reward sensitivity, maximal reward, and average reward based on
rsfMRI scans. Our focus was the prediction of reward sensitivity,
as we previously reported that VS reward sensitivity could be a
potential indicator for motivational anhedonia (Takamura et al.,
2017). Reward sensitivity is the amount to which individual
behavior is motivated by the relevant stimuli (Gray, 1987).
Previously, an fMRI study using the MID task demonstrated
proportional activation of the striatum in humans anticipating
increasing financial gain in healthy individuals (Knutson et al.,
2001). A meta-analysis also showed the proportional relationship
between VS activity and subjective value of reward (Bartra et al.,
2013). In this study, we consider VS reward sensitivity as the
change in activation between increasing amounts of monetary
gain. We also estimated this model for both, the maximal and
average monetary reward, as previous studies mainly reported
neural response to the highest or collapsed different values
together (Oldham et al., 2018). Generalizability of our approach
was further assessed using held-out validation data.

MATERIALS AND METHODS

Participants
The subjects were recruited in three different locations as
part of the healthy control cohorts in separate studies. For
group 1 (Center of KANSEI Innovation), 17 participants were
enrolled from the local community via a newspaper and public
notice. Group 2 (Hiroshima University Hospital) included
15 participants who were similarly recruited as part of a
previous study (Takamura et al., 2017). Group 3 (Kajikawa
Hospital) contained 17 participants who were enrolled from
freshmen attending Hiroshima University as part of a third
study (Mori et al., 2016). All participants were right handed
and examined by experienced psychiatrists and psychologists
to exclude any history of brain disorders according to the
DSM–IV criteria (American Psychiatric Association, 2000). To
ensure psychiatric health, they were screened with the Mini
International Neuropsychiatric Structural Interview (groups
1 and 2; Sheehan et al., 1998; Otsubo et al., 2005) or
with the Japanese version of the Composite International
Diagnostic Interview (group 3; Kessler and Ustun, 2004). None
of the participants presented with a history of neurologic
disorders, brain injury, and psychiatric disorders. Exclusion
criteria comprised of a lifetime history of any psychiatric
or neurological illness, taking psychiatric medications or
undergoing psychotherapy, and any MRI contraindication. Of
the 49 participants, three in group 1 and one in group 3 were
excluded from the analysis due to artifacts in the resting state
data [median percentage of removed spikes above 5%, according
to Patel et al. (2014)]. Demographic characteristics of the 45
participants included in the analysis are as follows: Group 1
included 14 subjects (mean age± standard deviation = 40.6± 5.7,
seven males). Group 2 included 15 subjects (age = 44.9 ± 12.2,
six males). Group 3 included 16 subjects (age = 19.1 ± 0.75,
eight males). All the studies were carried out in accordance
with the recommendations of Ethical Guidelines for Medical
and Health Research Involving Human Subjects, the Ethics
Committee of Hiroshima University with written informed
consent from all participants. All subjects gave written informed
consent in accordance with the Declaration of Helsinki and
received financial reimbursement for participation. The protocols
were approved by the Ethics Committee of Hiroshima University.

Functional Image Acquisition
Functional brain images were collected using three different MRI
scanners. All scans were acquired with echo planar imaging
sequences. Details on MRI acquisition are summarized in Table 1.
During rsfMRI, subjects were instructed to look at a central
fixation point, lie still, stay awake, and not to think about
anything specific.

MID Task
Participants performed a modified MID task as described by
Knutson et al. (2003). The details of the task have been reported
previously in our papers (Mori et al., 2016; Takamura et al.,
2017). Before scanning, they were instructed how the task
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TABLE 1 | MRI acquisition parameters.

Group 1 Group 2 Group 3

Site Center of KANSEI Innovation Hiroshima University Hospital Kajikawa Hospital

Scanner 3.0 T Siemens Magnetom Verio 3.0 T Signa HDxt Scanner (GE Healthcare, 3.0 T Siemens Magnetom Spectra
(Siemens, Erlangen, Germany) Milwaukee, WI, United States) (Siemens, Erlangen, Germany)

Type of scan MID task Resting-state MID task Resting-state MID task Resting-state

FOV (mm) 240 212 192 256 192 192

Slice thickness (mm) 3.8 3.2 3 4 4 3

Slice gap (mm) 0.95 0.8 0 0 0 0

TR (ms) 2000 2500 2000 2000 2000 2700

TE (ms) 25 30 25 27 31 31

Slices 32 40 38 32 28 38

Flip angle (◦) 80 80 90 90 90 90

Matrix size 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64

Scan time (min:s) 2 × 12:10 10:00 12:20 05:00 2 × 12:10 05:00

Number of volumes (scans) Two runs of 370 244 370 150 Two runs of 370 112

MID task, monetary incentive delay task; FOV, field of view; TR, repetition time; TE, echo time.

should be performed in a standardized manner and took part
in one training session. Subjects were also informed that they
would receive monetary reward equal to their performance in
addition to the reimbursement for participation. For groups
1 and 3, the MID task consisted of two runs. Each run
consisted of 90 trials with three conditions in a pseudo-
randomized order (40 gain, 40 loss, and 10 neutral trials). In
each trial, subjects could win or avoid losing 0, 20, 100, or
500 yen and were presented with one of nine types of cues
indicating the trial condition (no response, 0 yen win/loss, 20
yen win/loss, 100 yen win/loss, or 500 yen gain/loss). This
was followed by a fixation cross (anticipation phase), after
which a target was briefly presented on the screen. If the
subject pressed a button before the target offset, they gained
or avoided losing the cued amount of money. Then a feedback
showing the trial outcome was presented. Immediately after
the feedback offset, the cue of the next trial was shown. The
hit rate was adjusted to 66% for each subject by varying the
allowed time to respond (Hahn et al., 2011). Due to limited
scanner availability for group 2, the MID task consisted of
one run, for a total of 90 trials with only two conditions in
a pseudo-randomized order (62 win and 18 neutral trials). In
the current analysis, only the gain-conditions were of interest.
For groups 1 and 3, the two runs were concatenated to get
approximately the same number of win trials as for group
2. After the fMRI session, participants were presented all
types of cue stimuli and asked to evaluate their motivational
levels for each stimulus conditions using a visual analog scale
(VAS). The collected responses of VAS ratings were translated
to 0–100%.

Behavioral Data Analysis
As the behavioral data were skewed, we used non-parametric
descriptive statistics. Friedman test was used to compare the
effect of the reward amount (U0, U20, U100, or U500) on

subjective motivational levels and reaction times. The Dunn–
Bonferroni correction was used as post hoc analysis. The
behavioral data analysis was done using SPSS statistics 21
software (IBM, Armonk, NY, United States).

fMRI Data Preprocessing
Preprocessing was conducted using Statistical Parameter
Mapping (SPM8) software (Wellcome Department of Cognitive
Neurology, Wellcome Trust Centre, London, United Kingdom).
We discarded the first five volumes of each run for the MID task
to ensure magnetic signal equilibrium. For each rsfMRI data in
groups 2 and 3, the scans acquired during the first 14 s were
discarded; the first seven volumes for group 2 (TR = 2000 ms)
and five for group 3 (TR = 2700 ms; the TR for the MID task
was the same for all groups). As the data in group 1 belonged
to the Brain Mapping by Integrated Neurotechnologies for
Disease Studies1, the scans acquired during the first 10 s were
discarded; the first four volumes (TR = 2500 ms) according to the
standardized pipeline. All imaging data were preprocessed using
slice-timing correction and subsequently two-pass realignment
to the mean image. Then, using the normalization parameters
obtained through the segmentation of the structural image
which was previously aligned with the mean functional image,
the data were normalized to the standard template on the
Montreal Neurological Institute (MNI) reference brain, and
resampled to 2 × 2 × 2 mm3 voxels. The MID task data were
then smoothed using an 8 mm full-width at half-maximum
(FWHM) Gaussian kernel. In order to standardize the length
of all rsfMRI scans between cohorts, the data from group 1
were shortened to the first 5 min for the subsequent analysis.
We created a gray matter mask by combining and thresholding
the respective compartments of Harvard-Oxford atlas and SPM
tissue probability map at 50%, which was applied to the rsfMRI

1http://brainminds-cro.umin.jp/translable_brain_marker_protocols.html
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images. Afterward, artifacts were further removed using the
Brain Wavelet toolbox2 (Patel et al., 2014) with the “threshold”
parameter set to 15 due to the application on unsmoothed data.

fMRI General Linear Model: MID Task
For groups 1 and 3, we modeled 24 regressors that included the 8
reward anticipation conditions [amount of money (±U0, 20,100,
500)], 2 control events (neutral cue and neutral feedback), and 14
outcome phase activities [six conditions (± U20,100,500) × two
outcome (hit/miss) and two conditions (± U0)]. For group 2,
the first-level included 14 regressors that modeled anticipating
reward in the four reward cue conditions [amount of money
(+ U0, 20,100, 500)], eight feedback phase activities [four
conditions (+ U0, 20,100, 500)] × two outcome (hit/miss)],
and two control events (neutral cue and neutral feedback). In
detail, the following aspects of the experiment were modeled:
For group 2, there was hit or miss feedback for the 0 yen
condition. For groups 1 and 3, there was just one common
feedback for both, hit and miss, outcomes of ±0 yen. We
used these feedbacks to improve the stability of the model for
groups 1 and 3, in which the trial numbers for one block
were less than those of group 2. All condition regressors were
convolved with canonical hemodynamic response function. The
six realignment parameters for each subject were furthermore
included as nuisance regressors. Further details are provided in
our previous papers (Mori et al., 2016; Takamura et al., 2017).

Since we focused on gain anticipation, individual parameter
estimates were generated for four contrasts: small reward
anticipation: 20 yen anticipation vs. 0 yen anticipation, medium
reward anticipation: 100 yen anticipation vs. 0 yen anticipation,
maximal reward anticipation: 500 yen anticipation vs. 0 yen
anticipation, and average reward anticipation: 20,100, and 500
yen vs. 0 yen anticipation.

For extraction of the VS activation, we used the peak
coordinates of gain anticipation areas from a meta-analysis of
the MID task (Oldham et al., 2018), which are x/y/z = 12/10/−4,
−10/10/−6 in MNI space. We defined spheres around these
maxima with a radius of 6 mm and merged the bilateral
ventral striata into one ROI using MarsBaR (Brett et al., 2002).
The overlapping region between the gray matter mask and
these ROIs served as a mask for the subsequent extraction of
contrast estimates. To identify the general activation patterns
evoked by reward anticipation, we conducted one-sample
t-tests for the contrasts of the maximal reward and average
reward anticipation by applying a significance threshold of
p < 0.05 with a peak family-wise false positive error (FWE)
correction. For this analysis, the group mask was constructed by
combining the gray matter mask (see the section “fMRI Data
Preprocessing”) and all task-fMRI volumes of all subjects as an
inclusive mask.

Reward Sensitivity Parameter
Based on our previous study (Takamura et al., 2017) we
parameterized neural reward sensitivity by modeling VS activity
during gain anticipation as a function of the reward rank. These

2http://www.brainwavelet.org/

neural activations were fitted using a linear regression model.

Y = b0 + b1R

Y represents the VS activation, R the reward rank (1 = 20 yen,
2 = 100 yen, 3 = 500 yen), b1 the slope, and b0 the constant term.
Of note, we used the rank instead of reward magnitude which was
used in the previous paper, due to the more linear relationship
between the rank and the VS activation. The slope indicates the
sensitivity to benefit size, where a larger slope parameter (b1)
indicates higher reward sensitivity.

rsfMRI Data Processing
After the common preprocessing, further rsfMRI-specific
processing comprised artifact reduction by motion, tissue, and
frequency regression, and estimation of the FC. White matter
(WM) and cerebrospinal fluid (CSF) masks were created using
the respective compartments of the Harvard-Oxford atlas with a
95% threshold. Nuisance regressors were defined as the first three
principal components of WM and CSF (Behzadi et al., 2007) and
the six realignment parameters to control for movement artifacts
in the resting-state data. Bandpass filtering from 0.01 to 0.1 Hz
was conducted using sine and cosine regressors in the same
model as recommended by Hallquist et al. (2013). We applied
these additional data cleaning process because resting state data
are more vulnerable to different sources of artifacts (Birn, 2012;
Huijbers et al., 2017). Whole-brain functional connectivity was
calculated as Pearson correlation between the mean time series
extracted from spheres of 6 mm radius around the coordinates
provided in the ROI set of Power et al. (2011). We used the
ROIs set by Power et al. (2011) because it was created from
both task and RS results. Hence, we expect there is an inherent
relationship to task activation. No thresholding was necessary
as the ROI set only specifies coordinates and no probability of
voxels belonging to any parcel (as, e.g., in the Harvard-Oxford
atlas). Negative connectivities were included in the model as they
are since we consider them to be integral parts of the network
organization [e.g., between the attention and the default mode
(DM) network]. The ROIs for extraction of the mean signal were
defined as 10-mm-spheres. To confirm the general functional
connectivity patterns, an elementwise inference on the mean
connectivity matrices over all 45 subjects was conducted. Taking
the correlations between functional connections into account,
the significances were estimated by the permutation test with
10,000 runs (null hypothesis: 0 connectivity value) to a two-sided
FWE-corrected threshold of p ≤ 0.05.

Relevance Vector Regression
We aimed to predict three different measures of VS activation:
reward sensitivity, maximal reward, and average reward. In order
to build a model, we used relevance vector regression (RVR)
(Tipping, 2001) implemented in PRoNTo3 (Schrouff et al., 2013).
In the current analysis, the data were mixed between the sites
and randomly split into an estimation (n = 30) and held-out
samples (n = 15) equally distributed over all cohorts in order

3http://www.mlnl.cs.ucl.ac.uk/pronto/
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TABLE 2 | Summary of the behavioral data.

Amount of money

0 yen 20 yen 100 yen 500 yen

Subjective motivational
levels (%), median
(interquartile range)

48 (37) 63 (25) 76 (22) 99 (16)

Reaction time (ms),
median (interquartile
range)

244.9 (41.5) 235.5 (38.8) 228.6 (39.5) 228.2 (46.3)

Due to skewed distributions, non-parametric measures have been used.

FIGURE 1 | Statistical parametric maps of brain regions associated with (A)
maximum and (B) average reward. One sample t-test of 45 subjects showed
significant VS activation. A significant threshold was considered p < 0.05,
with a peak family-wise false positive rate (FWE) corrected.

to show generalizability of our results. The generalizability of
the model was estimated using a 10-fold cross-validation (10-
FCV), repeatedly splitting the estimation sample into training
(n = 27) and test sets (n = 3) for model estimation. We trained one
model for each measure of the VS activation to learn associations
between the patterns of functional connectivity at rest and the
targeted VS measure. The individual predictors were calculated
using the weight and individual functional connectivity matrices
for each subject. A regression model was employed to correct
the scaling of the predicted and actual value, which are not
automatically accounted for by PRoNTo. The weight matrix
averaged over the folds and the complete estimation set was used
for this. The individual predictors were fed into the resulting
regression model. We report Pearson’s correlation coefficient and
the mean squared error (MSE) as measures of similarity between
the predicted and actual values of the VS measures. An MSE of 0
would indicate no error between the predicted and actual values.
For the performance on the training runs, the significances
were estimated by the permutation test implemented in PRoNTo
with 10,000 runs. Resulting p-values < 0.05 were considered
significant. We also present the nodes and edges with the highest
weight vector values that contribute the most to estimations. The
ROIs were grouped to seven functional networks according to
Yeo et al. (2011) for simplification; visual (VI), somato-motor

FIGURE 2 | The region-with-region functional connectivity matrix of 45
subjects, sorted by network assignment. The upper triangle contains all
connectivity, the lower only the significant ones. The significances were
estimated by the permutation test with 10,000 runs. A significant threshold
was considered p < 0.05, with a peak family-wise false positive rate (FWE)
corrected. Columns and rows represent regions of interest (ROIs) for resting
state, which are grouped according to seven networks and two anatomical
regions. Networks and anatomical regions from left to right and top to bottom
as follows: 1, visual; 2, somato-motor; 3, dorsal attention; 4, ventral attention;
5, fronto-temporal; 6, fronto-parietal; 7, default mode networks; 8, basal
ganglia; and 9, cerebellum. Diagonal and non-diagonal sections show
functional connectivity within- and between-network for these ROIs,
respectively.

(SM), dorsal attention (DA), ventral attention (VA), fronto-
temporal (FT), fronto-parietal (FP), DM network (DMN), and
two anatomical regions; basal ganglia (BG) and cerebellum
(Harvard Oxford atlas).

RESULTS

Behavioral Results
There was a significant difference in subjective motivational levels
on the amount of money [χ2(3) = 42.067, p < 0.01]. Post hoc tests
revealed significant differences between all conditions (p < 0.05)
after Bonferroni adjustment, indicating that participants were
motivated more by increasing monetary rewards. There was a
significant difference in reaction times on the amount of money
[χ2(3) = 101.273, p < 0.01]. Dunn–Bonferroni post hoc tests
were carried out and there were significant differences between
0 and 100 yen, 0 and 500 yen, or 20 and 500 yen (p < 0.01).
The difference between 20 and 100 yen is marginally significant
(p = 0.054). There was no significant difference between other
amount of money (p > 0.1), which might be due to the flooring
effect for 100 and 500 yen. The median response time and
motivation ratings are shown in Table 2.

Neuroimaging Results
We first confirmed the brain activations related to anticipation
of the maximum and average reward across all participants. As
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shown in Figure 1, a one-sample t-test indicated activation of
large clusters including the VS, the prefrontal, and occipital and
temporal cortices which confirmed the validity of the experiment.
We next showed the average functional connectivity matrix
across all subjects to inspect the general patterns of functional
connectivity at rest. As shown in Figure 2, regions within the
same networks correlated positively.

Relevance Vector Regression
The model performance of the training runs and the validation
with the held-out sample showed that the similarities between
the predicted and actual values for the maximal and reward
sensitivity measures were comparable: Reward sensitivity −
Pearson’s r = 0.42 (p = 0.001), MSE = 0.08 (p = 0.003)
for estimation, Pearson’s r = 0.38 (p = 0.16), MSE = 0.06
(p = 0.09) for validation, maximal reward − Pearson’s r = 0.48
(p = 0.003), MSE = 0.49 (p = 0.006) for estimation, Pearson’s
r = 0.54 (p = 0.04), MSE = 0.38 (p = 0.02) for validation. For
the average reward, the performance on the held-out sample
was higher than for the training runs: Pearson’s r = 0.19
(p = 0.13), MSE = 1.02 (p = 0.21) for estimation, Pearson’s
r = 0.50 (p = 0.06), MSE = 1.09 (p = 0.03) for validation
(Table 3 and Figure 3). It needs to be emphasized that
the p-value alone provides little information on the model
performance due to the different sample sizes in both sets
but the correlation coefficients can be interpreted as effect
sizes, which are by definition independent of the sample size.
Figure 3 shows the predicted and the original data for the three

models. The predicted values of the complete estimation set
forming almost a straight line only indicate that the training
process was successful.

Five and four out of the top nodes are located in the
DMN for reward sensitivity and maximal reward, respectively,
where three of them are present in both models (Figure 4 and
Tables 4, 5). The node with highest weight (x/y/z =−46/−61/21)
is also located in the DMN and corresponds to the temporal
parietal junction (TPJ). For the average reward model, two
out of the top five nodes are located in the DMN (Figure 4
and Table 6). The nodes with the highest and second highest
contribution are located in the VA network and correspond to
the supplementary motor cortex and insular cortex, respectively
(Table 6). Overall, most of the edges with strong influence
for the three models are related to the DMN (Figure 4 and
Tables 4–6). Figure 4 shows the averaged weight matrices
for all three models. Columns and rows represent ROIs for
resting state, which are grouped according to seven functional
networks and two anatomical regions as detailed in the section
“rsfMRI Data Processing.” Tables 4–6 list the top five nodes
(highest weight sum) and edges (highest single weights) for
the predictors. As shown in Figure 4 and Tables 4, 5, there
is a high similarity between the averaged weight matrices for
reward sensitivity and maximal reward model in terms of
the participation of different networks (less for the average
reward model). Indeed, reward sensitivity also correlated
positively with the VS response to the maximal gain (Pearson’s
r = 0.87, p < 0.01).

TABLE 3 | Correlation coefficients and MSE between the actual and predicted VS measures.

Measures of VS activation

Reward sensitivity Maximal reward Average reward

Pearson’s r (p-value) MSE (p-value) Pearson’s r (p-value) MSE (p-value) Pearson’s r (p-value) MSE (p-value)

Performance of training runs (n = 30) 0.42 (0.001) 0.08 (0.003) 0.48 (0.003) 0.49 (0.006) 0.19 (0.13) 1.02 (0.21)

Performance on validation with
held-out sample (n = 15)

0.38 (0.16) 0.06 (0.09) 0.54 (0.04) 0.36 (0.02) 0.50 (0.06) 1.09 (0.03)

MSE, mean squared error; VS, ventral striatum.

FIGURE 3 | Correlations between the predicted and actual values of ventral striatum (VS) activation from functional connectivity at rest for three different measures.
(A) Reward sensitivity, (B) maximal reward, and (C) average reward. Open circles denote the results of the complete estimation set. Black dots show the
performance of the single training runs. Red dots show the performance on the validation sample. Scaling and offset errors were corrected using linear regression.
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FIGURE 4 | The averaged weight matrices of contributions of functional
connectivity across the whole brain to prediction of (A) reward sensitivity,
(B) maximal reward, and (C) average reward. Columns and rows represent
regions of interest (ROIs) for resting state, which are grouped according to
seven networks and two anatomical regions. Networks and anatomical
regions from left to right and top to bottom as follows: 1, visual; 2,
somato-motor; 3, dorsal attention; 4, ventral attention; 5, fronto-temporal;

(Continued)

FIGURE 4 | Continued
6, fronto-parietal; 7, default mode networks; 8, basal ganglia; and 9,
cerebellum. Diagonal and non-diagonal sections show functional connectivity
within- and between-network for these ROIs, respectively. For all models
(A–C), most of the functional connectivity with high weight correspond to the
functional connectivity within or between the default mode network and other
networks. There is a high similarity between the averaged weight matrices for
reward sensitivity (A) and maximal reward (C) in terms of the participation of
different networks, less for the average reward model.

DISCUSSION

The main goal of this study was to investigate whether
functional connectivity at rest could predict task-evoked VS
activation during reward anticipation. The results showed that
a multivariate pattern of functional connectivity at rest can
predict VS activation for maximal/average reward anticipation
and reward sensitivity assessed via the MID task in a healthy
population. Furthermore, the DMN was shown to play a critical
role in this process. The models derived within the current work
provide a method for estimating VS activation for the extensively
validated MID task without the need to acquire task fMRI, which
might provide a way to assess neural reward function in people
not capable of performing the required tasks correctly.

For the maximal reward and reward sensitivity models, the
predictive power of the performance on the validation sample
is comparable to that of training runs [Pearson’s r = 0.54
(validation set), 0.48 (training runs) for maximal reward,
Pearson’s r = 0.38 (validation set) and 0.42 (training runs)
for reward sensitivity]. For the average reward model, the
predictive power of the performance on the validation sample
(Pearson’s r = 0.50) is much higher than that of training runs
(Pearson’s r = 0.19) and comparable to that of the maximal
reward model (Pearson’s r = 0.54). This might be caused by
greater heterogeneity within the training than the validation
sample and indicates potential predictive capabilities of the model
beyond significance.

As for the reward sensitivity and maximal reward models,
the node with the highest contribution to prediction of the
VS measures was located in the DMN. In detail, the node
corresponds to the TPJ, which is a heteromodal associative region
with structural connections to the limbic system, the prefrontal
cortex, the cingulate gyrus, the putamen, and the thalamus
(Chafee and Goldman-Rakic, 2000; Kucyi et al., 2012). This
enables the TPJ to work as a hub by integrating information
from the external and internal environment and processing it
when necessary. In relation to reward processing, a previous
study showed that the TPJ encoded the value and salience of
the stimuli (Kahnt et al., 2014). That the TPJ was assigned
the highest weight for the maximum reward and the sensitivity
model might thus be explained by its role as a network hub.
For the average reward model, the nodes with the highest and
second highest contribution are located in the VA network
and correspond to the supplementary motor cortex and the
insular cortex, respectively. A meta-analysis of the MID task
revealed that the supplementary motor cortex and the insula
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TABLE 4 | Top five nodes and edges with highest weights for the predictors of reward sensitivity.

Nodes Edges

Rank Coordinate of the node Network Coordinate of node 1 Network Coordinate of the node 2 Network

x y z x y z x y z

1 −46 −61 21 DM 43 −72 28 DA −46 −61 21 DM

2 65 −12 −19 DM −10 39 52 DM −58 −26 −15 DM

3 −58 −26 −15 DM −2 38 36 DM −58 −26 −15 DM

4 −2 38 36 DM −58 −30 −4 DM −58 −26 −15 DM

5 −16 29 53 DM −16 −77 34 DM 15 −87 37 VI

VI, visual; DA, dorsal attention; VA, ventral attention; DM, default mode.

TABLE 5 | Top five nodes and edges with highest weights for the predictors of maximal reward.

Nodes Edges

Rank Coordinate of the node Network Coordinate of node 1 Network Coordinate of the node 2 Network

x y z x y z x y z

1 −46 −61 21 DM 43 −72 28 DA −46 −61 21 DM

2 65 −12 −19 DM −2 38 36 DM −58 −26 −15 DM

3 −2 38 36 DM 56 −46 11 DM 31 33 26 VA

4 43 −72 28 DA −20 45 40 DM −2 −37 44 DM

5 −2 −37 44 DM 59 −17 29 VA −53 −10 24 SM

SM, somato-motor; DA, dorsal attention; VA, ventral attention; DM, default mode.

TABLE 6 | Top five nodes and edges with highest weights for the predictors of average reward.

Nodes Edges

Rank Coordinate of the node Network Coordinate of node 1 Network Coordinate of node 2 Network

x Y z x y z x y z

1 −3 2 53 VA −20 64 19 DM −3 42 16 DM

2 −34 3 4 VA 13 30 59 DM 6 64 22 DM

3 65 −12 −19 DM −2 38 36 DM −11 45 7 DM

4 8 −72 11 DA 24 45 −15 FP −7 −71 42 DM

5 56 −46 11 DM 56 −46 11 DM 31 33 26 VA

DA, dorsal attention; VA, ventral attention; FP, fronto-parietal; DM, default mode.

were activated during anticipating averaged over all amounts of
money, as well as maximal and minimum amount of money
(Oldham et al., 2018). This indicates that those regions are
recruited for anticipation in general, independent of the relative
magnitude of potential reward.

For all models, most of the edges with the highest
weights correspond to the functional connections within
the DM, and between the DM and other task-positive
networks such as the DA and the VA networks. This
suggests that the DMN itself contributes highly to the
prediction of VS measures from functional connectivity at
rest. The weight matrix by itself does not tell whether these
networks have increased or decreased functional connectivity
in relation to the VS measures. Still, these findings may
help us to understand a comprehensive role of the DMN
to interact with other networks for predicting VS measures
during anticipation.

Considering the high correspondence between resting state
connectivity and task activation (Smith et al., 2009; Cole et al.,
2014), the fact that the salience network (SN) does not really
light up as predictor might be surprising. Still, the SN might
indirectly have an influence through regulating the DMN, instead
of directly predicting the VS activation, as the SN mediates
switching between the DMN and the network regarding task
execution (Sridharan et al., 2008).

The idea that brain connectivity at rest can predict activation
during a task has previously been reported by using the Human
Connectome Project dataset (Tavor et al., 2016). The authors
showed that the predictive power of functional connectivity at
rest for task-fMRI activation (correlation coefficient between
predicted and real values) was around 0.7. Tavor et al. (2016)
used a gambling task in which participants guessed whether
the number written on a card was higher than 5 or not and
they were blinded to the amount of money they could earn
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or lose in each trial (Delgado et al., 2000). The gambling
task had only one gain anticipation condition. Hence, there
were no equivalents of sensitivity and maximal reward. This
is to some extent equal to the average reward in the current
analysis. Thus, the task used in Tavor et al. (2016) does not
allow for the investigation of VS activation in proportion
to reward amount.

The proportional response in the VS to increasing amount of
gain (reward sensitivity) is disrupted in depression (Takamura
et al., 2017). If generalizable across various psychiatric disorders
and healthy population, VS reward sensitivity has a potential to
be a trans-diagnostic indicator of gain anticipation.

A previous study tried to predict neural activation in the
striatum with a reinforcement learning task through the use
of structural connectivity (Smittenaar et al., 2017). The authors
divided the striatum into the four regions, namely bilateral
caudate and putamen and examined the striatal response
during motor response, the expected value at outcome phase
and the reward response. In the respective task, participants
were required to respond to a slot machine by pressing
a button. Finally, the outcome was presented indicating a
reward or not. Their predictive power (correlation coefficient
between predicted and real value) reached 0.20, where the
target region was the right putamen and the contrast was
the expected value during the outcome phase. In comparison,
using functional connectivity as a predictor, our results
showed that the correlation coefficients between estimated and
original data were 0.38–0.54 in the validation sample. One
possible reason for this may be that functional connectivity
at rest might be closer to brain activation during tasks than
structural connectivity as predictor since they are based on the
same type of signal.

A major merit of the current study is the possibility of
in-sample as well as out-of-sample validation. Although it is
common to use cross-validation only, ideally a trained model
should be tested with independent samples. In addition, given
that participants were scanned at multiple sites with different
scanners, we showed that the model could learn a predictive
pattern across datasets.

Our results need to be interpreted in the light of
methodological limitations. The length of the resting state
scans is comparably short and the repetition times are
relatively long. Even though the overall analyzed resting
state period is within the appropriate range according to a
recent study (from 5 up to 13 min) (Birn et al., 2013), longer
scan durations and a shorter TR could improve the quality of
the model by adding stability to the functional connectivity
estimates. In addition, though the rationale of the current
study was to show that predicting measures of ventral striatal
activation from functional connectivity at rest is possible,
a larger sample size would be helpful for further model
optimization (e.g., inclusion of different imaging modalities).
Lastly, the current study might also have implications for clinical
research. If the models derived within the current study can
be generalized beyond healthy subjects, this approach might
form a way to evaluate reward response in people not able to
perform the MID task.
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