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The Anthropocene will be characterized by increased environmental disturb-

ances, leading to the survival of stress-tolerant organisms, particularly in the

oceans, where novel marine diseases and elevated temperatures are re-shaping

ecosystems. These environmental changes underscore the importance of

identifying mechanisms which promote stress tolerance in ecologically impor-

tant non-model species such as reef-building corals. Mitochondria are central

regulators of cellular stress and have dedicated recovery pathways including

the mitochondrial unfolded protein response, which increases the transcription

of protective genes promoting protein homeostasis, free radical detoxification

and innate immunity. In this investigation, we identify a mitochondrial

unfolded protein response in the endangered Caribbean coral Orbicella faveolata,

by performing in vivo functional replacement using a transcription factor

(Of-ATF5) originating from a coral in the model organism Caenorhabditis
elegans. In addition, we use RNA-seq network analysis and transcription

factor-binding predictions to identify a transcriptional network of genes

likely to be regulated by Of-ATF5 which is induced during the immune

challenge and temperature stress. Overall, our findings uncover a conserved

cellular pathway which may promote the ability of reef-building corals to

survive increasing levels of environmental stress.
1. Introduction
Coral reefs have recently experienced massive declines [1,2], primarily driven

by marine diseases [3,4] and thermally induced mass coral bleaching [5,6]. As

a result, many studies have investigated the mechanisms with which corals

respond to disease [7–9] as well as factors associated with bleaching [10–12].

Interestingly, these pathways show considerable overlap [13], and involve

both antioxidants [14,15] and molecular chaperones, which have been

suggested to mediate a protective response [16]; however, additional cellular

pathways promoting these protective responses are likely to exist.

Both bacterial toxins and thermal stress lead to mitochondrial dysfunction

[17,18], suggesting a possible common mechanism worth further investigation.

Cells use a variety of means to mitigate dysfunction to mitochondria, including

the mitochondrial unfolded protein response (UPRmt), a retrograde pathway

which functions to recuperate homeostasis to the organelle [19]. The UPRmt is

induced upon impairments in mitochondrial function arising from sub-optimal

mitochondrial protein folding [20,21], mitochondrial reactive oxygen species

(ROS) production [22] or pathogenic infection [23]. This pathway induces a

potent cell-survival response by promoting detoxification of ROS, mitochon-

drial protein homeostasis (by increasing the transcription of mitochondrial

chaperones and proteases) and immune competence [20,23]. The UPRmt is regu-

lated by the basic leucine zipper (bZIP) transcription factor ATFS-1 in the model
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organism and nematode Caenorhabditis elegans [20], with the

bZIP transcription factor ATF5 from Homo sapiens (Hs-

ATF5) mediating a mammalian UPRmt [24]. Regulation of

the UPRmt occurs via organelle partitioning where ATFS-1/

Hs-ATF5 are imported into healthy mitochondria and proteo-

lytically degraded [20,24], which is dependent on the

mitochondrial targeting sequence (MTS) of these proteins.

Mitochondrial protein import efficiency is impaired in com-

promised mitochondria [25], allowing ATFS-1/Hs-ATF5

to localize to the nucleus through its nuclear localiza-

tion signal whereupon it regulates a diverse set of genes

promoting mitochondrial recovery [20,24].

As the UPRmt regulates many of the elements thought to

be important in coral stress responses including production

of heat shock proteins (HSP) and antioxidants, and that the

regulatory pathways in coral remain largely obscure, we

sought to characterize a possible UPRmt in the reef-building

coral Orbicella faveolata. In this investigation, we demonstrate

the existence of a pathway in O. faveolata which bears high

similarity to the described UPRmt. By using transgenesis of

a genetic reporter line of UPRmt activity in C. elegans, we

show that O. faveolata possesses a gene which is able to

rescue a loss of function mutation of the UPRmt mediator

ATFS-1 in vivo. We also demonstrate that due to its increased

expression, Of-ATF5 may function in coral during both

immune challenge and heat stress. In addition, by using

bioinformatic methods, we determine that this transcription

factor is associated with a mitochondrial-protective pathway

that contains well-known stress resistance genes previously

identified in reef-building corals [26–28]. Overall, our data

suggest that the UPRmt could play a key role in mediating

the ability of corals to adapt to a changing world.

2. Material and methods
(a) UPRmt homology
Of-ATF5 was found with the tblastn algorithm available from

NCBI, using C. elegans ATFS-1 or Hs-ATF5 as the query sequence

with an e-value cutoff of 1 � 1025. Protein sequence alignments

were performed through the TCOFFEE online alignment tool [29],

and predictions of mitochondrial targeting sequences were per-

formed with the online tool MITOPROT 2 [30]. Gene-tree analysis

was performed in MEGA7 [31] by creating a consensus maxi-

mum-likelihood tree over 100 iterations. Species sequences:

(Acropora digitifera, Stylophora pistillata, Orbicella faveolata, Exaipta-
sia pallida, Danio rerio, Homo sapiens, Mus musculus) were

downloaded from NCBI. Protein sequences were found through

the blastp algorithm using either Of-ATF5 or Hs-ATF5 for

cnidarian or vertebrate species respectively.

(b) Transgenesis
(i) Worm and bacterial strains
The reporter worm strains hsp-60pr::GFP (SJ4058) and atfs-1(tm4525)
hsp-60pr::GFP used have been previously described [32,33].

Hermaphrodite worms were raised on the OP50 strain of Escheri-
chia coli unless they were treated with RNAi, in which case the

HT115 E. coli strain expressing the described RNAi plasmid was

used. C. elegans strains were raised on nematode growth media

plates (NGM) at either 168C, 208C or 258C while the Of-ATF5

transgenic worms were maintained at 168C unless stated otherwise.

(ii) Plasmid construction
Total RNA was isolated from adult polyps of O. faveolata using

RNAqueous Total RNA Isolation kit (ThermoFisher scientific,
USA AM1912) according to the manufacturer’s instructions.

cDNA was obtained from total RNA using iScript cDNA syn-

thesis kit (BioRad, USA 1708890) following the manufacturer’s

instructions. Of-ATF5 cDNA was amplified using primer pair

Of-ATF5F (50-TTTGGATCCATGGCCAGAACTTATCACAA-30)

and Of-ATF5R (50-TTTGATATCTTATGAAGCAAGAAACACT-

30) and cloned into BamHI and EcoRV sites of the C. elegans
expression vector pPD49.78, resulting in hsp-16pr::Of-ATF5 [20].

The sequence of the cloned cDNA was confirmed by Sanger sequen-

cing. The plasmid pPD49.78 includes the heat shock inducible

promoter hsp-16.2 which we used to conditionally express

Of-ATF5. Transgenic C. elegans was generated by co-injecting

hsp-16pr::Of-ATF5 (10 ng ml21) with a myo-2pr::mCherry (5 ng ml21)

marker plasmid and pBluescript (120 ng ml21) carrier plasmid into

hsp-60pr::GFP;atfs-1 (tm4525), generating extra-chromosomal arrays.

(iii) RNAi
RNAi was performed as previously described [34]. Briefly,

worms were fed E. coli bacteria harbouring plasmids expressing

double-stranded RNA for the mitochondrial quality control pro-

tease spg-7 or the ATP synthase subunit atp-2, both of which are

capable of activating the UPRmt (figure 1e). Using qPCR, we cal-

culated the percentage knockdown of atp-2 and spg-7 after RNAi

to be 87% (+ 0.0009) and 77% (+0.007), respectively (electronic

supplementary material, figure S2).

(iv) Microscopy
Caenorhabditis elegans were imaged using a Zeiss AxioCam MRm

mounted on a Zeiss Imager Z2 microscope. Exposure times were

the same in each experiment. Fluorescence was quantified using

the program ImageJ [35] and the relative intensity between

worm strains raised on each RNAi clone were compared using

a one-way ANOVA using the tm4525 strain as a reference.

(c) Bioinformatic analysis
(i) LPS experiment
Transcriptome analysis comes from a previous study where

detailed methods can be found [36]. Briefly, 10 colonies of

O. faveolata were collected near La Parguera, Puerto Rico.

Samples were exposed to 1 ml of 7.57 mg ml21 lipopolysacchar-

ide (LPS) from E. coli 0127:B8 (Sigma-Aldrich L3129-100MG) or

vehicle control (filtered seawater) and incubated for 4 h upon

which time all colonies were flash frozen. RNA was extracted

with the RNAaqueous kit with DNAase step (Life Technologies

AM1914) according to the manufacturer’s instructions and qual-

ity assessed using the Agilent Bioanalyzer 2100. Samples with a

RIN greater than 8 were used to create cDNA libraries with Illu-

mina TruSeq RNA with Poly-A selection library kit. Libraries

were sequenced by the University of Texas Southwestern Medi-

cal Center Genomics Core facility. Reads were filtered for

adaptors and low-quality reads using TRIMMOMATIC software

with default parameters [37] and mapped to an existing O. faveo-
lata reference transcriptome [38] with the cufflinks package using

default parameters [39], and read counts were generated by

HTseq [40]. Read normalization was performed in the R package

DESeq2 [41] to generate rlog transformed normalized reads.

Of-ATF5 expression level from the rlog normalization was used

in an unpaired t-test (n ¼ 4 per group). The reference transcrip-

tome was annotated using blastx algorithm against the Uniprot

ensemble database with an e-value cut off of 1 � 1025. All raw

sequences used in this project are available on the NCBI

GenBank database (SRA Accession #SRP094633).

(ii) Weighted gene co-expression network analysis
Rlog-transformed counts were subject to weighted gene

co-expression network analysis [42] which creates groups of
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Figure 1. Expression of Of-ATF5 rescues UPRmt activity in worms lacking ATFS-1. (a) Alignment of amino acid sequence of bZIP domains in the homologous
transcription factors O. faveolata (Of-ATF5), Homo sapiens (Hs-ATF5), C. elegans (ATFS-1). (þ) represents consensus between all three species, (†) represents
amino acid similarity between two species. (b) Schematic comparing the homologous bZIP transcription factors: Of-ATF5, Hs-ATF5, C. elegans ATFS-1. MTS-mito-
chondrial targeting sequence with Mitoprot scores (*MTS denotes unconfirmed MTS), NLS-nuclear localization sequence, bZIP-basic leucine zipper, AA-amino acid
number. (c) Gene tree of ATF5/ATFS-1 homologues across multiple species demonstrating C. elegans ATFS-1 as outgroup to all other sequences, with numbers at
nodes representing support of each association. (d ) Transgene construct pPD49.78 expression plasmid with Of-ATF5 coding sequence insert downstream of the C.
elegans hsp-16.2 promoter. (e) Photomicrograph of wild type (hsp-60pr::GFP), atfs-1(tm4525) expressing Of-ATF5 raised on control (HT115 RNAi), atp-2 or spg-7
RNAi. Scale bar, 0.5 mm. ( f ) Relative intensity of the fluorescent signal ( from figure 1e) shown on a log scale (*p , 0.01). (Online version in colour.)
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co-expressed contigs (modules), based on expression similarity

[42]. Network construction was performed with an unsigned

Pearson’s correlation to generate modules with a power of 15,

minimum module size of 30 and merge cut height of 0.25. The

behaviour of the identified co-expression network modules

was investigated with respect to three traits: treatment condition,

genotype and expression of Of-ATF5.
(iii) Transcription factor binding predictions
DNA-binding sequence preference provided as a positional

weight matrix (PWM) for Hs-ATF5 (electronic supplementary

material, figure S2) was obtained from the online resource Cis-

Bp [43,44] as the sequence preference of DNA-binding domains

has a deep homology and is often extremely well conserved

[43,45]. To investigate if the genes identified by our weighted

gene co-expression network analysis (WGCNA) module pos-

sessed Hs-ATF5 binding motifs within their regulatory regions,

we extracted 1000 bp upstream of the start codon for all anno-

tated genes in the O. faveolata genome (ofav_dov_v1, GenBank:

MZGG00000000.1) using a custom Python script and BEDTOOLS

[46]. To identify motifs which match the PWM of Hs-ATF5 we

used the program FIND INDIVIDUAL MOTIF OCCURRENCE (FIMO) [47]
to scan the regulatory region of the genes within the WGCNA

module which was correlated to Of-ATF5. To investigate the

enrichment of Hs-ATF5 binding motifs, we additionally scanned

the regulatory region of a set of ‘random genes’, which were

selected from a WGCNA module which had a minimal corre-

lation to Of-ATF5 (R ¼ 20.147, p ¼ 0.727) and contained a

large number of contigs (1676). To test for enrichment, the

percentage of genes with motifs which matched the PWM of

Hs-ATF5 between the two gene sets was compared using a

Fisher’s exact test.
(iv) Gene ontology enrichment analysis
Genes which appeared in the highly correlated module and

possessed annotations were used in the R script Gene Ontology

enrichment analysis with Mann–Whitney U-test (GOMWU) [48].

Module membership scores acquired from WGCNA were used

as a continuous trait for the genes in the highly correlated

module, while all other genes in the transcriptome were given

a significant measure of zero. Tests were performed to generate

GO enrichment terms for the biological process with parameters:

cluster cut height ¼ 0.25, largest ¼ 0.1, smallest ¼ 25 and cellular

compartment with parameters: cluster cut height ¼ 0.25,
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largest ¼ 0.1, smallest ¼ 25, with an option for modules analysis

from WGCNA.

(d) Temperature stress experiment
In June 2017, six colonies of O. faveolata were collected from

Brewer’s Bay St. Thomas under the Indigenous Species Research

and Export Permit number CZM17010T, and split into two corre-

sponding fragments with a diamond bladed saw and housed at

the University of the Virgin Islands flow-through seawater facil-

ity to acclimate for two weeks. For the experiment, each coral

fragment was placed into separate containers and either held at

ambient temperature (27.58C, STD ¼ 0.36) or subjected to ther-

mal stress (298C, STD ¼ 0.844), which reached 308C over the

course of 18 h, upon which time all colonies were flash frozen.

(i) qPCR
RNA was extracted using Ambion RNeasy kit (ThermoFischer,

USA: AM1920) and converted into cDNA using the iScript

cDNA synthesis kit (BioRad, USA: 1708890). For qPCR reactions,

500 ng of cDNA was used in each well and samples were run in

triplicate for each gene with Universal SYBR Green mix (BioRad,

USA: 1725271). Target genes were selected due to known invol-

vement in the UPRmt of C. elegans, heat shock protein 60 (HSP-60)

and mitochondrial superoxide dismutase (mtSOD), the homol-

ogue of mammalian mitochondrial heat shock protein 70

(mtHSP-70), and translocase of inner mitochondrial membrane

23 (TIMM-23) [20]. Additionally, we pursued mitochondrial

inner membrane protease 2 (IMP-2) as this gene was present in

our highly significant WGCNA module. Expression was normal-

ized to coral housekeeping gene eukaryotic initiation factor 3

(EIF3) [49] and fold-induction values were calculated with the

DD Ct method. Statistical analysis for Of-ATF5 expression was

calculated with an unpaired t-test n ¼ 5 per group. Correlation

analysis of UPRmt genes was performed with Pearson’s corre-

lation between Of-ATF5 and target gene expression for each

target gene separately. Primer design was accomplished through

the use of PRIMER3 online tool [50] and primers are listed in

electronic supplementary material, table S3.

(e) Statistics
All statistical analysis including DESeq2, WGCNA and GOMWU

was performed in the R programming environment [51].
3. Results
We were unable to locate an obvious ATFS-1 homologue in the

genome of O. faveolata (electronic supplementary material,

figure S1); however, a subsequent search revealed a putative

homologue of Hs-ATF5 in the O. faveolata genome that contains

a bZIP domain and a weakly predicted MTS termed Of-ATF5

(figure 1a,b). Both Of-ATF5 and Hs-ATF5 have weak MTS

predictions, reflecting the resemblance between Hs-ATF5 and

Of-ATF5 but not to ATFS-1. We therefore performed an

additional analysis to investigate the presence of homologous

ATF5/ATFS-1-like proteins across eight species: four symbiotic

cnidarians, three vertebrate species and C. elegans. The created

gene tree indicates that C. elegans ATFS-1 is an outgroup to

all other sequences (figure 1c) reflecting our ability to locate

an Hs-ATF5, but not ATFS-1, homologue in O. faveolata.

We conducted a transgenesis experiment to investigate

if Of-ATF5 is functionally orthologous to ATFS-1 by

determining if Of-ATF5 can functionally replace a loss-

of-function atfs-1 mutant in a UPRmt genetic reporter line of

C. elegans. Here, we used the transgenic C. elegans strain
SJ4058 that contains a transcriptional green fluorescent

protein (GFP) reporter for the mitochondrial chaperone

gene hsp-60 (hsp-60pr::GFP), the promoter of which is directly

bound by ATFS-1 during the UPRmt [20,32,52] (electronic

supplementary material, figure S1). We used two different

sources of mitochondrial stress to induce the expression of

hsp-60pr::GFP; RNAi knockdown of the mitochondrial quality

control protease spg-7 or the ATP synthase subunit atp-2. As

expected, hsp-60pr::GFP was induced in wild-type animals

but not in the atfs-1 loss-of-function mutant in the presence

of these mitochondrial stress conditions (figure 1e,f ). Con-

ditional overexpression of Of-ATF5 in the atfs-1 mutant

background could restore hsp-60pr::GFP expression in the

presence of mitochondrial stress (figure 1e,f ), suggesting

that Of-ATF5 may constitute a bona fide homologue of

ATFS-1/Hs-ATF5.

(a) Induction of a UPRmt during immune stress
Of-ATF5 expression is increased during an immune challenge

(figure 2a) ( p , 0.0001), consistent with expectations. To com-

putationally identify networks of genes [53] associated with

Of-ATF5 expression, we employed WGCNA [42]. We identified

one WGCNA module which was significantly correlated to the

expression level of Of-ATF5 (R ¼ 0.94, p , 0.001) containing

941 contigs with gene annotations (figure 2b; electronic sup-

plementary material, table S1 and figure S2), of which 91 are

mitochondrially localized (electronic supplementary material,

table S1). Of-ATF5 is present as one of the core module genes

( p , 0.001) (electronic supplementary material, table S1) indi-

cating that this transcriptional network is robustly connected

to Of-ATF5. Of the 941 genes identified by our WGCNA analy-

sis, we were able to identify and extract the regulatory region of

807 (86%) from the O. faveolata genome. By using transcription

factor binding predictions, we identified Hs-ATF5 binding

motifs within the regulatory region of 181 of these genes

(22.4%) (electronic supplementary material, table S2), which is

a significant enrichment over the number of Hs-ATF5 binding

motifs within the regulatory region of ‘random’ genes (3.32%,

p , 2.2 � 10216, Fisher’s exact test). Gene Ontology analysis

of our significantly correlated WGCNA module revealed

enrichment of several mitochondrial cellular compartment

terms (figure 2c) and biological processes including mitochon-

drial transmembrane transport, proteolysis, regulation of cell

death and oxidation-reduction process (figure 2d).

(b) Induction of the coral UPRmt during temperature
stress

Elevated temperatures are able to activate the two UPRmt

reporter lines hsp-60pr::GFP and hsp-6pr::GFP in C. elegans
(electronic supplementary material, figure S1). We therefore

tested if Of-ATF5 expression is increased in colonies of O.
faveolata during pre-bleaching thermal stress of 28C above

ambient and found it to be increased relative to the control

(figure 3a) ( p , 0.05). The expression of our five investigated

mitochondrial-protective target genes had a positively corre-

lated expression with Of-ATF5 (figure 3b– f ) ( p , 0.05)

consistent with the expected relationship between a transcrip-

tion factor and a target gene [54]. For one of the samples, we

were unable to obtain amplification for either our mtSOD or

TIMM-23 primers and for these genes only four of our five

samples were used for this calculation.
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4. Discussion
(a) Uncovering a UPRmt in O. faveolata
Identifying conserved cellular pathways such as the UPRmt in

environmentally important basal metazoans like coral has

implications in understanding both the evolutionary roots of

stress-response pathways as well as molecular mechanisms

promoting adaptability to a rapidly changing environment.

By using multiple complementary approaches (transgenesis,

bioinformatics and qPCR), we uncovered members of a puta-

tive UPRmt pathway in O. faveolata which is induced during

both immune challenge and temperature stress. Overall,

our data demonstrate that the UPRmt appears to be a well-

conserved stress-response pathway [55] at the base of animal
evolution, which probably has significant implications in a

coral’s capacity to respond to environmental stressors.

We were able to establish functional conservation of

Of-ATF5 as it can rescue UPRmt activity in a C. elegans atfs-
1 loss-of-function mutant, demonstrating in vivo functional

replacement using a coral gene. Furthermore, because

Of-ATF5 could only restore UPRmt activity under conditions

that perturb mitochondrial function, it suggests that Of-ATF5

may be regulated by mitochondrial import efficiency in a

manner akin to ATFS-1 or Hs-ATF5 [20,24].

The promising results of our transgenesis experiment led

us to investigate if Of-ATF5 mediates a UPRmt-like pathway

in O. faveolata. We conclude that Of-ATF5 likely mediates

a UPRmt in O. faveolata which is similar to the response
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mediated by ATFS-1 in C. elegans, by regulating the

expression of genes that are involved in protein homeostasis

[56] and the detoxification of damaging free radicals [20].

Furthermore, the UPRmt probably has significant implications

for a coral’s capacity to respond to environmental conditions

that perturb mitochondrial function, since it is induced

during two conditions affecting corals on a global scale,

immune challenge and temperature stress.
(b) The role of the UPRmt in coral disease
Marine diseases are changing the face of reefs worldwide

[3,4,6,57], and the mechanisms which corals use to overcome

pathogens remain poorly characterized. The UPRmt of C. ele-
gans is induced during bacterial infection and serves to

promote immune competence by improving both pathogen

clearance and tolerance during infection [23,58]. We found

support that Of-ATF5 likewise is upregulated during the

immune challenge with LPS [36], an endotoxin found in

the outer membrane of bacteria that is a potent inducer

of the immune response in both invertebrate and vertebrate

model systems. Using gene network analysis and transcrip-

tion factor binding site predictions, we found support that
Of-ATF5 possibly functions to directly regulate a broad tran-

scriptional stress response during the immune challenge.

Based upon the high level of similarity between the responses

mediated by Of-ATF5 and ATFS-1, we generated a hypothe-

tical model where the UPRmt of O. faveolata might function

similarly to the UPRmt of C. elegans by promoting mitochon-

drial recovery during immune challenge (figure 4).

Mitochondria are purveyors of innate immunity and

mediators of cell death [63,64], and future investigations

should explore if the immune promoting abilities of the

UPRmt are conserved in corals.
(c) The role of the UPRmt in a warming climate
Coral bleaching induced by elevated temperature disrupts the

physiology of coral-dinoflagellate symbiosis [65,66], which

involves excessive ROS production [10]. Our findings support

previous work by Voolstra et al. [26], who identified Of-ATF5

as part of the response to elevated temperature in O. faveolata.

The UPRmt functions to concomitantly promote the detoxifica-

tion of ROS while simultaneously minimizing its production

[20,52]. Interestingly, of the mitochondrial genes which had cor-

related expression with Of-ATF5 during temperature stress, both
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mtHSP-70 and TIMM-23 are known genes involved in the C. ele-
gans UPRmt [20] and were also identified by our WGCNA

analysis. Thermal stress studies in symbiotic cnidarians have

demonstrated dysfunctions in cellular processes consistent

with target genes that form part of the UPRmt, including protein

misfolding [67,68], ROS production and mitochondrial damage

[18,69,70]. We therefore developed a hypothetical model of a

mitochondrial stress-based mechanism of dysfunction

(figure 4) as a parsimonious explanation for the involvement

of the mitochondria in contributing to the physiology of cnidar-

ians during temperature anomalies. In support of our model,

increased expression of mitochondrial chaperones and antioxi-

dants which are likely to be mediated by the UPRmt have been

associated with improved thermal tolerance in corals

[14,16,28,71] indicating that the UPRmt may be a contributing

pathway mediating corals ability to adapt to a warming ocean.
5. Conclusion
Despite worldwide declines, the cellular mechanisms which

promote the ability of corals to survive and adapt to a changing

ocean are not yet fully characterized. If these pathways can be

uncovered then active interventions to restore and protect the
world’s reefs, including coral restoration, assisted evolution

and or gene flow [72,73], can become more effective. In lieu

of our data, Of-ATF5 may show promise as a target gene for

further investigation as it mediates a mitochondrial-protective

gene network during exposure to two prominent environ-

mental stressors: disease and hyperthermic-temperature.

Overall our results point towards the potential of the UPRmt

to allow reef-building corals to persist under mounting

environmental stress in a rapidly changing ocean.
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