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Abstract
Insulin resistance is a metabolic disorder affecting multiple tissues and is a precursor 
event to type 2 diabetes (T2D). As T2D affects over 425 million people globally, 
there is an imperative need for research into insulin resistance to better understand 
the underlying mechanisms. The proposed mechanisms involved in insulin resistance 
include both whole body aspects, such as inflammation and metabolic inflexibility; 
as well as cellular phenomena, such as lipotoxicity, ER stress, and mitochondrial 
dysfunction. Despite numerous studies emphasizing the role of lipotoxicity in the 
pathogenesis of insulin resistance, an understanding of the interplay between tissues 
and these proposed mechanisms is still emerging. Furthermore, the tissue-specific 
and unique responses each of the three major insulin target tissues and how each in-
terconnect to regulate the whole body insulin response has become a new priority in 
metabolic research. With an emphasis on skeletal muscle, this mini-review highlights 
key similarities and differences in insulin signaling and resistance between different 
target-tissues, and presents the latest findings related to how these tissues communi-
cate to control whole body metabolism.
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1 |  INSULIN DISCOVERY AND 
FUNCTION

1.1 | Insulin overview

Frederick Banting and Charles Best are credited with the dis-
covery of insulin in 1921 while working at the University of 
Toronto, later receiving a Nobel Prize in 1923. For nearly 
100 years, the regulation of insulin secretion and its actions 
on peripheral tissues has been at the forefront of cell biol-
ogy and physiological research. Arguably the most studied 
hormone in history, the study of insulin is embedded within 
most major cell biology discoveries, ranging from pro-
hormone production and trafficking, membrane biology, 
exocytosis, receptor tyrosine kinases, SH2 domains, glucose 
transporter (GLUT)4 trafficking, and the regulation of carbo-
hydrate, lipid, and protein metabolism, to name a few. More 
recently, the study of mitochondrial function, autophagy, and 
mitophagy in the peripheral tissues has provided insight into 
how muscle, liver, and adipose tissues regulate their sensitiv-
ity to insulin function, and to how these key target tissues of 
insulin communicate with each other to control whole body 
metabolism.

In myofibers, hepatocytes, and adipocytes, insulin binds 
to receptors on the plasma membrane and coordinates ana-
bolic responses to nutrient availability. Upon insulin binding 
to its receptor, a signaling cascade of events are activated, 
ultimately promoting glucose uptake, especially in muscle 
and adipose tissues which express high levels of the GLUT4 
transporter. Additionally, insulin action impacts fatty acid, 
amino acid, and potassium uptake in muscle and fat tissues. 
If this system becomes disrupted, it gives rise to insulin re-
sistance, which affects virtually every tissue in the body, but 
has a dominant effect on muscle, adipose, and liver tissues. 
Despite the growing body of literature highlighting various 
aspects of insulin signaling impairment leading to insulin re-
sistance, the underlying molecular mechanisms are yet to be 
fully understood. In this review, we will summarize some of 
the critical mechanisms of insulin resistance in insulin target 
tissues, specifically highlighting skeletal muscle, but a com-
parison to liver and adipose tissue is also included.

1.2 | Insulin receptors and substrates

The insulin receptor (INSR) is composed of both alpha 
(⍺) and beta (β) subunits, where in the β subunits, tyrosine 
phosphorylation is more specific to insulin binding, and 
this subunit is highly expressed in differentiated liver, mus-
cle, and white adipose tissue (WAT) (Wei et al., 1995). The 
binding events are an essential step for INSR substrate re-
cruitment and activation of downstream mitogenic and meta-
bolic signals (Youngren, 2007). These signal activations are 

dependent on insulin concentrations. While induction of the 
metabolic response requires lower insulin amounts, the mi-
togenic response requires higher concentrations (Bedinger & 
Adams, 2015).

In all cell types, the activation of INSR is mediated upon 
the recruitment of phosphotyrosine-binding scaffold pro-
teins (PTB), initiating a cascade of cellular phosphorylation 
(Hubbard, 2013). The INSR receptor substrates include IRS1 
and IRS2, Src homology collagen (Src), and adaptor protein 
(APS), with a pleckstrin homology (PH) and Src homology 
2 (SH2) domain. Once phosphorylated, these substrates bind 
and activate kinases, mediating the initiation of insulin action 
in the cell (Youngren, 2007). The insulin receptor substrate 
(IRS) is the best-described class of the INSR scaffold. Even 
though there are six IRS isoforms, IRS1 and IRS2 are the ones 
mediating most metabolic effects of INSR (Araki et al., 1994; 
Sun et al., 1991). The IRS contains an amino (NH2) and a 
carboxyl (COOH) terminal full of tyrosine and serine/thre-
onine phosphorylation sites (White, 2012). IRS PTB domain 
bind to INSR pTyr972 to phosphorylate IRS tyrosine resi-
dues. After that, downstream signaling effectors are recruited 
to propagate and amplify insulin response (Hubbard, 2013). 
The S6 kinase (S6K) is the predominant inhibitor of insulin 
signaling, mediated by a negative feedback serine phosphory-
lation of IRS (Hsu et al., 2011). Furthermore, IRS phosphor-
ylation is one of the major targets of stimuli during insulin 
resistance.

2 |  INSULIN RESISTANCE

Insulin resistance is characterized by a diminished response 
to insulin stimulation, resulting in the failure of target tis-
sues to adequately dispose of blood glucose, inhibit lipoly-
sis, stimulate glycogen synthesis, and inhibit hepatic glucose 
output (Petersen & Shulman, 2018). Traditionally viewed as 
a compensatory response, insulin secretion is enhanced lead-
ing to hyperinsulinemia. These defects may be reversible by 
weight loss, exercise, and proper nutritional diets; however, 
if left unopposed insulin resistance is a precursor event that 
likely contributes to β-cell dysfunction. The most widely re-
ported consequences of insulin resistance include the onset of 
type 2 diabetes (T2D), with corresponding fasting and post-
prandial hyperglycemia, elevated HbA1c, and nonalcoholic 
fatty liver disease (NAFLD), accompanied by fasting plasma 
hyperinsulinemia. However, more recent evidence using ge-
netically engineered mouse models, have challenged the idea 
that insulin resistance is a direct cause of T2D, and instead 
posits that basal hyperinsulinemia caused by β-cell gluco/li-
potoxicity drives obesity and resistance in peripheral tissues 
(Mehran et al., 2012; Templeman et al., 2015). Collectively, 
these insights support the notion of a feed-forward system 
whereby insulin resistance stimulates hyperinsulinemia, and 
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hyperinsulinemia worsens obesity and insulin resistance until 
β-cells fail, marking the onset of T2D.

2.1 | Lipotoxicity

Among the leading etiological factors in the pathogenesis of 
insulin resistance is the effect of lipotoxicity. Lipotoxicity 
is a type of cellular stress induced by the accumulation of 
lipid intermediates such as diacylglycerols (DAGs), cera-
mides, and triglycerides that facilitate the development 
of insulin resistssance in muscle, liver, and adipose tissue 
(Erion & Shulman,  2010; Gordon et  al.,  2015; Petersen & 
Shulman,  2018; Samuel & Shulman,  2016). Moreover in 
skeletal muscle, the overabundance of fatty acid intermedi-
ates impedes insulin signaling via the reduction of GLUT4 
transporters on the myocyte membrane surface (Chavez & 
Summers,  2003; Itani et  al.,  2002; Montell et  al.,  2001). 
In other tissues such as the liver, intrahepatic triglycerides 
(IHTG) accumulation, and DAG-PKC-ε axis have been 
implicated in the pathogenesis of hepatic insulin resist-
ance (Marchesini et al., 1999). As for adipose tissue, it has 
been theorized that an increase in lipolysis, governed by a 
similar cascade found in skeletal and liver tissue as seen in 
Figure 1, is the proximal cause of insulin resistance at this 
site (Morigny et al., 2016).

2.2 | Metabolic inflexibility

Metabolic flexibility is described as the ability of an organ-
ism to adapt fuel oxidation to fuel availability (Goodpaster 
& Sparks,  2017). Consequently, metabolic inflexibility is 
characterized by impaired fuel switching and energy dys-
regulation, concepts that are both closely associated with in-
sulin resistance and cardiometabolic disease (Muoio, 2014). 
Diminished fuel switching capacity can result in the ac-
cumulation of intramyocellular lipid (IMCL), as well as 
DAG-PKCθ activation and impairment of proximal insulin 
signaling pathways (Rahimi et al., 2014). The latter ultimately 
impairs insulin signaling through different mechanisms, ei-
ther increased serine phosphorylation of IRS1 at Ser-1101 
and/or reduced serine phosphorylation of PKB/Akt (Morino 
et al., 2006; Summers & Nelson, 2005).

In response to an excess of fatty acid availability, fatty 
acid transporters may limit cellular and mitochondrial fatty 
acid uptake, thereby reducing fat oxidation and increasing 
the accumulation of lipotoxic lipid metabolites, contributing 
to the onset of insulin resistance (Corpeleijn et  al.,  2009). 
Additionally, myotubes from insulin-sensitive subjects have 
been reported to be more adaptive to fatty acid exposure in 
vitro (Perreault et al., 2018). Furthermore, palmitate oxida-
tion has also been shown to be lower in myotubes derived 

from T2D versus matched nondiabetic controls (Gaster, 2007; 
Gaster et al., 2004). Ultimately, defects in fuel switching can 
intensify with impaired mitochondrial content and/or func-
tion, further contributing to insulin resistance and mitochon-
drial dysfunction (Figure 1).

3 |  SKELETAL MUSCLE

3.1 | Insulin signaling

The skeletal muscle accounts for approximately 80% of 
postprandial glucose disposal in humans, and proper in-
sulin action is imperative to maintain glucose homeostasis 
(DeFronzo & Tripathy, 2009; Shulman et al., 1990; Thiebaud 
et al., 1982). The primary role of glucose in the skeletal mus-
cle is to promote glycolysis or glycogen synthesis, where the 
latter represents 75% of all glucose disposal (DeFronzo & 
Tripathy, 2009).

Elevated levels of blood glucose trigger pancreatic insu-
lin release, which subsequently binds to INSR to promote 
glucose uptake and glycogen storage. Moreover INSR stim-
ulation triggers a phosphorylation-dephosphorylation cas-
cade that is mediated by various kinases such as S6 kinase 
(S6K), protein kinase B (Akt), 3-phosphoinositide-dependent 
protein kinase 1 (PDK1), and isoforms of PKC (Boucher 
et  al.,  2014). These proteins function to regulate numerous 
pathways in the skeletal muscle that contribute to glucose 
metabolism (Boucher et  al.,  2014). As shown in Figure  2, 
one signaling pathway involves the translocation of GLUT4 
containing storage vesicles (GSVs) to the plasma membrane, 
which is regulated by Akt2 (DeFronzo & Tripathy,  2009; 
Taniguchi et  al.,  2006). Other downstream effects result in 
an increase in G6P (glucose-6-phosphate), dephosphoryla-
tion of glycogen metabolic proteins, and glycogen synthesis 
(DeFronzo & Tripathy, 2009). Therefore, in order to sustain 
normal insulin-stimulated glucose uptake in the muscle, the 
IRS1/PI3K/Akt pathway has to be maintained (DeFronzo & 
Tripathy, 2009).

Tyrosine phosphorylation of IRS mediates PI3K recruit-
ment and insulin stimulated glucose uptake. Conversely, serine 
and threonine phosphorylation of IRS promote the opposite 
effects (Pederson et  al.,  2001). Continuous exposure to high 
insulin levels were found to induce phosphorylation of ei-
ther serine or threonine, which consequently inhibited IRS1 
and decreased GLUT4 translocation to the plasma membrane 
(Pederson et al., 2001). Skeletal muscle uses IRS1 as the pri-
mary substrate for INSR during insulin-mediated glucose 
metabolism (Boucher et al., 2014). Although IRS2 is also ex-
pressed, it is unnecessary for insulin-stimulated glucose trans-
port in the muscle (Higaki et al., 1999). In the presence of high 
amounts of phosphatidylinositol (Aguirre et al., 2000; Akhtar 
et  al.,  2019; Albers et  al.,  2015)-trisphosphate (PIP3) in the 
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cellular membrane, kinases with a PH domain such as PDK1 
and Akt are recruited (Gao et al., 2011). While both Akt1 and 
Akt2 are present in skeletal muscle, Akt2 is more critical for in-
sulin-stimulated glucose uptake. Studies on mice have indicated 
that Akt2 knockouts are extremely glucose intolerant (Cho, 
et al., 2001), whereas Akt1 knockouts exhibit normal glucose 
tolerance, along with growth defects (Cho et al., 2001b).

PI3K has been demonstrated to regulate GLUT4 transloca-
tion (Hausdorff et al., 1999). It is mediated by Akt2 phosphor-
ylation and the activity of a Rho family of small guanosine 
triphosphatases (GTPase) Ras-related C3 botulinum toxin 

substrate 1 (RAC1) (Gonzalez & McGraw,  2009; Zeigerer 
et  al.,  2004). Studies on muscle-specific RAC1 knockouts 
in mice have indicated that Rho GTPases may be involved 
in insulin-stimulated glucose uptake regulation in the mus-
cle via PI3K-dependent signaling (Wu et al., 2019). Further, 
Sylow et al. (2013) observed that even in the presence of ac-
tivated Akt, these knockout mutations resulted in impaired 
insulin-stimulated glucose uptake. Despite its relevance to in-
sulin-stimulated glucose uptake signaling, the precise mecha-
nisms of RAC1 induced GLUT4 translocation is not entirely 
known.

F I G U R E  1  Overview of possible mechanisms leading to insulin resistance. Impaired mitochondrial functioning is a suggested mechanism 
through which insulin resistance develops. Several factors have been implicated in the development of mitochondrial dysfunction. Some of the 
most reported factors include: (a) an increased production of reactive oxidative species (ROS). ROSs are necessary by-products of mitochondrial 
energy metabolism; however, if their production is not adequately coupled by intracellular antioxidants, then oxidative damage to mitochondrial 
DNA (mtDNA) can occur. (b) Impaired glucose oxidation and fatty acid oxidation may result from metabolic inflexibility, which is commonly 
described as an inability to adapt fuel oxidation to fuel availability. Ultimately, these events may lead to both the development of ROS and ectopic 
lipid accumulation, resulting in mitochondrial damage and removal through mitophagy pathways. Further investigation on the genes involved in 
mitophagy (i.e., Bnip3, Nix, Fundc1) may allow the discovery of pathways that explain the correlation between mitochondrial dysfunction and 
insulin resistance in adipose, hepatic, and skeletal muscle tissue. (c) Endoplasmic Reticulum (ER) stress is also involved in the pathogenesis of 
mitochondrial dysfunction. Lipotoxicity and glucotoxicity can induce ER stress, which may trigger an adaptive signaling pathway, known as 
the unfolded protein response (UPR). If ER stress fails to be relieved by this UPR, then this can lead to the provocation of both mitochondrial 
dependent and independent cell death pathways. Together, the ability of the mitochondria to respond to metabolic disruptions is essential 
for healthy cellular bioenergetics, and interference with this process may prompt unregulated mitochondrial biogenesis and mitophagy, thus 
contributing to insulin resistance. This figure was created using Servier Medical Art (available at https://smart.servi er.com/) and PAGES software.

https://smart.servier.com/
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In summary, GLUT4 translocation to the plasma mem-
brane in a fed state is an important step in normal blood glu-
cose disposal in the skeletal muscle and is characteristic of 
normal insulin physiology. However, the failure of this event 
in response to insulin indicates an early stage of insulin resis-
tance and T2D (Leto & Saltiel, 2012).

3.2 | Insulin resistance

One of the earliest theories proposed to explain the mecha-
nisms of muscle insulin resistance was postulated by Randle 
and his colleagues, in the 1960s. They concluded that an 

acute increase in muscle fatty acid oxidation leads to the ac-
cumulation of citrate, which inhibits phosphofructokinase 
(PFK), a pivotal enzyme in glycolysis (Randle et al., 1963). 
This results in the impairment of glucose utilization (Randle 
et  al.,  1963). Other studies have further elaborated that re-
duced insulin-stimulated muscle glycogen synthesis and 
glucose oxidation may drive chronic insulin resistance 
(Shulman et al., 1990). However, human studies examining 
GLUT4 function have suggested that failed INSR signal-
ing cascade activation and impaired GLUT4 translocation 
is the primary defect in skeletal muscle insulin resistance 
(Garvey et al., 1998). Additionally, in T2D patients, tyros-
ine phosphorylation of IRS1 was reported to be severely 
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impaired as a consequence of hyperglycemia (Abdul-Ghani 
& DeFronzo, 2010). Therefore, defects at the proximal level 
of insulin signaling that involve INSR, IRS1, PI3K, and Akt 
pathways are more evident in skeletal muscle insulin resist-
ance, resulting in a decrease in insulin-stimulated glucose 
uptake (Figure 2).

Modern theories argue that skeletal muscle lipid expo-
sure is one of the leading causes of muscle insulin resistance. 
The mechanism of lipid-induced insulin resistance linking 
DAGs, ceramides and other species have been extensively in-
vestigated (Gassaway et al., 2018; Muoio & Newgard, 2008; 
Petersen & Shulman, 2018; Shulman, 2000). Animals treated 
with a high-fat diet and lipid infusion increased muscle DAG, 
resulting in the activation of PKCθ (Yu et al., 2002). Similarly, 
lipid infusions in humans resulted in an increase in DAG and 
PKCθ signaling, which impairs tyrosine phosphorylation of 
IRS1 activation (Szendroedi et  al.,  2014; Yu et  al.,  2002). 
As IRS1 is the primary activator of PKB/Akt, inhibition of 
this pathway blocks insulin signaling cascade events prevent-
ing insulin-stimulated glucose uptake in the skeletal muscle 
(Figure 2). In other studies, acute induction of muscle insu-
lin resistance increased DAG content, PKCθ activation, and 
increased phosphorylation of IRS1 serine 1,101, concurrent 
with inhibition of IRS1 and Akt2 phosphorylation. However, 
adipokines, ceramides, and acylcarnitine content alterations 
were not associated with insulin resistance in this study 
(Szendroedi et al., 2014).

In both skeletal muscle and liver, activation of the novel 
PKC (nPKC) isoforms have been consistently observed 
(Figure  2). Yu and colleagues (2002) suggested a link be-
tween increased DAG content and sustained activation of 
the PKCθ. Moreover within muscle tissue of high-fat fed 
rodents, or in cultured myocytes exposed to palmitate, the 
expression of a smaller molecular weight catalytically ac-
tive PKCδ fragment is substantially elevated to sustain 

heightened PKC activity (Mughal et al., 2015). In addition, 
infusion studies in rodents using lipid emulsions or glycerol, 
have observed nPKC-mediated insulin resistance results with 
chronic IMCL accumulation (Samuel & Shulman, 2016; Yu 
et  al.,  2002). Specifically in skeletal muscle, T2D patients 
present with both PKCθ (Szendroedi et al., 2014), and PKCε 
(Perreault et al., 2018) isoforms increased, compared to con-
trols. Interestingly, a study conducted on endurance athletes 
found that IMCL was accumulated in athletes who did not 
have T2D, a phenomenon termed the “Athlete's Paradox” 
(Daemen et al., 2018). It was discovered that T2D patients 
and endurance athletes store lipid droplets differently. T2D 
patients have lipid droplets localized in the subsarcolemmal 
region of type II muscle fibers while the athlete's lipid drop-
lets were localized in the myofibrillar region of type I muscle 
fibers. This finding suggests the importance of lipid droplet 
morphology and storage in the consequent pathogenesis of 
insulin resistance (Daemen et al., 2018).

Another proposed mechanism involves the presence of 
branched chain amino acids (BCAAs), as serum BCAAs 
were shown to be elevated in obese T2D patients (Felig 
et  al.,  1974). Similarly, animal and human studies have 
shown that the infusion of amino acids caused impairment 
of skeletal muscle glucose uptake (Krebs et  al.,  2002; Um 
et  al.,  2006). Recently, pharmacological enhancement of 
BCAA catabolic activity has been shown to improve insu-
lin resistance and hyperglycemia, at least in an animal model 
(Zhou et al., 2019). The mechanisms of BCAA are not clear, 
but it has been linked to lipotoxicity leading to insulin resis-
tance (Sun & Wang,  2019). Other studies have shown that 
high amounts of BCAA can interfere with insulin signaling 
via activation of mTOR and S6K1 in a PI3K dependent man-
ner (Um et  al.,  2006). Tremblay et  al.  (2007) identified in 
an in vitro model that S6K1 directly phosphorylates IRS1 
Ser-1101 resulting in suppression of IRS1 tyrosine and Akt 

F I G U R E  2  Overfed state and insulin resistance as central regulators in tissue-crosstalk. An increase in adipokines causes augmentation in the 
inflammatory response and recruitment of macrophages and cytokines around dead adipocytes to discard them. The inflammatory mediators, tumor 
necrosis factor (TNF)-⍺ or interleukin-1 (IL-1)-β increase lipolysis and inhibit insulin receptor (INSR), therefore, impairing insulin signaling. 
Lipolysis is activated by protein kinase A (PKA) signaling, and, in a fed state, insulin activates Akt2 signaling, which via unknown mechanisms 
activates phosphodiesterase 3 (PDE3) and inhibits PKA in order to suppress lipolysis. However, during adipose tissue insulin resistance, there 
is a decrease in Akt2 phosphorylation, contributing to sustained lipolysis activation. As a result, non-esterified fatty acid (NEFA) production 
and circulating fatty acids are increased, which are uptake by the liver and muscle, contributing to ectopic lipid accumulation in both tissues. 
Intrahepatic lipid accumulation triggers activation of the diacylglycerol (DAG)/protein kinase C (PKC)ε axis. PKCε directly phosphorylates 
and inhibits insulin receptor (INSR) at Thr1160, impairing insulin signaling. As a result, gluconeogenesis is increased, as insulin suppression 
of gluconeogenesis mediator, forkhead box protein 01 (FOXO1), is impaired. Furthermore, in a chronic overnutrition state, de novo lipogenesis 
(DNL) is increased, concurrent with its mediators mTORC1 and SREBP-1c. Even though activation of SREBP-1c by INSR is impaired in hepatic 
insulin resistance, other inputs such as amino-acid mediated mTORC1 activation can increase the lipogenic flux. Additionally, a chronic increase in 
lipolysis contributes to IMCL accumulation and lipid-induced insulin resistance. In contrast to the liver, in the skeletal muscle, lipid-induced insulin 
resistance is initiated upon activation of the DAG-PKCθ axis and inhibition of both phosphoinositide-3 kinase (PI3k) and phosphorylation of IRS1. 
As a result, insulin signaling is impaired, preventing glucose transporter (GLUT)4 translocation to the plasma membrane and glucose uptake. As 
a compensatory mechanism during an overfed state, FGF21 plays a role as a hepatokine, adipokine, and myokine controlling insulin sensitivity in 
insulin-resistant animals. Similarly, GFD15 is selectively upregulated as a stress response mechanism during high-fat feeding, especially in liver 
and adipose tissue. This figure was created using Servier Medical Art (available at https://smart.servi er.com/) and PAGES software.

https://smart.servier.com/
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phosphorylation, and further, insulin resistance (Tremblay 
et al., 2007).

Skeletal muscle is a heterogeneous tissue with different 
muscle fibers. Studies suggest that insulin-stimulated glucose 
metabolism is different according to each muscle fiber type 
(Schiaffino & Reggiani, 2011; Talbot & Maves, 2016). On 
a physiological level, slow-twitch (type I) fibers had higher 
amounts of GLUT4 and hexokinase II, among others, but 
lower Akt2, TBC1D4, and TBC1D1 amounts compared to 
type 2 fibers (Albers et al., 2015). These studies concluded 
that type I fibers have better glucose-handling capacity, 
but similar insulin phospho-regulation sensitivity (Albers 
et al., 2015). Furthermore, in other studies, obese and T2D 
patients presented with a lower proportion of type I fibers, 
which is rich in mitochondria, compared to type II fibers, 
concurrent with reduced oxidative metabolism (Oberbach 
et al., 2006).

In obesity and insulin resistance, the skeletal muscle 
capillary network is compromised, impairing insulin-medi-
ated capillary recruitment. A study by Umek et  al.  (2019) 
investigated the possibility that the anatomical changes in 
the capillary network could be linked to fiber-type specific 
differences. Capillary density was found to be increased in 
small muscle fibers (type I) compared to large fibers (type II) 
and is attributed to increased capillarization selectiveness to-
wards more insulin-sensitive oxidative muscle fibers (Umek 
et al., 2019). Their findings suggest that the selective increase 
in capillarization surrounding more insulin-sensitive oxida-
tive muscle fibers act to alleviate obesity-related insulin re-
sistance (Umek et al., 2019). Obese insulin-resistant humans 
and mice present muscle fiber type transformation, which 
provides a possible mechanism related to impaired glucose 
metabolism and T2D. Although intriguing in the context 
of diabetic microangiopathy, further studies are required to 
more fully appreciate these observations (Albers et al., 2015; 
Umek et al., 2019).

Recent theories argue that excessive β-oxidation and mito-
chondria acylcarnitine accumulation is linked to the develop-
ment of muscle insulin resistance (Koves et al., 2008). Koves 
et al. (2008) found that concurrent with the upregulation in 
β-oxidation there was a decrease in tricarboxylic acid (TCA) 
intermediates. Furthermore, in this imbalanced environment 
of excessive β-oxidation, the mitochondria becomes more 
susceptible to accumulation of acyl-CoAs and acylcarnitine, 
possibly contributing to mitochondrial failure.

Gene expression arrays performed on human muscle 
biopsies found that a series of genes involved in oxidative 
metabolism were downregulated in T2D patients (Hesselink 
et al., 2016). For instance, PGC-1α, responsible to promote 
mitochondrial biogenesis, is decreased in T2D along with sev-
eral of its target genes. This observation has been proposed as 
an explanation for the decrease in muscle oxidative capacity 
observed in T2D (Mootha et al., 2003; Patti et al., 2003). With 

a decrease in mitochondrial function, fatty acids compete 
with glucose for oxidative degradation (Randle et al., 1963), 
resulting in metabolic inflexibility (Figure 1). This inability 
to switch fuel oxidation upon nutrient availability likely con-
tributes to insulin resistance and IMCL accumulation (Chow 
et al., 2017). The IMCL accumulation and insulin resistance 
in the skeletal muscle emphasizes the role of dysfunctional 
mitochondrial in contributing to ectopic lipid accumulation 
in both elder (Petersen et  al.,  2003) and younger subjects 
(Petersen et al., 2009).

Finally, recent evidence suggests that inflammation oc-
curs in skeletal muscle in obesity, characterized by increased 
immune cell infiltration and proinflammatory activation in 
intermyocellular tissue (Wu & Ballantyne, 2017). Increased 
levels of cytokines such as TNF-α and IL-1β activate the 
PKC, JNK, and IKK/NF-κB pathways in myocytes. As a re-
sult, this may impair insulin signaling via serine or threonine 
phosphorylation, which disrupts insulin-stimulated tyrosine 
phosphorylation of IR or IRS.

3.3 | Mitochondrial dysfunction

Mitochondria are dynamic organelles that adapt to metabolic 
perturbations by undergoing fusion and fission cycles, rear-
ranging electron transport chain complexes into supercom-
plexes, and biogenesis via peroxisome proliferator-activated 
receptor γ co-activator 1α (PGC 1α) (Sergi et  al.,  2019). 
These normal processes, however, are dysregulated in indi-
viduals with T2D and insulin resistance (Jeong-a et al., 2008; 
Lowell & Shulman, 2005). Mechanistic studies have shown 
that lipotoxicity prompts excessive mitochondrial fission via 
DRP1 activation, resulting in impaired insulin-stimulated 
glucose uptake (Jheng et al., 2012). Another presumed mech-
anism connecting mitochondrial dysfunction to insulin re-
sistance is the generation of reactive oxygen species (ROSs) 
by mitochondria (Figure 1). Notably, oxidative stress occurs 
when ROS production overwhelms cellular antioxidant ca-
pacity. In addition to ROSs ability to induce oxidative dam-
age to nuclear and mitochondrial DNA, lipids and protein, 
they are also signaling molecules that can directly induce 
insulin resistance (Schieber & Chandel, 2014). The induced 
oxidative damage caused by the ROSs consequently triggers 
the removal of damaged mitochondria by mitophagy (Wei 
et al., 2014). The resultant decrease in mitochondrial function 
and density compromises overall cellular oxidative capacity, 
further contributing to ectopic lipid accumulation and onset 
of insulin resistance (Anderson et al., 2009; Montgomery & 
Turner, 2014). Lee et al. (2017) investigated this hypothesis 
in mice by overexpressing a mitochondrial-target catalase 
(MCAT) and fed them with a high-fat diet. These animals 
were protected from energy imbalance, as well as from DAG 
accumulation and PKCθ activation. However, it is debatable 
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whether or not muscle mitochondrial ROS production di-
rectly contributes to lipid-induced insulin resistance.

3.4 | Mitochondrial dynamics and 
permeability transition

Mitochondrial dynamics, which includes cycles of fission 
and fusion, is necessary for appropriately maintaining the 
mitochondria's shape, size and distribution in response to 
changing physiologic conditions (Yu & Pekkurnaz,  2018). 
For example, in the case of an absolute or relative drop in 
ATP, there is a shift toward mitochondrial fusion (Hesselink 
et al., 2016). Furthermore, mitochondrial fusion enables con-
tent mixing within the mitochondrial population, thereby pre-
venting the loss of essential components (Westermann, 1817). 
Mitochondrial fission is also required to replenish the mito-
chondrial network (Youle & Karbowski, 2005), as it enables 
the removal of damaged mitochondria through mitophagy 
(Ding & Yin, 2012; Youle & Bliek, 2012). However, aberrant 
mitochondrial fission can lead to mitochondrial dysfunction 
and insulin resistance in skeletal muscle (Jheng et al., 2012).

Dysregulated mitochondrial fission is often associated 
with more severe mitochondrial dysfunction as this morpho-
logical state predominates during elevated stress levels and 
cell death (Jheng et  al.,  2012). Furthermore, increased mi-
tochondrial fission and subsequent mitochondrial fragmen-
tation have been associated with increased ROS production, 
mitochondrial depolarization, impaired ATP production, and 
decreased insulin-dependent glucose uptake in C2C12 murine 
cell line (Kim et al., 2000), as well as increased mitochondrial 
ROS and impaired insulin signaling (Lin et al., 2018). A shift 
towards fission also negatively impacts fatty acid β-oxidation 
(Jheng et al., 2012), which has been described as an import-
ant metabolic defect in insulin resistance (Koves et al., 2008). 
In support of this, a shift toward fusion has been reported to 
increase fatty acid consumption (Lionetti et al., 2014), pre-
sumably averting lipotoxicity.

Mitochondrial dynamics can also describe mitochon-
dria-organelle interactions such as the ER, peroxisomes, and 
nucleus (Xia et  al.,  2019). In particular, the dysregulation 
of the interactions between mitochondria and the ER has 
been stated to be implicated in the pathogenesis of muscle 
insulin resistance (Tubbs et  al.,  2018). Mitochondria-ER 
contact points, also known as mitochondria-associated ER 
membranes (MAMs), are the sites where Ca2+, lipid and 
metabolite exchange occur, thus representing critical points 
of interaction for the regulation of oxidative metabolism 
(Theurey & Rieusset,  2017). Additionally, studies have 
shown that the disruption of the MAMs in the liver promotes 
insulin resistance (Tubbs et  al.,  2014). Also, studies have 
shown that an increase in MAMs results in the accumulation 
of Ca2+ within the mitochondria, leading to compromised 

mitochondrial oxidative capacity, an increase in ROS pro-
duction and impeded insulin signaling (Arruda et al., 2014). 
Subsequently, MAM formation appears to be an important 
regulator of mitochondrial function and insulin sensitivity.

Another proposed mechanism offering a causal link be-
tween mitochondrial dysfunction and insulin resistance 
involves the mitochondrial permeability transition pore 
(mPTP) protein complex. In particular, Taddeo et al. (2014) 
showed that genetic deletion of whole body Cyclophilin D, a 
mPTP gatekeeper protein, protected mice from diet-induced 
glucose intolerance and increased glucose uptake specifically 
in skeletal muscle. Interestingly, the improved glucose tol-
erance was only associated with glucose uptake in the skel-
etal muscle, and the effects did not transfer to adipose and 
liver tissues. Furthermore, the protective effects of mPTP 
inhibition on insulin sensitivity did not involve changes to 
the insulin signaling pathway but rather, it occurred via an 
unmapped mechanism preventing the formation of GLUT4 
vesicles (Taddeo et  al., 2014), a phenomenon described by 
other studies (Tsuchiya et al., 2010).

Collectively, the ability of the mitochondria to dynam-
ically respond to metabolic perturbations is essential for 
healthy cellular bioenergetics, and interference with this del-
icate process may prompt unregulated mitochondrial biogen-
esis and mitophagy, thus contributing to insulin resistance 
(Jheng et al., 2012).

3.5 | Autophagy

In response to the energetic and metabolic demands during 
periods of cellular stress, cells undergo more frequent au-
tophagy and induce catabolic processes (Feng et al., 2014; He 
& Klionsky, 2009; Kroemer et al., 2010; Mizushima, 2018; 
Mizushima & Levine,  2010). As the name implies, au-
tophagy is a self-consuming process that functions to me-
diate levels of various proteins in cells within different 
environments. This self-digesting mechanism is imperative 
in the removal of damaged organelles and proteins by the 
lysosome. Mammalian autophagy has been identified to pri-
marily involve numerous Atg proteins, autophagy media-
tors, and conjugation systems that allow for the formation 
of the autophagosome, which encapsulates the cargo to later 
be degraded by the lysosomes (Badadani,  2012; Kroemer 
et al., 2010; Yang & Klionsky, 2010).

Autophagy was initially posited to be a cellular re-
sponse to starvation or nutrient deprivation; however, some 
studies have suggested that autophagy may potentially 
play a role in preventing insulin resistance in the fed state. 
Conversely, other studies have argued that autophagy ac-
tually contributes to the pathogenesis of insulin resistance 
(Rocha et  al.,  2020). The Bcl-2-Beclin-1 complex is an 
important mediator of autophagy, where phosphorylation 
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of Bcl-2 can release Beclin-1 from this complex and ul-
timately leads to the induction of autophagy (Pattingre 
et al., 2005). Intriguingly, He and colleagues (2012) found 
that transgenic mice expressing a Bcl-2 mutant that could 
not inhibit Beclin-1 correlated with a decrease in insulin 
sensitivity and GLUT4 translocation to the membrane sur-
face. The authors concluded that the onset of acute exer-
cise can contribute to disruptions in the coupling between 
the Bc1-2-Beclin-1 complex, which consequently leads to 
increased autophagy in the skeletal muscle. Interestingly, 
Palikaras et  al.  (2018) elucidated a mechanism by which 
selective mitochondrial autophagy (mitophagy) occurs in-
volving PINK1-Parkin and LC3 interacting regions (LIR) 
to which the latter can serve as a receptor to induce mito-
chondrial autophagy.

3.6 | Mitophagy

Alterations in mitochondrial dynamics and elevated lev-
els of mitophagy have been linked to the onset of insu-
lin resistance in T2D by multiple studies (Montgomery 
& Turner,  2014; Rocha et  al.,  2020; Rovira-Llopis 
et al., 2017). Mitophagy (also known as selective autophagy 
of the mitochondria) is the process where dysfunctional mi-
tochondria are degraded in a form of organelle turn-over. 
One of the most well-characterized pathways is the PINK1-
Parkin-mediated mitophagy (Palikaras et al., 2018), stimu-
lated by a decrease in mitochondrial membrane potential 
and associated with ROS elevations (Xiao et  al.,  2017). 
Upon mitochondrial depolarization, the PINK1 kinase ac-
cumulates on the outer mitochondrial membrane (OMM) 
and initiates recruitment of the E3 ubiquitin ligase Parkin. 
Parkin mediates the ubiquitination of several OMM pro-
teins, leading to the recruitment and degradation of pro-
teases and autophagosomes (Chan et  al.,  2011; Ordureau 
et  al.,  2018; Sarraf et  al.,  2013). In a human study, T2D 
patients presented a decrease in various mitophagy-related 
genes, including PINK1; furthermore, mutations in PINK1 
have also been associated with T2D in humans (Bhansali 
et  al.,  2017). Conversely, in healthy endurance-trained 
runners, key mitophagy markers such as PINK1 and Drp1 
were enhanced in skeletal muscle, and high-fat meals had 
no influence over these markers (Tarpey et al., 2017).

Besides the PINK1-Parkin ubiquitin-dependent mitoph-
agy mechanism, mitochondrial proteins also act as mito-
phagy receptors and target dysfunctional mitochondria for 
degradation by autophagosomes (Palikaras et  al.,  2018). 
The mitophagy receptors, such as BCL2L13, FKBP8, 
Fundc1, Bnip3, and Nix, initiate mitophagy via direct inter-
action with ATG8 proteins, such as LC3 and GABARAP, 
on the autophagosome membrane through their LIR motifs 
(Gatica et al., 2018). Fundc1 interacts with the ER calnexin 

proteins and recruits mitochondrial fission protein DRP1 
to activate mitochondrial fission (Palikaras et  al.,  2018). 
Mitophagy initiated by hypoxia increases the expression 
of Fundc1, which interacts with and recruits LC3 proteins 
to dysfunctional mitochondria. A recent study showed that 
Fundc1 deletion in skeletal muscle resulted in impaired 
mitochondrial energetics due to LC3-mediated mitophagy 
defect (Fu et al., 2018). However, in spite of the reduced 
muscle mitochondrial energetics and exercise capacity, 
these animals interestingly were protected against obesity 
and insulin resistance elicited by high-fat (HF) feeding (Fu 
et al., 2018).

Like Fundc1, Bnip3, and Nix are also hypoxia-inducible 
and regulators of mitophagy. Metabolic stresses such as lipo-
toxicity, hypoxia, and starvation, can all induce Bnip3/Nix 
mediated mitophagy (Glick et al., 2012; Moreira et al., 2017). 
Recent studies have demonstrated that Bnip3, Nix and Fundc1 
mediated mitophagy plays an important role in the treatment 
of lipid metabolism and various hepatic dysfunctions (Chao 
et al., 2018; Glick et al., 2012; Li et al., 2019; Williams & 
Ding,  2015). Furthermore, Nix has also been previously 
demonstrated to become elevated in insulin-resistant rodents 
(Mughal et al., 2015). In subsequent studies by our group, we 
have observed that mitophagy is linked to Nix accumulation 
in lipotoxic environments leading to impaired insulin signal-
ing via activation of mTOR-p70S6 kinase and inhibition of 
IRS1 (da Silva Rosa et al., 2020).

We demonstrated that Nix respond to lipotoxicity in 
order to clear damaged mitochondria through mitophagy. 
In turn, it protects the myocyte against nutrient storage 
stress via activation of mTOR-dependent desensitization of 
insulin signaling, via phosphorylation of serine 1,101 of 
IRS1. Nix induced ER calcium release concurrent DRP1 
activation, along with increased levels of mitophagy (da 
Silva Rosa et  al.,  2020). As previously described, DRP1 
is as an important mediator of mitochondrial fission and 
mitophagy (Gandhi & Perry,  2020). Consistent with the 
results of Fu et  al.  (2018), who showed that deletion of 
the mitophagy receptor Fundc1 protects against HF feed-
ing, and we observed that Nix is the most abundantly el-
evated mitophagy receptor in soleus muscle followed by 
HF feeding. Furthermore, we highlight a link between 
Nix-induced mTOR activation and recruitment of lyso-
somal small GTPases such as Rheb to the mitochondria, 
to initiate mitophagy. This phenomenon was demonstrated 
to be dependent on phosphatidic acid availability (da Silva 
Rosa et  al.,  2020), which is also an important modulator 
of mitochondrial dynamics (Hornberger et  al.,  2006). In 
a cellular model, we demonstrated that knockdown of the 
mitochondrial phospholipase-D, an enzyme responsible 
for converting cardiolipin to phosphatidic acid, prevented 
Nix-induced mTOR-S6K activation. Furthermore, Nix-
induced mitophagy and impaired insulin signaling could 
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be reversed by direct phosphorylation of Nix at Serine 212 
by PKA activating agents, such as clenbuterol and phos-
phodiesterase-4 inhibitors (da Silva Rosa et al., 2020). This 
novel target may represent a future therapeutic strategy to 
circumvent the mitochondrial defects observed in muscle 
insulin resistance.

Collectively, these findings suggest an important mech-
anism linking excessive muscle mitochondrial turn-over to 
impaired insulin-stimulated glucose uptake. Nevertheless, 
the role of mitophagy in muscle insulin resistance and T2D 
is an emerging field, and its role and molecular mechanisms 
in these pathological processes require further in vivo exper-
imentation (Figure 1).

3.7 | ER stress

The mechanisms of lipid-induced insulin resistance have 
been well described as an underlying cause of obesity-as-
sociated insulin resistance. However, an overload of other 
nutrients may also be implicated in the etiology of insulin re-
sistance (Villalobos-Labra et al., 2019), and diabetes (White 
et  al.,  2020), for instance, the unfolded protein response 
(UPR), activated by ER stress (Villalobos-Labra et al., 2019). 
The main role of the UPR is to promote an adaptive cellular 
response that alleviates ER stress through different mecha-
nisms, such as the inhibition of protein synthesis and the 
enhancement of protein folding and degradation (Vincenz-
Donnelly & Hipp, 2017). The major arms of UPR activation 
in mammals are mediated by three ER transmembrane stress 
sensors: PKR-like ER kinase (PERK), inositol requiring en-
zyme 1 (IRE-1), and activating transcription factor 6 (ATF6) 
(Adams et al., 2019).

Although the precise role of ER stress in muscle insu-
lin resistance remains uncertain, there are two mechanisms 
proposed in the contexts of obesity and T2D that are well 
supported by the literature. The first mechanism is the ac-
tivation of the c-Jun N-terminal kinase (JNK1) pathway 
via IRE-1, resulting in inhibitory serine phosphorylation 
of IRS-1 (Aguirre et al., 2000; Solinas & Becattini, 2016). 
Moreover JNK was proposed to induce insulin resistance 
in obesity via four different mechanisms, including direct 
inhibition of IRS1 phosphorylation, induction of metabolic 
inflammation, increased adipogenesis and metabolic effi-
ciency, and negative regulation of the PPARα-FGF21 axis 
(Solinas & Becattini, 2016). The second mechanism linking 
ER stress, obesity and diabetes-induced insulin resistance 
involves activation of the PERK/eIF2/ATF3 signaling path-
way (Ohoka et al., 2005). Activation of this pathway leads to 
increased expression of the tribbles-like protein 3 (TRB3). 
The TRB3 is an important pseudokinase that highly con-
tributes to insulin resistance by inhibition of Akt activity 
(Ozcan et al., 2013).

4 |  LIVER

4.1 | Insulin signaling

In the liver, insulin signaling is initiated by INSR trans-au-
tophosphorylation, activation, and recruitment of scaffold 
signaling proteins (Mugabo & Lim,  2018), such as IRS1 
and IRS2. Both isoforms have a similar function; however, 
IRS1 may have a more significant role in normal glucose 
homeostasis. Dong et  al.  (2008) showed that liver-specific 
Irs1 knockout animals presented considerable glucose intol-
erance, while Irs2 deletion resulted in mild glucose intoler-
ance; deletion of both isoforms severely weakened insulin 
stimulation of PI3K-Akt activity (Dong et  al.,  2008). The 
hepatic insulin signaling is distal to Akt activation; however, 
Akt signaling is central to hepatocellular insulin action. The 
Akt substrates are glycogen synthase kinase (GSK3), tran-
scription factor forkhead box 01 (FOXO1), and mTORC1. 
Additional signaling pathways independent of Akt may be 
involved in metabolic control; however, more studies are 
needed to describe them (Lu et al., 2012).

In a fed state, insulin inhibits transcriptional glucone-
ogenic genes, especially those mediated by FOXO tran-
scription factors. As previously mentioned, FOXO1 is 
an Akt target, and the main phosphorylation sites are at 
Thr24, Ser256, and Ser319. Mice lacking FOXO1 in their 
liver presented impaired hepatic glucose production (HGP) 
(Matsumoto et  al.,  2007). Therefore, FOXO1 is an import-
ant key molecule for HGP. Another critical role of insulin in 
the liver is its direct effect on lipid metabolism. Insulin reg-
ulates genes responsible for de novo lipogenesis (DNL), the 
conversion of sugar into fat ( Schwarz et al., 2017). The pri-
mary transcription factor regulator of this process is the sterol 
regulatory element-binding protein-1c (SREBP-1c). Insulin 
regulates activation of SREBP-1c; however, inhibition of the 
PI3K-Akt-mTORC1 axis is known to also inhibit SREBP-1c 
via insulin inhibition (Li et  al.,  2010). Finally, insulin also 
regulates protein synthesis in the hepatocytes besides playing 
a role in glucose and lipid metabolism. The primary media-
tor of protein synthesis in various insulin-responsive tissues, 
such as hepatocytes, adipocytes, and myocytes, is mTOR.

4.2 | Insulin resistance

Defects of normal insulin function significantly contribute 
to the onset of hepatic insulin resistance and T2D. Studies 
suggest that FOXO1 dysregulation contributes to increased 
hepatic gluconeogenesis in humans with T2D (O-Sullivan 
et  al.,  2015). FOXO1 increases enzyme production nec-
essary for gluconeogenesis; therefore, upregulation of it 
results in increased substrate conversion into liver glucose 
(Czech,  2017). Obese mice with upregulation of Foxo1 
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expression became insulin insensitive. The precise mecha-
nism of overfeeding in the dysregulation of Foxo1 is under 
investigation (Qu et al., 2006). However, the ablation of 
hepatic Foxo1 in mice demonstrated to improve increased 
gluconeogenic enzyme expression and normalize glucose 
tolerance (Dong et al., 2008). Recent evidence suggested 
that low hepatic PGC 1α in T2D patients is also associ-
ated with hepatic insulin resistance. PGC 1α drives the 
ratio of IRS1 and IRS2 in hepatocytes, and low levels of 
it resulted in disruption of IRS1 and 2 expression impact-
ing normal glucose homeostasis (Besse-Patin et al., 2017, 
2019).

As insulin also plays a role in lipid metabolism via 
SREBP-1C, as previously described, insulin-resistant peo-
ple may present decreased lipogenesis. As shown in animal 
models of hepatic insulin resistance, there is a decrease in 
hepatic DNL (Biddinger et  al.,  2008). Several effectors act 
together and are involved in insulin resistance, for instance, 
Akt and FOXO1, controlling both glucose and lipid handling 
(Manning & Toker, 2017). In a nonalcoholic fatty liver dis-
ease (NAFLD), increased re-esterification of circulating fatty 
acids supplied by adipose insulin resistance is possibly one of 
the leading causes of increased liver triglyceride (Donnelly 
et  al.,  2005). Furthermore, in insulin-resistant patients, the 
primary lipogenic flux is re-esterification, and not DNL; 
DNL is regulated by SREBP-1C, activated by mTORC1 via 
amino acid stimulation (Li et al., 2010).

As shown in Figure  2, ectopic lipid accumulation in 
muscle or liver is a consequence of an overfed state or 
defective adipocyte fatty acid metabolism. As a result, this 
leads to activation of DAG-PKCε axis in the liver and sub-
sequent inhibition of INSR signaling via phosphorylation 
of INSR at Thr1160 (Akhtar et  al.,  2019). Alternatively, 
ceramides have also been shown to activate an atypical 
PKCζ (Zeta) isoform and mediate hepatic insulin resis-
tance (Xia et al., 2015). Therefore, some of the main con-
sequences of this lipotoxicity-induced insulin resistant 
state are impaired insulin stimulation of hepatic glycogen 
synthesis, impaired upregulation of DNL transcription 
genes, and impaired downregulation of gluconeogenic 
transcription genes. As noted above, the role of impaired 
mitochondria function in contributing to insulin resis-
tance in the muscle is well established. Importantly, in the 
liver, insulin resistance originating from lipotoxicity has 
no link with impaired mitochondrial capacity, which has 
been attributed to a mitochondrial adaptation to promote 
increased lipolysis (Jelenik et al., 2017). More recent lit-
erature has highlighted the role of mitophagy in promot-
ing mitochondrial fatty acid oxidation, as a consequence 
reducing hepatic fatty acid accumulation, leading to im-
proved hepatic insulin resistance (Su et al., 2019). Studies 
showed that hepatic fatty acid accumulation resulted in 

an increase in the accumulation of damaged mitochon-
dria (Wu et al., 2015); however, PINK1/Parking-mediated 
mitophagy could reverse this phenomenon (Nguyen 
et al., 2016; Wang et al., 2019).

5 |  ADIPOSE

5.1 | Insulin signaling

Adipose tissue is critically important in influencing both 
glucose and lipid metabolism (Kershaw & Flier,  2004; 
Scherer,  2006) by releasing adipokines, proinflammatory 
cytokines, and free fatty acids (FFAs) (Jung & Choi, 2014). 
Moreover adipose tissue is an insulin-responsive tissue, 
whereby insulin prompts the storage of triglycerides by 
such methods as stimulating the differentiation of preadi-
pocytes to adipocytes, inhibiting lipolysis, and increasing 
the uptake of fatty acids and glucose (Perry et al., 2015). 
Similar to the mechanisms in muscle, insulin exerts its 
biological effects via the IRS-PI3K-Akt2-GLUT4 signal-
ing pathways (Figure  2). However, both IRS1 and IRS2 
are involved in adipocyte insulin signaling, in contrast 
with hepatocytes, where IRS1 has a more significant role 
in glucose homeostasis as compared to IRS2. Also, in a 
similar fashion as the skeletal muscle, Rab GAP TBC1D is 
expressed in adipocytes, though in lower levels, and con-
tributes to the regulation of insulin signaling through vesi-
cle trafficking and translocation of GLUT4 to the plasma 
membrane (Chadt et al., 2015).

As mentioned above, a major role of insulin in adipose 
tissue is to promote the suppression of lipolysis (Perry 
et al., 2015). Lipolysis is a process where lipid triglycerides 
are hydrolyzed into glycerol and fatty acids and used to pro-
vide stored energy during fasting or exercise. The mechanism 
that regulates lipolysis is highly dependent on the protein 
kinase A (PKA) signaling pathway. PKA phosphorylates 
the hormone-sensitive lipase (HSL) and perilipin (PLIN) to 
promote lipolysis (Jaworski et al., 2007), where phosphodi-
esterase 3B (PDE3B) inhibits PKA by degrading cAMP (re-
quired for PKA activation). Consequently, PDE3B impedes 
the action of the pro-lipolytic hormones HSL and PLIN, 
inhibiting lipolysis (Jaworski et  al.,  2007). In a fed state, 
insulin activates Akt2, which activates PDE3 and inhibits 
PKA, via unknown mechanism, thereby suppressing lipolysis 
(Figure 2). However, with adipose tissue insulin resistance, 
there is a decrease in Akt2 phosphorylation, resulting in sus-
tained lipolysis activation (Morigny et al., 2016). As a result, 
non-esterified fatty acid (NEFA) production and circulating 
fatty acids are increased, which are taken up by the liver and 
muscle, contributing to ectopic lipid accumulation in both 
tissues (Figure 2).
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5.2 | Insulin resistance

In the presence of an obesogenic environment, excess en-
ergy storage leads to the hypertrophy of adipocytes. Studies 
investigating the relationship between adipocyte size and 
adipokine secretion have demonstrated that adipocyte size 
affects the secretion of many adipokines (Skurk et al., 2007). 
Specifically, proinflammatory adipokines are significantly 
increased in large adipocytes compared to smaller ones 
(Skurk et  al.,  2007). Furthermore, TGFβ, a potent anti-ad-
ipogenic inflammatory cytokine, is released from hyper-
trophic and dysfunctional adipocytes of obese mice and 
humans (Wu & Derynck,  2009). Therefore, a reduction in 
anti-inflammatory adipokine secretion, concurrent with an 
increase in inflammatory cytokine secretion, may play an im-
portant role in the onset of adipose tissue insulin resistance 
(Ghaben & Scherer, 2019; Petersen & Shulman, 2018; Skurk 
et al., 2007).

Inflammatory neutrophil cells are the first to infiltrate 
WAT in a high-fat feeding state and later recruits and ac-
tivate the adipose tissue macrophages (ATM) (Soehnlein 
et al., 2008). Additionally, the mechanisms by which ATM 
activation leads to insulin resistance is dependent on cyto-
kines activation. Inflammatory cytokines, such as tumor 
necrosis factor (TNF)-α, interleukin-1 beta and 6 (IL-1β, 
IL-6), are increased in obese diabetic humans and rodents 
(Kany et  al.,  2019), and neutralization of TNF-α improves 
insulin sensitivity in obese rodents (De,  2000). Further, 
TNF-α has been shown to induce serine phosphorylation 
of IRS-1, thereby decreasing its association with PI3K and 
impeding insulin signaling (Rui et  al.,  2001). Additionally, 
the inflammatory mediators, TNF⍺ or IL-1β increase lipoly-
sis and inhibit INSR; therefore, impairing insulin signaling 
(Figure  2). These findings suggest that obesity-induced in-
sulin resistance may partially result from an imbalance in the 
secretion of pro- and anti-inflammatory adipokines. A recent 
study suggest that TNF can contribute to insulin resistance 
as diet-induced obesity triggers TNF-dependent augmenta-
tion of circulating inflammatory monocytes independent of 
adiposity markers or expansion of adipose tissue (Breznik 
et al., 2018). Although the exact mechanisms remain unclear, 
an uncontrolled production and/or secretion of these cyto-
kines from excess adipose tissue can lead to the development 
of insulin resistance and metabolic disease.

The suppression of lipolysis in conjunction with a de-
crease in the uptake of triglycerides, as observed in the 
presence of elevated insulin levels, can further add to the 
deleterious effects of ectopic lipid accumulation (Saponaro 
et al., 2015). Hyperinsulinemia, or excess secretion of insu-
lin, is thought to cause insulin resistance, via unknown mech-
anisms (Johnson & Templeman, 2016). Hyperinsulinemia is 
associated with excess adiposity. Subsequently, dietary and 
pharmacological manipulations that reduce insulin may lead 

to a reduction in adipose tissue and greater insulin sensitiv-
ity, though the results of such interventions have been mixed 
(Alemzadeh et al., 1998; Due et al., 2007).

Recent studies suggest that significant events such as 
mitochondrial dysfunction and mitophagy are also involved 
in the development of insulin resistance adipose tissue (Wu 
et al., 2019). Evidence indicates that mitochondrial content 
and mitochondrial oxidative capacity are altered in several 
insulin-responsive tissues (such as adipose tissue), in humans 
and animal models presenting with obesity and insulin resis-
tance (Jeong-a et al., 2008). It was identified that Fundc1 acts 
as an important mitophagy receptor in adipocytes by medi-
ating mitophagy through its interaction with MAP1LC3B in 
response to hypoxia (Liu et al., 2012), and a deficiency in this 
receptor is linked to insulin insensitivity and metabolic disor-
ders (Wu et al., 2019). Notably, abnormal Fundc1- mediated 
mitophagy in adipose tissue resulted in increased oxidative 
stress and hyperactivation of MAPK signaling, giving rise to 
ATMs infiltration and sustained inflammatory response (Wu 
et al., 2019).

Although evidence suggests a link between mitochondrial 
dysfunction and insulin resistance, dysfunctional mitochon-
dria may not be necessary to induce insulin resistance in ad-
ipocytes. Recently, a study investigating the role of adipose 
inflammation, mitochondrial dysfunction, and gut dysbiosis 
in obesity-induced insulin resistance, the authors found that 
mitochondrial dysfunction and gut dysbiosis occurred during 
HFD-feeding but was not present in spontaneously obese 
mice (Petrick et al., 2020). This suggests that mitochondrial 
dysfunction may be diet-related and is not always required for 
obesity-induced insulin resistance.

Certainly, adipose tissue is an essential regulator of over-
all health. Therefore, impaired adipose tissue function may 
lead to a series of severe global health complications such 
as insulin resistance, T2D, among other metabolic disease 
(Britton et al., 2013; Marinou et al., 2014; Silva et al., 2017).

6 |  NOVEL MECHANISMS OF 
CROSS-TALK BETWEEN MUSCLE, 
ADIPOSE, AND LIVER

Classically, integrative biochemistry has focused on the 
provision of metabolic fuels needed by the liver to maintain 
a glucose supply for the brain during times of stress, star-
vation, disease, or muscular exertion. Fundamentally, this 
cross-talk between muscle, adipose, and liver is regulated 
by insulin, glucagon, and the traditional counter-regulatory 
hormones, such as glucocorticoids, adrenaline, and growth 
hormone. Key examples of this cross-talk include the Cori 
cycle (lactate-glucose cycle), the Cahill cycle (glucose-ala-
nine cycle), as well as gluconeogenic consumption of glyc-
erol and glutamine (Sharma et  al.,  2019; Xu et  al.,  2011). 
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However, research over the past few decades have identified 
the gut, and the production of GLP-1 and GIP as fundamental 
modulators of not only insulin secretion, and the crosstalk 
between muscle, adipose, and liver, but also as regulators of 
appetite by activating receptors in the lateral hypothalamus, 
other regions of the diencephalon, and brainstem (Müller 
et al., 2019). More recently, other growth factors, along with 
inflammatory and innate immunity mediators, have been 
shown to be released from muscle, adipose, liver, and gut 
tissues as a means to directly communicate metabolic cues 
between the classical insulin sensitive tissues.

Many mechanistic studies examining the relationship 
between obesity and its associated chronic low-grade in-
flammation have highlighted the role of pattern recognition 
receptors (PPRs), specifically Toll-like receptors (TLRs) 
and Nucleotide-binding oligomerization domain (NOD)-
like receptors or (NLRs), and their impact on insulin resis-
tance (Petrick et  al.,  2020; Schertzer et  al.,  2011). Obesity 
is thought to provoke increased intestinal permeability, giv-
ing rise to higher circulating levels of lipopolysaccharide 
(LPS) emitted by intestinal gram-negative bacterial species 
(Saad et al., 2016). This, in turn, may initiate an inflamma-
tory cascade via activation of PRRs, such as TLR4 (member 
of the Toll-like receptor family) in adipocytes (Kawasaki & 
Kawai, 2014). The binding of LPSs or FFAs to TLRs pro-
motes the downstream signaling of the transcription factor, 
nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB), which regulates the expression of pro-inflam-
matory cytokines and chemokines (Rogero & Calder, 2018). 
Many of these inflammatory proteins work to activate serine 
kinases, such as JNK, which directly blocks insulin action in 
muscle, liver and adipose tissue (Solinas & Becattini, 2016); 
conversely, selective inhibition of JNK in adipose tissue has 
been demonstrated to protect against diet-induced obesity, 
improving insulin sensitivity in rodent liver and skeletal 
muscle (Zhang et  al.,  2011). Similarly, the NLR family of 
PRRs also responds to obesity-induced signals, such as dam-
age-associated molecular patterns (DAMPs), derived from 
stressed adipocytes (Jin & Flavell,  2013). Moreover, acute 
activation of NOD proteins has been demonstrated to induce 
whole-body insulin resistance in mouse models (Schertzer 
et al., 2011), which further supports the link between innate 
immune signaling and whole-body metabolism.

The growth differentiation factor 15 (GDF15) is a 
stress-induced protein member of the TGFβ superfamily of 
proteins, increased in many disease states (Tsai et al., 2016). 
While various tissues ubiquitously express GDF15 in phys-
iological levels, it becomes selective induced upon nutrient 
challenge. Patel et  al.,  (2019) have recently demonstrated 
that GDF15 is selectively upregulated as a stress response 
mechanism during high-fat feeding. In their study, animals 
treated with a HFD presented with high GDF15 mRNA ex-
pression levels in metabolic tissues such as liver and adipose 

(brown and white); however, very little was detected in the 
skeletal muscle (Patel et al., 2019). Furthermore, the increase 
in GDF15 caused an aversive endocrine signal in the brain, 
which may have contributed to weight loss, therefore repre-
senting a potential role in obesity therapy (Patel et al., 2019). 
Day et al. (2019) have recently elucidated a possible mech-
anism by which GDF15 can suppress appetite and promote 
weight loss. In their study, metformin augmented GDF15 
secretion in primary hepatocytes via increased upregulation 
of the activating transcription factor 4 (ATF4) and C/EBP 
homologous protein (CHOP). In a rodent model exposed to 
HFD, metformin increased serum levels of GDF15 concur-
rent with reductions in food intake, body mass, fasting in-
sulin and improved glucose intolerance. Even though it was 
not clear the tissue sources of GDF15 produced in response 
to metformin in vivo, they also observed that an increase in 
GDF15 correlated with weight loss in T2D patients under 
metformin treatment (Day et al., 2019).

GDF15 is also known as a mitochondrial disorder bio-
marker, however, the precise pathological mechanism is not 
very clear. Ost and colleagues (2020) used transgenic-mice 
harboring deficient muscle-specific mitochondrial OXPHOS 
capacity via respiratory uncoupling (Ucp1-TG). These ani-
mals presented specific induction of GDF15 in skeletal mus-
cle with diurnal variation (Ost et  al.,  2020). Interestingly, 
Ucp1-TG combined with GDF15 knockout showed pro-
gressive weight gain, concurrent with muscle mitochondrial 
stress-induced metabolic inflexibility, insulin insensitivity, 
and impaired browning of WAT (Ost et al., 2020). These new 
findings collectively represent novel pathophysiological roles 
of mitochondrial stress in the induction of GDF15 and the 
regulation of systemic energy metabolism.

The exact mechanisms of muscle mitochondrial quality 
control and its effects are currently an emerging area of in-
vestigation; however, not yet well elucidated. A novel study 
by Fu et al. (2018) described the important role of Fundc1, 
a mitophagy protein, in attenuating diet-induced obesity and 
its cross-talk effects in muscle and adipose tissue. Using 
two skeletal muscle-specific Fundc1 knockout models, they 
demonstrate that mice lacking Fundc1 exposed to HFD had 
impaired LC3-mediated mitophagy and mitochondrial ener-
getics. However, these animals were protected against HFD-
induced obesity and insulin resistance. Furthermore, in a 
compensatory mechanism in the absence of Fundc1, it led to 
an activation of adipose tissue adaptive thermogenesis via se-
cretion of fibroblast growth factor (FGF) 21 from muscle (Fu 
et al., 2018). These findings suggest that the muscle mitoph-
agy response not only regulates muscle insulin sensitivity, but 
can modulate whole body metabolism via FGF21 secretion.

FGF21 is another critical therapeutic target on the rise that 
promotes protection from lipid-induced muscle and liver in-
sulin resistance and T2D (Camporez et  al.,  2013). FGF19, 
FGF21, and FGF23, are essential in the regulation of glucose 
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and lipid metabolism, as well as the whole-body homeosta-
sis (Degirolamo et al., 2016). Most importantly, FGF21 plays 
a role as a hepatokine, adipokine, and myokine controlling 
insulin sensitivity in insulin-resistant animals. Furthermore, 
FGF21 also improves fat oxidation in the muscle, DNL in 
the liver, and thermogenesis in BAT and WAT (Coskun 
et al., 2008; Klein Hazebroek & Keipert, 2020). In an animal 
study, mice treated with FGF21 had decreased lipid accumu-
lation, such as diacylglycerol in both muscle and liver, con-
current with reduced activation of PKC proteins. The precise 
mechanisms of how FGF21 regulates insulin signaling are to 
date, not entirely known.

Recently, Fu et al. (2018) demonstrated that FGF21 was 
activated via a retrograde activation by ATF4, where the latter 

was increased in myotubes of Fundc1 muscle knockouts. The 
role of ATF4 on insulin metabolism has been highly investi-
gated over the years, where it has been previously shown to 
be a negative regulator of insulin secretion and sensitivity to 
insulin in the liver, muscle and fat (Yoshizawa et al., 2009). 
Specifically, in the liver, Zhang and colleagues (2013) 
demonstrated that hepatic insulin resistance was mediated by 
the ATF4/mTOR/S6K1 axis (Zhang et al., 2013). In a parallel 
study by Pereira and colleagues (2017) describing the role of 
mitochondrial dynamics in muscle insulin sensitivity demon-
strated that OPA1 deficiency-induced mitochondrial dys-
function and triggered ER stress and concurrent activation 
FGF21 (Pereira et al., 2017). These observations collectively 
highlight a conserved mechanism where both mitochondrial 

T A B L E  1  Phenotypes of INSR and IRS knockouts

Receptor Tissue Specie Phenotype References

Insr Whole-body Mice Drastic hyperglycemia and hyperketonemia. 
Death shortly after birth due to 
Ketoacidosis

PubChem

Insr Whole-body Mice Early postnatal death Okamoto 
et al. (2004)

Insr White and Brown adipose 
tissue

Mice Impaired insulin mediated GLUT4 
translocation and lipolysis suppression; 
protected from glucose intolerance

Blüher et al., (2003; 
Blüher et al., 2002)

Insr Muscle Mice Impaired insulin-stimulated glucose uptake 
and muscle glycogen synthesis

Kim et al., (2000)

Insr Liver Mice Impaired insulin signalling and suppression 
of HGP; severe glucose intolerance

Michael et al. (2000)

Insr Muscle Mice Increased fatty mass, serum triglycerides, 
and free fatty acids; normal glucose 
tolerance

Brüning et al., 1998)

Irs1 Whole-body Mice Growth retardation; reduced insulin 
sensitivity, though not associated with 
T2D; hyperinsulinemia

Boucher et al. (2014)

Irs1 and Irs2 Whole-body Mice No diabetic phenotype in neither whole-
body nor muscle specific IRS1 and IRS2 
knockouts

Long et al. (2011)

Irs1 Liver Mice Severe glucose intolerance Dong et al. (2008)

Irs1 Whole-body/ WAT Mice Insulin resistance and activation of a 
growth-related pathway exclusively in 
white adipose tissue.

Araújo et al. (2005)

Irs1 Whole-body Mice Delayed embryonal and postnatal growth; 
insulin resistance and low glucose-
lowering effects

Tamemoto 
et al. (1994)

Irs2 Liver Mice Mild glucose intolerance Dong et al. (2008)

Irs2 Whole-body Mice Obesity; reduced insulin sensitivity; 
severely impaired glucose tolerance; 
hyperinsulinemia

Masaki et al. (2004)

Irs2 Muscle Mice Normal dose-dependent insulin-stimulated 
glucose uptake

Higaki et al. (1999)

Irs2 Whole-body Mice Peripheral insulin resistance (muscle, liver) 
and impaired β-cell function

Withers et al. (1998)
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stress and ER-stress, likely activated by the UPR regulators 
ATF4, ATF5, and CHOP, control the secretion of FGF21 and 
GDF15 in insulin sensitive tissues to orchestrate a metabolic 
cross-talk leading whole body nutrient homeostasis including 
appetite control.

7 |  SUMMARY AND CONCLUSION

The present review identified a plethora of studies that iden-
tify mechanisms of insulin resistance in muscle, adipose, and 
liver tissue. Additionally, it outlines important differences in 
insulin signaling and the development of insulin resistance in 
these tissues. Normal insulin functioning is essential for skel-
etal muscle's energy expenditure and glucose metabolism. 
However, disruption of INSR- IRS1-PI3K-Akt axis compro-
mises normal insulin action in the muscle and leads to insulin 
resistance. Similarly, in adipose and liver tissue, disruption 
of the insulin signaling IRS-PI3K-Akt axis leads to severe 
glucose intolerance and insulin resistance, as described by 
many INSR, IRS, and Akt knockout studies investigating 
their effects on proximal insulin signaling and body glucose 
homeostasis (Tables 1 and 2).

Previous studies in both humans and rodents have estab-
lished that lipid-induced insulin resistance in hepatic and 
skeletal muscle tissue are both dependent on the DAG-PKC 

axis, resulting in the phosphorylation of either IRS1 or IRS2 
(Mizushima, 2018). Like the muscle and liver, adipose tissue 
insulin resistance plays an important role in the development 
of T2D (Goedeke et al., 2019). Studies have suggested that 
disproportionate secretion of pro- and anti-inflammatory ad-
ipokines and reduction in lipolysis is concurrent with insulin 
resistance in adipose tissue. Specifically, impaired insulin 
suppression of lipolysis in adipose tissue leads to increased 
circulating plasma fatty acid and uptake by liver and muscle 
tissue leading to lipotoxic intracellular environments. These 
cascades ultimately prevent the translocation of GLUT4 re-
ceptors to the membrane surface of skeletal muscles and ad-
ipose tissue.

In addition, other factors, including metabolic inflexibility, 
mitochondrial dysfunction, mitophagy, and ER stress have all 
been linked to the pathogenesis of insulin resistance (Figure 1). 
As previously described, metabolic inflexibility is the inability 
to switch fuel sources that can consequently increase lipid levels 
and contribute to insulin resistance. Mitochondrial dysfunction, 
meanwhile, describes an increase in ROS that induces oxida-
tive damage to the mitochondria, leads to lipid accumulation, 
and likely involves the mitochondrial/ER UPR in the regulation 
of FGF21 and GDF15 secretion. Furthermore, induced oxida-
tive damage elicits a mitophagy response to remove damaged 
mitochondria, while lysosomal recruitment to mitochondria 
can activate mTOR-S6K signaling to inhibit IRS1 (Figure 1). 

T A B L E  2  Phenotypes of Akt knockouts

Receptor Tissue Specie Phenotype References

Akt1/Akt2 Whole Body Mice Muscle and body mass loss concurrent with reduction 
in TBC1D1

Jaiswal et al. (2019)

Akt1 Whole Body Mice Deletion in Akt2 null mice, resulted in severe 
hyperglycemia

Lu et al. (2012)

Akt1 Skeletal Muscle Mice Increased expression of two autophagic genes (Bnip3 
and garabap1)

Reynolds et al. (2012)

Akt1 Whole Body Mice Weighed significantly less and had 15% less lean mass 
than wild type

Goncalves et al. (2010)

Akt1 Skeletal Muscle Mice Significant decrease in mass compared to wild type 
in the following muscles: extensor digitorum longus 
(EDL), gastrocnemius, anterior

Goncalves et al. (2010)

Akt2 BAT Mice Targeted adipocyte lineages generated smaller 
adipocytes that correlated with the appearance 
of tissue atrophy. Non-targeted lineages on the 
other hand showed hypertrophy. Essentially, a 
redistribution of fat

Sanchez-Gurmaches 
et al. (2019)

Akt2 Whole Body Mice Mildly diabetic Lu et al. (2012)

Akt2 Whole Body Mice Weighed significantly less and had a 44% decrease in 
fat mass compared to wild type

Goncalves et al. (2010)

Akt2 Skeletal Muscle Mice Decrease in the mass compared to WT in 
gastrocnemius and EDL, but a 21% increase in soleus 
mass.

Goncalves et al. (2010)

Akt2 Hepatic Mice Decreased liver weight, de novo lipogenesis, and 
triglyceride levels; Inhibition of steatosis

Leavens et al. (2009)
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Taken as a whole, these mechanisms providing compelling ev-
idence to the central role of lipid toxicity in insulin resistance 
and the downstream mechanisms are indeed intricate and inter-
connected. Interestingly, mitophagy genes, such as Nix, Bnip3, 
and Fundc1, have also been associated with lipid metabolism. 
Moreover our group recently observed that Nix is elevated in 
insulin-resistant muscle, and serves as a central regulator of 
mitochondrial-ER stress, mitophagy, and lysosomal signaling 
leading to an impaired insulin response.

Finally, current animal and human research are high-
lighting the importance of tissue crosstalk in the regulation 
of lipid-induced insulin resistance, and the emerging role of 
secreted growth factors and the innate immune response as 
important mechanisms orchestrating target tissue insulin sen-
sitivity, summarized as an illustration (Figure  2). It is also 
evident that each peripheral tissue responds in a distinct and 
cell-type specific manner to impact whole-body metabolism. 
Hence, there is a necessity for further research to fill import-
ant knowledge gaps in the pathogenesis of insulin resistance 
using tissue-specific approaches that also consider inter-tis-
sue cross-talk and whole organism metabolism (Figure 1). It 
is only with a concrete understanding of the unique responses 
of each tissue during insulin resistance and hyperinsulinemia 
that effective therapeutic strategies can be developed to pro-
vide a better quality of life for those affected by these meta-
bolic conditions.
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