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Abstract

It is an assumption of large, population-based datasets that samples are annotated accurately whether they correspond to
known relationships or unrelated individuals. These annotations are key for a broad range of genetics applications. While
many methods are available to assess relatedness that involve estimates of identity-by-descent (IBD) and/or identity-by-
state (IBS) allele-sharing proportions, we developed a novel approach that estimates IBD0, 1, and 2 based on observed IBS
within windows. When combined with genome-wide IBS information, it provides an intuitive and practical graphical
approach with the capacity to analyze datasets with thousands of samples without prior information about relatedness
between individuals or haplotypes. We applied the method to a commonly used Human Variation Panel consisting of 400
nominally unrelated individuals. Surprisingly, we identified identical, parent-child, and full-sibling relationships and
reconstructed pedigrees. In two instances non-sibling pairs of individuals in these pedigrees had unexpected IBD2 levels, as
well as multiple regions of homozygosity, implying inbreeding. This combined method allowed us to distinguish related
individuals from those having atypical heterozygosity rates and determine which individuals were outliers with respect to
their designated population. Additionally, it becomes increasingly difficult to identify distant relatedness using genome-
wide IBS methods alone. However, our IBD method further identified distant relatedness between individuals within
populations, supported by the presence of megabase-scale regions lacking IBS0 across individual chromosomes. We
benchmarked our approach against the hidden Markov model of a leading software package (PLINK), showing improved
calling of distantly related individuals, and we validated it using a known pedigree from a clinical study. The application of
this approach could improve genome-wide association, linkage, heterozygosity, and other population genomics studies
that rely on SNP genotype data.
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Introduction

Single nucleotide polymorphism (SNP) genotyping is used to

delineate the extent and nature of chromosomal variation,

examine population genetic structure, and find loci that contribute

to disease. SNPs are used as proxies for the unobserved sequence

variants in the surrounding DNA, allowing measurement of the

flow of genetic material through populations [1].

There are important limitations for using SNPs to identify

causal disease variants. Genome-wide association studies (GWAS)

rely on representative sampling of a subset of individuals from a

population. Therefore, calculations testing the association between

alleles, the frequency of alleles in the population, and the

contribution of alleles to a phenotype must use estimates of the

population allele frequency based on the representative sampling.

These estimates of allele frequencies are sensitive to inflation or

deflation when the genotyping data are derived from individuals

with unreported familial relationships or with admixed ancestry

(potentially leading to population stratification).

For any given pair of individuals with genotype information,

identity-by-state (IBS) can be observed at a given locus with three

possible outcomes: the individuals have two different alleles (IBS0)

or they share one (IBS1) or two (IBS2) alleles in common. For

example, a pair of individuals with genotypes AA and BB are IBS0

at this locus whereas a pair with AA and AB are IBS1. Two

individuals who share 1 or 2 alleles IBS at a given locus may have

inherited the shared allele(s) from a recent common ancestor, in

which these allele(s) are identical-by-descent (IBD). IBD approach-

es have been applied to linkage mapping [2] in which segments of

IBD are detected with informative SNPs. IBD regions tend to be

small between pairs of individuals derived from a given population

that are not closely related, primarily because their last common
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ancestor was many generations ago. As such, GWAS are

predicated upon the detection of regions of IBD when stratifying

by phenotype.

In this study we demonstrate an approach that combines our

IBD method with IBS information to estimate the relatedness

between individuals in pedigrees and/or in large population-based

studies. There are two main aspects of this work. First, we

introduce plots based in part on methods suggested by Lee [3] and

Rosenberg [4] to analyze a subset of informative IBS observations.

We implement Lee’s mathematical approach to characterizing

genetic relatedness based on the ratio of concordant heterozygotes

(i.e. AB/AB genotype calls) divided by the sum of concordant

heterozygotes plus discordant homozygotes (e.g. AB/AB plus AA/

BB) [3]. This metric represents the x-axis in several of our figures

below. Additionally, we use IBS as the basis for a metric that

graphically distinguishes relatedness consistent with earlier work

[4]. Second, we introduce a method to calculate IBD in com-

parisons between two individuals, providing highly accurate

estimates of Cotterman coefficients of relatedness (K0, K1, and

K2 are our estimates of Cotterman coefficients k0, k1, k2) [5].

Combining these IBS and IBD approaches, our analyses

simultaneously reveal previously unknown familial relationships

and population substructure in large-scale SNP data. Notably, our

method applies to pedigrees but does not rely on prior knowledge

of relationships or ethnicity. While other exploratory techniques

such as principal components analysis (PCA) of genotype data can

indicate outliers, the nature of such relationships is not explicitly

described. In contrast, our method is useful to define relationships.

We observed differences within and between populations (and

pedigrees) due to multiple factors including familial relationships,

autosomal heterozygosity rate, chromosomal anomalies, and

population admixture. We analyzed data from the Coriell

Institute’s National Institute of General Medical Sciences

(NIGMS) Human Genetic Cell Repository Human Variation

Panel (referred to as the Human Variation Panel), an extensively

used data source, and found undocumented familial relationships.

Our IBD method uses an overlapping window approach (see

Methods) and is comparable to that of PLINK [6], which employs

a hidden Markov model to infer underlying IBD in chromosomal

segments based on observed IBS states. Similar to PLINK’s HMM,

we analyze SNPs in a genome-wide fashion to detect patterns of

IBS0, IBS1, and a subset of IBS2, and further infer regions of IBD

sharing that are estimates of Cotterman coefficients of relatedness

k0, k1, and k2. These IBD estimates are not reliant on prior sample

annotation or haplotype data. Our approach, however, reports

fewer false positives (defined as individuals who are unrelated based

on IBS sharing, but who are called as related) relative to PLINK’s

HMM. Other methods for inferring IBD relatedness using SNP

data include GERMLINE, BEAGLE IBD, and fastIBD [7,8,9].

These are based on identifying shared haplotypes and rely on

haplotype maps of the human genome [10,11,12,13]. These

programs allow for a robust detection of shared haplotypes for

regions as small as 2cM (,2 Mb). Other methods for estimating

kinship coefficients, paternity indices and other relationship indices

in the forensic and genetic literature do not rely on haplotype data.

For example, EMMAX (efficient mixed-model association eXpe-

dited) addresses kinship and population stratification using a

variance components approach [14]. Related individuals that

share, on average, longer stretches of IBD (10 Mb for example)

are identified with very high confidence levels [8]. The approach we

introduce is robust in detecting shared segments between individuals

of recent ancestry. It provides accurate IBD estimates allowing for

improved inference of relationships.

Results

Unexpected relationships among individuals self-
declared as unrelated in the Human Variation Panel

The Human Variation Panel consists of four populations

(individuals of African-American ancestry [AA], Caucasian

ancestry [CAU], Han Chinese ancestry [CHI], and Mexican-

American ancestry [MEX]; n = 100 per group). All samples from

these individuals were submitted to the NIGMS repository with

annotation indicating they were unrelated. Using autosomal SNP

genotype data (n = 872,242 SNPs) from these samples, we

analyzed all pairwise IBS relationships in each population group

(n = 19,800 comparisons).

For the four within-population comparisons we generated a plot

(referred to as an IBS2* plot) having x-axis values referred to as

IBS2*_ratio and based on the ratio of IBS2*/(IBS0 + IBS2*),

suggested by Lee [3]. We plotted y-axis values termed percent

informative SNPs and consisting of the sum of (IBS0 + IBS2*)

divided by all IBS counts (IBS0+IBS1+IBS2; Figure 1A). For each

population we observed a major cluster of data points having

IBS2*_ratio values near 0.66–0.67; these values were expected to

form a normal distribution centered at 2/3 for unrelated individuals

(see Methods). We implemented a two-sided statistical test of the

null hypothesis that a given pairwise comparison does not have an

IBS2*_ratio value either significantly .2/3 (indicating familial

relatedness) or ,2/3 (indicating different allele frequencies between

the compared samples accounted for by phenomena such as

population admixture or reduced heterozygosity due to stretches of

homozygosity [lacking AB calls]; see Methods).

We used a Z-test (as suggested by Lee [3]), and measured the p-

value for every pairwise comparison. We observed that p-values

#0.000025 (including a Bonferroni correction for 19,800 tests)

were found in comparisons greater than 0.672 and less than 0.661

suggesting a very narrow range of IBS2*_ratio values for which the

null hypothesis was not rejected. We note that an IBS2*_ratio

value greater than 0.70 was used empirically to highlight potential

pairwise comparisons suspected to be related.

Given that the Human Variation Panel had no previously

annotated familial relationships or replicate samples, we expected

Author Summary

High-density microarrays measuring single nucleotide
polymorphisms (SNPs) provide information about the
genotypes across many loci. SNP genotypes observed for
any two individuals can be compared in terms of identity-
by-state (IBS), in which two individuals are observed to
have 0, 1, or 2 alleles in common at a given locus, across a
chromosomal region, or throughout the genome. These
alleles may be shared identical-by-descent (IBD) in which 0,
1, or 2 alleles are inherited from a recent common
ancestor, or they may be identical by chance because
the allele is frequent in the population. The expected
proportion of genome sharing between two individuals
varies as a function of their genetic relatedness. We
introduce a method to estimate IBD that can be used to
analyze relatedness in pedigrees or in large-scale popula-
tion studies with thousands of individuals. This can be
combined with observed IBS to distinguish a variety of
types of relatedness, providing theoretically justified
results that are graphed in a manner that is straightfor-
ward to interpret. The methods we introduce are relevant
to a variety of SNP applications including linkage and
association studies and population genomics studies.

Identity-by-Descent and Identity-by-State
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no IBS2*_ratio values .2/3 (e.g. 0.70). Surprisingly, we observed

25 data points with values .0.70 that potentially corresponded to

familial relationships (Table 1 includes a subset of 16 of these

pairwise comparisons for which we obtained evidence of familial

relationships, as discussed below; 6 other relationships in the table

with IBS2*_ratio values ,0.70 are described below). The CAU

group included a pair of identical samples (Figure 1A arrow,

corresponding to NA17255/NA17263). The IBS2*_ratio value

was near 1.0 for this pairwise comparison, as expected for identical

samples that lack essentially all IBS0 calls. This relationship is

supported by plotting IBS for each chromosomal position across

all autosomes using SNPduo software [15], a program that

performs pairwise comparisons of SNP genotype data and plots

IBS (as well as genotypes) for one chromosome or the entire

genome. This revealed a predominant pattern of IBS2 as shown

for chromosome 2 (Figure 2A). Typical of other genetically

identical samples analyzed with low genotyping error rates, these

two individuals shared only 11 IBS0 calls and 6,410 IBS1 calls in

contrast to 838,898 IBS2 calls from autosomal loci. The samples

were annotated by the Human Genetic Cell Repository as a 6

Figure 1. Genetic relatedness plots of the Human Variation Panel genotype data. Abbreviations: AA, African American; CAU, Caucasian;
CHI, Chinese; MEX, Mexican. (A) IBS2* plot of the within-group comparisons (n = 19,800). The IBS2*_ratio values are centered on 2/3 for unrelated
individuals within a population. The relationship of NA17251 to 99 other AA individuals is indicated (arrow). A group of 9 MEX individuals have
atypically low heterozygosity rates and form a cluster separated from other within-MEX comparisons (arrow 1). (B) IBS2* plot in which pairwise
comparisons with IBS2*_ratio values .0.8 are removed (n = 13) and data points are colored by the sum of autosomal heterozygosity of each pair of
individuals. (C) IBS2* plot for between-group comparisons (n = 60,000) for which none are expected to be genetically related. For groups having
individuals with large differences in heterozygosity rates, such as AA-CHI comparisons, the IBS2*_ratio values are significantly lower than 2/3. The
MEX individuals with atypical heterozygosity rates tend to form outlier clusters in between-group comparisons such as AA-MEX (arrow 1) and CHI-
MEX (arrow 2). A group of five pairwise comparisons having relatively high IBS2*_ratio values (0.685 to 0.692; arrow 3) involve MEX individual
NA17709 in comparison to CAU individuals.
doi:10.1371/journal.pgen.1002287.g001

Identity-by-Descent and Identity-by-State
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year-old boy (NA17255) and a 26 year-old female (NA17263). The

two samples were likely to be technical replicates for the 6 year-old

boy based on a lack of AB calls on the X chromosome (data not

shown).

Putative parent-child relationships (Figure 1A) also had

IBS2*_ratio values near 1.0 (n = 6, IBS2*_ratio value range

0.998–0.999) with essentially no IBS0 observations as expected for

annotated parent-child relationships. In contrast to replicate

samples, parent-child relationships were also characterized by

extensive IBS1 sharing (Figure 2B). We note that X chromosome

SNPs were excluded for all comparisons because parent-child

relationships involving father and son, having hemizygous

genotypes interpreted as biallelic AA or BB calls, result in IBS0

that skew those IBS2*_ratio values lower to ,0.95–0.97. The Y

chromosome and mitochondrial SNPs were also excluded.

The y-axis (percent informative SNPs) of the IBS2* plot

(Figure 1A) provided a useful separation of replicate samples from

parent-child samples (both of which have IBS2*_ratios near 1

because they lack IBS0 calls). Since replicates have mostly IBS2

calls (including IBS2*), the percent informative SNPs for these

samples was extremely close to their averaged heterozygosity rate.

This distinguishes identical samples from parent-child pairs: for

identical samples, every genotype comparison aligns to itself, and

the equation for the percent informative SNPs reduces to IBS2*

divided by the total number of SNPs. IBS2* reflects the number of

AB calls in that sample that aligned with other AB’s since IBS1 is

unexpected (i.e. heterozygosity rate with variation due to genotype

errors).

Inferred sibling comparisons (n = 5) were evident with IBS2*_-

ratio values ranging from 0.92 to 0.95. We defined this group

(boxed in Figure 1A) as siblings because data points for all

annotated sibling relationships from other datasets were located

there. For all potential sibling pairs that we identified there were

typical patterns of allele sharing with (1) blocks of IBS0, IBS1, and

IBS2 that indicated unshared regions of IBD0, (2) blocks of IBS1

and IBS2 that indicated shared regions of IBD1, and (3) blocks of

IBS2 that indicated IBD2 sharing. An example is shown in

Figure 2C. A presumptive second-degree relationship had an

IBS2*_ratio value of 0.82 (Figure 1A, arrow 3; Figure 2D),

separable from potential third-degree relationships (Figure 1A,

arrows 1–2; Figure 2E) and unrelated individuals.

IBS2* plot x-axis (IBS2*_ratio) values less than 2/3 reflected

differences in heterozygosity values in pairwise comparisons either

within or between geographic groups. For example, CAU

individual NA17251 in comparison with other CAU individuals

had a sum of heterozygosity of 56.7 +/- 0.01% in contrast to other

CAU comparisons having values of 59.7 +/- 0.1% (Figure 1B,

arrow). Among the MEX population, 9 individuals had pairwise

heterozygosity sums that were outliers (Figure 1B, region 4). These

low values were due to extended regions of homozygosity in these

individuals (e.g. Figure 2D; see genotype calls of NA17656) and

will be discussed in detail below. Regions of homozygosity in one

Table 1. Unexpected relationships inferred in the Coriell Human Variation Panel.

IID1 IID2 IBS2*_ratio Group K0 K1 K2 Z0* Z1* Z2* Z0 Z1 Z2 Rel

NA17255 NA17263 1.000 CAU 0.000 0.000 1.000 na na na 0.000 0.025 0.975 ID

NA17837 NA17846 0.998 CHI 0.000 0.999 0.001 0.004 0.996 0.000 0.004 0.996 0.000 PC

NA17831 NA17846 0.998 CHI 0.000 0.999 0.001 0.006 0.993 0.002 0.006 0.992 0.002 PC

NA17686 NA17687 0.998 MEX 0.000 0.999 0.001 na na na 0.004 0.972 0.024 PC

NA17629 NA17630 0.998 MEX 0.000 0.997 0.003 0.004 0.996 0.000 0.004 0.996 0.000 PC

NA17644 NA17687 0.999 MEX 0.000 0.997 0.003 na na na 0.003 0.974 0.023 PC

NA17624 NA17626 0.998 MEX 0.000 0.991 0.009 na na na 0.003 0.836 0.161 PC

NA17671 NA17674 0.921 MEX 0.243 0.567 0.190 0.256 0.536 0.209 0.256 0.536 0.208 FS

NA17644 NA17686 0.949 MEX 0.197 0.525 0.278 0.172 0.504 0.324 0.172 0.505 0.324 FS

NA17672 NA17674 0.931 MEX 0.233 0.517 0.251 0.235 0.500 0.265 0.235 0.501 0.264 FS

NA17655 NA17656 0.818 MEX 0.499 0.499 0.002 0.397 0.420 0.183 0.397 0.420 0.183 2u

NA17671 NA17672 0.935 MEX 0.236 0.496 0.268 0.226 0.502 0.272 0.226 0.503 0.271 FS

NA17294 NA17295 0.937 CAU 0.258 0.471 0.271 0.229 0.514 0.257 0.229 0.515 0.257 FS

NA17673 NA17680 0.742 MEX 0.766 0.234 0.000 0.731 0.269 0.000 0.731 0.269 0.000 3u

NA17454 NA17459 0.735 MEX 0.800 0.200 0.001 0.778 0.209 0.013 0.779 0.209 0.012 3u

NA17203 NA17257 0.711 CAU 0.866 0.134 0.000 0.853 0.140 0.007 0.854 0.140 0.006 ,3u

NA17289 NA17299 0.671 CAU 0.899 0.101 0.000 0.986 0.000 0.014 0.986 0.000 0.014 ,3u

NA17785 NA17794 0.673 CHI 0.941 0.058 0.001 0.985 0.003 0.012 0.985 0.002 0.013 ,3u

NA17626 NA17655 0.682 MEX 0.955 0.045 0.000 na na na 0.816 0.000 0.184 ,3u

NA17626 NA17656 0.652 MEX 0.964 0.036 0.000 na na na 0.820 0.000 0.180 ,3u

NA17615 NA17702 0.675 MEX 0.965 0.035 0.000 0.978 0.022 0.000 0.978 0.023 0.000 ,3u

NA17632 NA17695 0.689 MEX 0.968 0.032 0.000 0.920 0.080 0.000 0.920 0.080 0.000 ,3u

Abbreviations: IID1 and IID2, individual identifiers 1 and 2; Group, Caucasian (CAU), Chinese (CHI), or Mexican (MEX); PC, parent-child; FS, full sibling; ID, identical; K0, K1,
K2 estimates of IBD0, IBD1, IBD2, respectively; Z0*, Z1*, Z2*, IBD estimates based on PLINK’s HMM with individuals with low genotyping rates removed; Z0, Z1, Z2, IBD
estimates based on PLINK’s HMM with all individuals; Rel, estimation of relationship inferred from K1 and K2 values;
2u, second-degree relationship (e.g. avuncular);
3u, second-degree relationship (e.g. first-cousin). Entries are given in order of most to least K1, but with identical samples given first.
doi:10.1371/journal.pgen.1002287.t001

Identity-by-Descent and Identity-by-State
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Figure 2. Visualization of shared chromosomal regions based on IBS for related individuals. IBS values for comparisons of two
individuals are shown for a representative chromosome for the following pairs: (A) replicate samples NA17255/NA17263, (B) parent-child NA17624/
NA17626, (C) full siblings NA17671/NA17674, (D) individuals sharing one quarter of their alleles (NA17655/NA17656; e.g. half-siblings), (E) distantly
related individuals NA17673/NA17680. Data analysis was performed using SNPduo software. Note that for pericentromeric regions and the short arms
of acrocentric chromosomes (as in panel C) no SNP data were available, producing no IBS measurements.
doi:10.1371/journal.pgen.1002287.g002

Identity-by-Descent and Identity-by-State
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(or both) individuals decreased the amount of IBS2* calls (i.e.

instead of potential AB/AB observations, we instead observed

AB/AA or AB/BB) and increased the amount of IBS0 calls (e.g.

instead of potential AB/AA observations, we instead observed

AA/AA or BB/AA), thus reducing the IBS2*_ratio value.

For 9 of the 25 comparisons with IBS2*_ratio values greater

than 0.70 (but less than 0.714), chromosomal IBS analysis using

SNPduo failed to reveal any regions lacking IBS0 calls that would

imply the presence of IBD1. Additionally, these samples

represented all CAU within-group comparisons and had among

the highest pairwise sums of heterozygosity rates (Figure 1B, arrow

3). An increasing heterozygosity rate provides more opportunities

for an AB genotype in one individual to align with an AB in a

second individual to produce higher IBS2* levels and decreased

IBS0 levels (resulting in a higher IBS2*_ratio). This led us to refine

the interpretation of the alternate hypothesis of the IBS statistic:

values above 2/3 (e.g. 0.70) are attributable either to relatedness

for any level of heterozygosity or high heterozygosity rates in one

or both individuals relative to their population levels (Figure 1B).

These IBS2*_ratio values were consistent with those of distantly

related individuals. We have observed empirically that these values

may mimic relationships between individuals up to and including

first cousins (or similar 1/8th relationships).

Comparisons between individuals from different Human

Variation Panel geographic groups were all expected to represent

pairs of unrelated individuals having IBS2*_ratio measurements

,2/3. Consistent with this expectation, there were no IBS2*_ratio

values .0.69 (n = 60,000 pairwise comparisons; Figure 1C).

Pairwise comparisons that centered around 2/3 (or that were

slightly greater) were inferred to have similar allele frequencies

(e.g. MEX and CAU) or had one or both members of the pair with

high heterozygosity rates (data not shown). This similarity could

also reflect more recent shared ancestry than other between-group

comparisons. The five data points with the highest IBS2*_ratio

values (0.685 to 0.692; Figure 1C, arrow 3) corresponded to

pairwise comparisons between individuals with the highest

summed heterozygosity rates (NA17709 compared to NA17275,

NA17283, NA17294, NA17295, and NA17298; each pair had

.61% summed heterozygosity).

Combined identity-by-state and identity-by-descent
analysis: comparison to PLINK

IBS can be used to infer IBD, which is further useful in defining

relationships between individuals. PLINK software incorporates a

method of moments approach using a hidden Markov model

(HMM) to infer IBD from IBS data [6]. We developed an

alternative approach (see Methods) to define IBD. We generated

IBS2* plots of the Human Variation Panel within-group dataset in

which the y-axis included IBD0, 1 or 2 estimates of Cotterman

coefficients of relatedness k0, k1, k2. These were generated by our

method (K0, K1, K2) or PLINK’s HMM (Z0, Z1, Z2 using the

notation provided by Purcell et al. [6]). We used PLINK to

measure Z0, Z1, and Z2 using standard quality control measures

in two different ways (see Methods) that resulted in the removal of

22 out of 400 samples (Table S1) in the first analysis but kept all of

the samples for the second one. We divided our analysis into two

sections. The first dealt with recently related individuals (i.e. those

that were 1/4th related or more) and had an IBS2*_ratio .0.80

(Figure 3A–3F). The second focused on the remaining pairwise

comparisons that had IBS2*_ratio values ,0.76 (Figure 4A–4D).

For the 13 relationships that were previously inferred to be

second-degree related or more based on the IBS2*_ratio, our

method revealed expected estimates of Cotterman coefficients of

relationship. For identical samples that are expected to have a K2

of 1.0, our method estimated zero IBD1 (Figure 3A; see arrow)

and 100% IBD2 sharing (Figure 3B; see arrow). Several samples

were removed by quality control procedures (see Methods) so that

the first analysis by PLINK’s HMM could not assign a Z1 or a Z2

estimate (Figure 3C, 3D): one of the identical samples (NA17255),

NA17626 (putative parent-child relationship with NA17624), and

NA17687 (putative parent-child relationship with inferred siblings

NA17686 and NA17644). In the second analysis, in which no

samples were removed, PLINK’s HMM gave Z1 estimates of

,0.02 (Figure 3E; see arrow) and Z2 estimates of ,0.98

(Figure 3F; see arrow) for the identical samples. Both K1 and

Z1 IBD1 estimates for putative parent-child relationships were 1.0,

as expected (Figure 3A, 3C; see arrow). Notably, the Z1 given by

PLINK’s HMM was not at 1.0 for the parent-child relationships

that were affected by the inclusion of low genotyping rate in one

individual with Z1 estimates below 1 (Figure 3E) and Z2 estimates

as high as 0.16 (Figure 3F).

IBD1 estimates (K1, Figure 3A; Z1, Figure 3C, 3E) were

comparable for full sibling relationships which have an expected

IBD1 coefficient of 0.5. Also, IBD2 estimates for our method

(Figure 3B) and PLINK’s HMM (Figure 3D, 3F) were centered on

the expected coefficient of 0.25. PLINK’s HMM estimated the

putative second-degree relationship (NA17655/NA17656) as

having a Z2 value of , 0.18 (Figure 3D, 3F; see arrow) with an

IBD1 estimate of 0.42 (Figure 3C, 3E; see arrow). In contrast we

estimated the second-degree relationship to have a K1 of 0.50

(Figure 3A; see arrow), consistent with an expected value for

putative second degree relatives, and a K2 of 0.002 (Figure 3B; see

arrow), which was slightly higher than the expected coefficient of

zero. SNPduo analysis provided evidence for IBD2 presence in the

putative second-degree relationship with 10Mb on chromosome

10 (data not shown, but similar to the amount of IBD2 shown in

Figure 2B for a putative parent-child relationship). However, IBS

analysis using SNPduo did not indicate any other IBD2 sharing

that would explain the high Z2 estimate of 0.18. This Z2 level

approached the expected coefficient of IBD2 for siblings. We

speculate that such a Z2 value could have been mistakenly

interpreted as being associated with a full sibling relationship

based on PLINK analysis alone.

For the great majority of pairwise comparisons, for which

IBS2*_ratio values were centered on 2/3, we expected to observe

IBD0 but little (if any) IBD1 or IBD2. Our method revealed

extensive IBD0 (as measured by K0; data not shown) and very

limited amounts of IBD1 and IBD2, as expected for unrelated

individuals (Figure 4A, 4B). Based on IBS and IBD analyses,

distantly related samples included MEX pairs NA17673/

NA17680 and NA17454/NA17459 (Figure 4A; arrows 1 and 2);

CAU pairs NA17203/NA17257 and NA17299/NA17289 (arrows

3 and 4); and CHI pairs NA17785/NA17794 (arrow 5). These five

relationships were supported by visual inspection of chromosomal

IBS (e.g. NA17673/NA17680 comparison in Figure 2E).

In our initial analyses using IBS measurements (Figure 1A), 25

comparisons had IBS2*_ratio values greater than 0.70, suggesting

genetic relatedness. For 16 comparisons we independently inferred

relatedness with K1 values from our IBD test. For nine comparisons

that had IBS2*_ratio values greater than 0.70 but were due to high

heterozygosity, our IBD test did not indicate K1 sharing (Figure 4A,

arrow 6 represents an example in CAU individuals NA17275/

NA17296; also see Figure 1B, arrow 3 showing the high

heterozygosity of this pair). Thus, the addition of K1 information

supported a model in which elevated IBS2*_ratio values may be

attributed to atypical heterozygosity rather than familial relatedness.

PLINK’s HMM reported dramatically more IBD1 for compar-

isons having IBS2*_ratio values approaching 2/3 and above

Identity-by-Descent and Identity-by-State
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Figure 3. Relationship of IBS2* values to IBD estimates for recently related within-group comparisons. IBS2* plots for recently related
within-group comparisons having IBS2*_ratio values .0.80. The y-axis shows IBD1 and IBD2 estimates derived from our approach (K1, panel A; K2,
panel B), PLINK’s HMM which had removed individuals due to low genotyping rates (Z1, panel C; Z2, panel D), and PLINK’s HMM with the same
quality control metrics except that no individuals were removed (Z1, panel E; Z2, panel F). Note that the x-axis and y-axis scales are the same for
panels A–F. Arrows and brackets indicate groups of pairwise comparisons representing one relationship type (see text for details). Colors correspond
to ethnic group and are matched across the four panels.
doi:10.1371/journal.pgen.1002287.g003
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(Figure 4C; see region 1). This could be because PLINK’s HMM

analyzes whole-genome IBS when calculating IBD probabilities

[6]. In contrast, our method reports more samples with low K1

levels (up to 0.03) presumably due to our windowed approach.

Notably, PLINK’s HMM estimates of IBD1 were comparable to

ours for several pairwise comparisons having elevated K1 values

(Figure 4A, 4C arrows 1–3), but did not provide IBD1 estimates

for several other comparisons (Figure 4A, 4C arrows 4 and 5).

Also, a Z1 of ,0.14 was assigned to a pair of individuals

(NA17275/NA17296; Figure 4C, arrow 6) for whom our K1

estimate was very low (,0.01; Figure 4A, arrow 6). We note that

this corresponds to one of the CAU comparisons that had high

heterozygosity, giving it a high IBS2*_ratio value. Thus we infer

that the PLINK Z1 result was a false positive.

Our method revealed little IBD2 (Figure 4B) as expected for

comparisons involving few related individuals. However, PLINK’s

HMM reported a large set of high IBD2 estimates centered at 2/3

(Figure 4D). Among the comparisons with the highest IBD2

Figure 4. Relationship of IBS2* values to IBD estimates for distantly related within-group comparisons. IBS2* plots for within-group
comparisons having IBS2*_ratio values ,0.76 are shown. The y-axis shows IBD1 and IBD2 estimates derived from our approach (panels A, B) and
PLINK’s HMM which had removed individuals due to low genotype rates (panels C, D). Note that the x-axes scales are the same for all panels, and the
y-axes are comparable for panels A, C and B, D. Arrows indicate pairwise comparisons: arrow 1, NA17673/NA17680 (MEX; see also arrow 1 in Figure 1A,
1B); arrow 2, NA17454/NA17459 (MEX; see also arrow 1 in Figure 1A, 1B); arrow 3, NA17203/NA17257 (CAU); arrow 4, NA17289/NA17299 (CAU); arrow
5, NA17785/NA17794 (CHI).
doi:10.1371/journal.pgen.1002287.g004
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estimates with Z2 values from ,0.05 to 0.2 were those MEX

outliers that had low heterozygosity due to contiguous regions of

homozygosity (Figure 4D region 2). Since visual analysis using

SNPduo did not provide evidence for relatedness such as the

occurrence of SNPduo blocks lacking IBS0 or lacking IBS0 and

IBS1 (indicating IBD1 and IBD2, respectively; data not shown), it

is likely that most of these samples with high Z1 and Z2 estimates

represented false positives. We note that IBD estimates provided

by PLINK’s HMM analysis with all samples included were almost

identical to those provided when samples that had low genotyping

call rates were removed. Therefore, we only present Z1 and Z2

estimates by PLINK’s HMM analysis that included all samples.

To further characterize IBD relationships, we calculated IBS2*

and IBD metrics for the Human Variation Panel between-group

comparisons, which serve as a gold standard for authentically

unrelated individuals. These plots again indicated very high levels

of K0 (as expected; data not shown). The K1 and K2 estimates

were very low (data not shown). PLINK is not designed for the

analysis of IBD involving members of different populations [6,16].

The IBD method we introduce lacked apparent false positive

results that occurred using PLINK’s HMM for the determination

of distant genetic relatedness. The 21 comparisons (not including

identical samples) that we identified as related were among those

having the 22 highest K1 values. The most distantly related pair

that we present as related (NA17632/NA17695) had a K1 value of

0.0323, while an unrelated pair had a comparable K1 value

(0.0326). This is slighter higher than a theoretical 1/64th

relationship (with a K1 of 0.03125) that appears to be the limit

of detecting relatedness inferred by our IBD method. Some

comparisons lacked an IBS2*_ratio greater than 0.70.

Based on our IBS and IBD analyses we identified previously

unannotated familial relationships (Table 1) and reconstructed 14

pedigrees (Figure S1). The CAU group included a pair of identical

samples, a sibling pair, and two distant relatives (,3rd degree).

The CHI group included a father/mother/son trio and a pair of

distant relatives (,3rd degree). In the MEX group we identified a

mother and her two children; four siblings; two mother/daughter

pairs; a 2nd degree relationship; two 3rd degree relationships; and

three distant relationships (,3rd degree). After our analyses

revealed unexpected familial relationships, Coriell provided nine

additional samples for consideration as substitutes. None of these

were closely related to each other or to any samples in the original

panel (data not shown).

Validation of familial assignments based on IBS2* plots
We validated the combined IBS and IBD approach by

analyzing data from individuals with known familial relationships

and compared it to PLINK’s HMM. We used genotype data from

a pedigree in a study of metachondromatosis [17]. This pedigree

(see Figure S2) included known relationships from parent-child to

first cousins that were twice-removed (e.g. a grandchild of

individual X that is compared to individual X’s first cousin). We

analyzed IBS and IBD values in pairwise relationships (Table 2),

and generated plots annotated by proportion IBD1 (K1, Figure 5A;

Z1, Figure 5C). K1 and Z1 values increased comparably as a

function of an increasing IBS2*_ratio. This was consistent with a

decrease in IBS0 calls and an increase in the percent of the

genome that was shared. Our K1 estimate was comparable to the

Z1 estimate of PLINK’s HMM for most relationships. However,

Z1estimates were zero for some relationships with an expected

coefficient of relatedness #0.0625 (Figure 5C; see arrow). In

contrast, we obtained low K1 values (Figure 5A; see arrow). Both

our K2 and PLINK’s Z2 accurately estimated percent IBD2

shared for siblings around the expected value of 0.25 (Figure 5B,

5D).

Discussion

As the number of genome-wide association studies, SNP

datasets, and meta-analyses increase, proper characterization of

familial relationships and underlying population structure increas-

es in importance. As an example, Pemberton et al. recently

identified a series of unexpected relationships in phase 3 HapMap

data [18]. It is expected that the greater the number of individuals

in a study, the greater the power to detect variants of small to

moderate effect. However, as the size of these studies increases, it is

also more likely that related individuals could be introduced or

that substantial population substructure develops. Methods to

appropriately identify these underlying confounders are key.

In this study we applied visualization and analysis of autosomal

IBS and IBD measurements to geographic populations. We

introduced a metric based on informative IBS combinations of

IBS0 and a subset of IBS2, termed IBS2*, in which AB genotypes

are aligned in two individuals at a given chromosomal position.

These IBS analyses were complemented by an IBD method that

revealed the extent of genome sharing in unannotated related (or

known related) pairs of individuals. The main significance of these

analyses is that (1) we identified first, second and third degree

relationships that were unexpected (for the Human Variation

Panel) or consistent with prior annotation (for the validation

dataset); (2) we identified population substructure for the

geographic groups; (3) we identified individuals who accounted

for dramatic variations in the population substructure; (4)

Table 2. IBD estimates in annotated relationships.

IID1 IID2
Expected
r

IBS2*_
ratio K0 K1 K2 Z0 Z1 Z2

7 9 0.5 0.940 0.211 0.520 0.269 0.220 0.562 0.219

2 8 0.5 0.938 0.245 0.509 0.246 0.225 0.560 0.216

10 11 0.5 0.999 0.000 1.000 0.000 0.000 1.000 0.000

6 8 0.5 0.999 0.000 1.000 0.000 0.000 1.000 0.000

1 7 0.25 0.836 0.474 0.526 0.000 0.454 0.546 0.000

2 6 0.25 0.826 0.527 0.473 0.000 0.473 0.527 0.000

3 9 0.25 0.857 0.401 0.599 0.000 0.384 0.616 0.000

6 7 0.125 0.759 0.736 0.264 0.000 0.689 0.311 0.000

8 11 0.125 0.738 0.795 0.205 0.000 0.755 0.245 0.000

3 7 0.125 0.763 0.678 0.322 0.000 0.666 0.334 0.000

1 6 0.0625 0.698 0.939 0.061 0.000 0.900 0.100 0.000

1 11 0.0625 0.685 0.953 0.047 0.000 1.000 0.000 0.000

3 12 0.0625 0.697 0.907 0.093 0.000 0.891 0.109 0.000

3 10 0.0625 0.692 0.915 0.085 0.000 1.000 0.000 0.000

3 6 0.03125 0.682 0.956 0.044 0.000 1.000 0.000 0.000

3 4 0.03125 0.673 0.986 0.014 0.000 1.000 0.000 0.000

1 5 0 0.630 0.999 0.001 0.000 1.000 0.000 0.000

2 5 0 0.616 1.000 0.000 0.000 1.000 0.000 0.000

The pedigree has been published [17] and representative relationships are
shown. IID1 and IID2, individual identifiers 1 and 2 (see Figure S2); K0, K1, K2
estimates of IBD0, IBD1, IBD2, respectively; Z0, Z1, and Z2, IBD estimates based
on PLINK’s HMM; Expected r, expected coefficient of relatedness based on
annotated relationship.
doi:10.1371/journal.pgen.1002287.t002
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knowledge of these individuals may inform future studies that use

these datasets; and (5) these combined methods do not require

prior information about allele frequencies, ethnic background, or

haplotype structure. Our approach is scalable to the study of

datasets of any size.

In terms of our IBS approach, Rosenberg [4] applied a closely

related approach to an HGDP-CEPH Human Genome Diversity

Cell Line Panel and identified close familial relationships from a

set of 1,066 samples, while Lee [3] provided a theoretical basis for

the method. Some of these ideas have been implemented in

PLINK [6] which also provides IBD estimates and has a pairwise

concordance test that is also derived from Lee’s method. We note

that our IBD method called fewer potentially related individuals

for whom we could detect no shared alleles on a chromosome-by-

chromosome basis, but who had atypical heterozygosity levels with

unusually high Z2 estimates and low Z0 estimates. PLINK’s

HMM results for Z2 estimates for the metachondromatosis

pedigree more closely matched expected coefficients (and our

K2 estimates), possibly due to a smaller dataset or better

annotation.

Figure 5. Validation of IBS2* methodology using annotated relationships from a known pedigree. IBS2* plot analysis of real data from a
large pedigree annotated by distance (i.e. proportion of IBD). The y-axis shows IBD1 and IBD2 estimates derived from our approach (panels A, C) and
PLINK’s HMM (panels B, D). These distances refer to Cotterman coefficients of relatedness. Note the linear relationship between K1and Z1 and
IBS2*_ratio values in panels A and C.
doi:10.1371/journal.pgen.1002287.g005
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Allele-sharing methods based on IBS metrics have been widely

used [19]. Applications include assessment of population stratifi-

cation [20], detection of outliers, analysis of pairwise relationships

between individuals [21], and linkage analysis [2]. One common

approach to visualizing large SNP data sets is principal

components analysis (PCA), a technique to reduce the dimension-

ality of data [22]. Examples include studies of the Han Chinese

[23], Europeans [24,25,26,27], Ashkenazi Jews [28], West

Africans and African Americans [29], Asians [30,31], and Indians

[32]. PCA allows outlier data points to be identified, and it often

results in graphic representation of SNP data that correspond to

geographic maps of the populations under study. McVean [33] has

shown that the locations of samples in PCA space from genome-

wide data can be predicted based on the average coalescent time

for pairs of samples. However, the nature of the outliers cannot be

assessed (e.g. the occurrence of familial relationships), and it

represents an exploratory data analysis approach that is not readily

amenable to hypothesis testing of the separation of clusters or of

their internal cohesion. Studies based on PCA and the related

approach of multidimensional scaling have yielded insights into

fundamental population genetics studies such as population

stratification or admixture [34,35,36] and variation in recombi-

nation rate [37].

Plots of mean versus standard deviation of IBS values, such as

those by Abecasis and colleagues with Graphical Representation of

Relatedness (GRR) [38] and by us [15], are comparable to PCA

plots in their ability to represent clusters showing familial

relationships, population stratification, or other types of separa-

tion. IBS2* plots are even more useful because they provide an

objective criterion for defining any pairs of samples as unrelated

(IBS2*_ratio value = 2/3), more related than expected by chance

(IBS2*_ratio values .2/3), or less related than expected by chance

(IBS2*_ratio values ,2/3). The method we introduce is useful for

population studies involving even thousands of samples. However,

it is also relevant to studies of even a single pedigree. For example,

IBS2* plots can be used to confirm reported familial relationships

(an essential requirement for successful linkage studies) and to

explore the genetic relatedness of individuals who are nominally

unrelated but could have more relatedness than expected (e.g.

having regions of autozygosity) or less relatedness than expected

(e.g. having different ethnic backgrounds).

Apparent genetic relatedness between two individuals could

have two independent explanations: shared ancestry (e.g. the two

are third cousins) or membership in geographic or ethnic groups

that have varying population allele frequencies. The combined

IBS and IBD method allowed us to visualize and determine

relatedness in the context of either (or both) explanations. The

dimension of IBS2*/(IBS0 + IBS2*) reveals relatedness in a

manner that is largely independent of population allele frequen-

cies. Our analyses indicated that atypical heterozygosity levels can

lead to high IBS2*_ratio values (e.g. 0.70–0.75). Such cases do not

necessarily imply familial relatedness and are characterized by two

features: (1) relatedness between a given individual and large

numbers of others in the population, beyond what is observed

in typical pedigrees, and (2) a lack of IBD1 regions on a

chromosome-by-chromosome basis, confirming that the individual

with atypical heterozygosity is not related to others despite the

deviation from a 2/3 IBS2*_ratio value.

While IBS variability can be attributed to familial relatedness

and/or to population allele frequencies, another source of

variability is the SNP selection process which Clark et al. have

shown is subject to ascertainment bias [39]. SNPs detected,

annotated, or targeted with a focus on any specific population(s)

may not capture the full genetic diversity of other populations.

This potential bias provides additional motivation for the

introduction of IBS and IBD methodology.

Methods

Analysis of NIGMS Human Genetic Cell Repository and
other genotype data

The genotypes of 400 individuals from the NIGMS Human

Genetic Cell Repository obtained on the Affymetrix Genome-

Wide Human SNP Array 6.0 using the Birdseed algorithm

were obtained from the Coriell Cell Repositories (accessed

June 06, 2008). These collections (n = 100 each) were from

AA (HD100AA), CAU (HD100CAU), CHI (HD100CHI; each

individual had all four grandparents born in Taiwan, China, or

Hong Kong) and MEX (HD100MEX; each individual had either

three or four grandparents born in Mexico). In all cases, these

individuals were reported to be unrelated and apparently healthy.

The data set is available from dbGaP (study accession phs

000211.v1.p1). Only autosomal data were used for analysis.

For a validation dataset, we obtained SNP genotype data from a

published study that included 12 individuals of ‘known’ relation-

ship [17]. The expected coefficients of relatedness ranged from 1/

2 (parent-child and sibling) to 1/32 (first cousins that were twice-

removed) and zero (unrelated). There were 66 pairwise compar-

isons involving all individuals in the pedigree.

Measurement of IBS
We measured autosomal IBS values using the freely available,

cross-platform SNPduo++ software (v1.02) which measures IBS2*

from pairwise relationships as well as measurements of IBS0, IBS1,

and IBS2 [15] (available for download [40]). The output was

imported into Partek Genomics Suite (GS) software (Partek Inc.,

St. Louis, MO) for visualization and analysis. We also implement-

ed the measurements of IBS and IBS2* statistics within Partek GS

software v6.4 that allows easier import of SNP data, measurement

of IBS values, and plotting functions.

IBS2* model
As suggested by Lee [3], all loci having two A alleles and two B

alleles represent informative IBS observations that can distinguish

between related and unrelated pairs of individuals. IBS0 is here

defined as the total number of observations in which two

discordant homozygotes are present (e.g. AA/BB) while IBS2*

results when two concordant heterozygotes are compared (i.e. AB/

AB) between any pair of individuals. The null hypothesis, which

assumes that these are unrelated individuals, is that these two

individuals have four unrelated alleles, while the alternative

hypothesis is that they do not.

We consider alleles A and B having frequencies p and q, where

pi+qi = 1 denotes the allele frequency for the ith informative locus,

with informative markers i = 1, 2, … m (for m,n total genotyped

SNPs). Conditional probabilities for concordance under the null

hypothesis H0 (assuming Hardy-Weinberg equilibrium of alleles at

any one locus) are given by Lee as follows [3]:

p
H0
i ~

IBS2�
IBS2 �zIBS0

~
4p2

i q2
i

4p2
i q2

i z2p2
i q2

i

� �
~

2

3
ð1Þ

A notable feature of this approach is that the probabilities are

expected to be independent of the population allele frequencies for

each SNP and should reduce to 2/3 based on the genome-wide
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sums of IBS2* and IBS0. The test statistic (T1), variance, and

statistic Z1 are given in [3]. We estimated probability values based

on the Z1 statistic. Results based on an exact binomial test for

p = 2/3 were quantitatively and qualitatively similar (data not

shown).

Lee [3] gave conditional concordance probabilities for the two

alternative hypotheses in which a ratio greater than 2/3 implied

relatedness, and less than 2/3 implied the two individuals are from

different populations.

We introduced an IBS2* plot y-axis based on the frequency of

informative SNPs as follows:

percent informative SNPs~
IBS0zIBS2�

IBS0zIBS1zIBS2
ð2Þ

In contrast to the x-axis (IBS2*_ratio), the allele frequencies

which are represented by p and q do not cancel out. Values for

pairwise comparisons displayed on the y-axis (percent informative

SNPs) are positively correlated with heterozygosity rates (shown in

Figure 1B). The more AB genotypes that are within a population,

the more likely to align AB calls when comparing two individuals.

This corresponds to a higher IBS2* count which increases the

percent informative SNPs (y-axis). We empirically noticed that

IBS0 levels have a slight effect on the height of the y-axis but

contribute more to the placement on the x-axis (i.e. IBS2*_ratio).

This not only applies to the comparison of unrelated individuals,

but is true for other relationships such as full siblings and parent-

child as well.

IBD method
We implemented a method for IBD estimation. We present a

simplified graphical overview in Figure S3. For each pair of

individuals, we removed all concordant homozygous SNPs (i.e.

AA/AA, BB/BB) throughout all autosomes resulting in an average

of 423,328 SNPs per pairwise comparison. Note that loci having

NCs (no calls) in either sample were ignored. We restricted our

calculations to windows of 300 SNPs that iteratively overlapped

along each chromosome. Within each window, we included IBS0

(e.g. AA/BB) and IBS2* (i.e. AB/AB) SNPs for estimating IBD0/

not IBD0, for which there was an average of 134,880 SNPs with

an average genomic length (for the Human Variation Panel) of

6.67 Mb per pairwise comparison. Note that for "not IBD0" states

the symbol : corresponds to "not". For determining whether

:IBD0 states were IBD1 or IBD2, IBS1 (e.g. AA/AB) and IBS2*

(i.e. AB/AB) SNPs were used with an average of 377,360 that

corresponded to a genomic length of 2.38 Mb per pairwise

comparison. We employed a series of window sizes, using 300 as a

default size based on empirical observation that it reduced

background noise while yielding expected values of IBD. We note

that increasing the window size over 600 decreased the estimation

of expected IBD values because the boundaries between the

different IBD states were not as easily defined. This window size is

user-selectable.

For each window, we calculated a likelihood of each IBD state

given the observed IBS values. For example, we expected to

observe an IBS0 ratio (i.e. IBS0/(IBS2* + IBS0) of 1/3 for IBD0

states, and an IBS0 ratio of 0 for :IBD0 states that share 1 or 2

alleles IBD. The samples were assumed to be drawn from the same

population with unknown allele frequencies. We express the

likelihood of observing a given IBS frequency vector as the

marginalization across all IBD states (P(S)), and we define D0, D1,

D2, as IBD0, IBD1, IBD2 respectively.

P(S) ~ P(SjD0)P(D0)zP(SjD1)P(D1)zP(SjD2)P(D2)

~ P(SjD0)P(D0)zP(Sj:D0)P(:D0)
ð3Þ

P(Sj:D0)~P(SjD1)P(D1j:D0)zP(SjD2)P(D2j:D0) ð4Þ

We assume prior IBD probabilities of P(D0) = P(D1) = P(D2) = 1/

3, P(D1 | : D0) = P(D2 | :D0) = 1/2. We note that any prior

could be used within the algorithm, but without any reason to

believe there is a specific relationship, the non-informative prior is

a simple choice, and each IBD state is equally as likely to occur.

An observation error rate is also incorporated into the likelihood

model. This is fixed for all of the analyses. The probabilities used

to compute likelihoods given an IBS call at a SNP for each IBD

state assignment are in Table 3 for SNP specific values p and q.

To estimate P(S | D0), we limit our likelihood calculations to

only the IBS0 and IBS2* calls. The observed frequencies of these

two IBS states are independent of allele frequency at each SNP

when conditioned on an observed IBS0 or IBS2 call, with

P(observed S0 | D0, observed S0 and S2) = 1/3.

We use the following distribution assumptions to create the

likelihood of observing the IBS0 frequency. The error (set by

default at 0.01) reflects the genotyping error.

IBS0jD0&Binomial(N~IBS0zIBS2 � ,p~1=3) ð5Þ

IBS0j:D0&Binomial(N~IBS0zIBS2 � ,p~error) ð6Þ

From this, we have P(S | D0) and P(S | :D0), and we compute

posterior IBD0 probability of the region.

P(D0jS)~

P(SjD0)P(D0)=½P(SjD0)P(D0)zP(Sj:D0)P(:D0)�
ð7Þ

P(:D0jS)~

P(Sj:D0)P(:D0)=½P(SjD0)P(D0)zP(Sj:D0)P(:D0)�
ð8Þ

We use this estimate of P(D0 | S) as our estimated IBD0

probability. The next step is to divide P(:D0 | S) into estimates of

P(D1 | S) and P(D2 | S). We use the following distribution

assumption to approximate the expected frequency of IBS1 calls

(i.e. IBS1/[IBS1 + IBS2*]). The parameter c is discussed below.

The error rate is set at 0.01.

Table 3. IBS probabilities given IBD state.

IBS IBD0 IBD1 IBD2

0 2p2q2 0 0

1 4p3q+4pq3 2pq 0

IBS2* 4p2q2 (1/2) - pq 2pq

IBS probabilities were derived from Hardy-Weinberg statistics (derived from
p2+2pq+q2 = 1). For example, the probability of an IBS0 call in a region of IBD1
is 0.
doi:10.1371/journal.pgen.1002287.t003
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IBS1 jD1&Binominl N~IBS1 z IBS2, p~cð Þ ð9Þ

IBS1 jD2&Binominl N~IBS1 z IBS2 � , p~errorð Þ ð10Þ

Using these distributions, we can provide estimates for P(S | D1)

and P(S | D2). Since all the three terms of P(S) above are

estimated after specifying a prior probability, we can compute the

three IBD probabilities, P(D0 | S), P(D1 | S), and P(D2 | S) using

Bayes’ rule.

We estimate the K coefficients using the estimates of P(D0 | S),

P(D1 | S), P(D2 | S) for each window, w, spanning genome length

lw. Pw denotes a probability value across a given window.

K0~

X
Pw(D0jS)lwX

lw
ð11Þ

K1~

X
Pw(D1jS)lwX

lw

K2~

X
Pw(D2jS)lwX

lw

Estimation of parameter c
The windowed approach used observed IBS to identify regions

that were IBD0 or :IBD0. In estimating regions of IBD0 or

:IBD0 the allele frequencies cancelled out (similar to equation

[1]). A further step of our algorithm is to distinguish the set of

regions that are IBD1 and IBD2 (i.e. the :IBD0 regions). It is

necessary to account for allele frequencies in these regions. We

present a justification for the c parameter (equation 9) which is

used for distinguishing IBD1 and IBD2 for regions that are

:IBD0. For each SNP, the proportion of observing an IBS1 event

given that an IBS1 or IBS2* event was observed in a region of

IBD1 can be defined as a function, f, taking the allele frequency p,

as defined in Table 3.

f (p)~
2p(1{p)

:5zp(1{p)
ð14Þ

We can integrate over the allele probability function, P(p), to

calculate an expected f(p).

c~E½f (p)�~
ð1

0

P(p)f (p)dp ð15Þ

We can specify P(p) to represent any prior belief about the allele

frequency of those SNPs that have observed variation. We used a

one-step empirical Bayes’ estimate of P(p) to suggest a practical

value.

Assume that an event O occurs when a SNP has observed

variation in the two comparison samples.

P(pjO)~
P(Ojp)P(p)Ð 1

0
P(Ojp)P(p)dp

ð16Þ

We define P(O | p) in a region of IBD1 as P(O | p) = 5+p (1-p).

This is the complement of the chance to observe identical

homozygous genotypes in a region of IBD1.

An initial estimate of P(p) is specified as a uniform prior over p.

This initial uniform prior is used to compute a posterior P(p | O),

which is then used as the empirical prior to compute Pe(p | O).

Using Pe (p | O) in place of P(p) in the calculation of c above

results in the expectation c = .518. The value of c should be chosen

greater than the error and less than or equal to than the maximum

allowable value of 2/3. The assumed binomial model considers all

SNPs to be drawn with the same allele frequency which is not

accurate, as the binomial parameter p varies across SNPs as a

function of allele frequency. The binomial model described above

was chosen for its simplicity and the experimental insensitivity to

choice of c across a wide range of reasonable values. Future work

may use the beta binomial distribution to better account for the

distribution of allele frequencies. We tested a range of c values and

observed consistent results for K1 and K2 estimates given c$0.25

(data not shown).

The IBD algorithm (called kcoeff) is available as an executable

at the authors’ website [40], as well as the source code.

PLINK’s HMM analysis
For the Human Variation Panel, we applied PLINK’s HMM,

given by the "--genome" option, to each group independently (e.g.

100 Mex individuals) because a homogeneous population is

recommended [6,16]. Each group of 100 had the following quality

control measures: (1) individuals with #98% genotype call rate

were removed; (2) SNPs with #99% genotype call rate were

removed; (3) SNPs with a failure of Hardy-Weinberg equilibrium

with a p#0.0001 were removed; (4) SNPs with a minor-allele

frequency (MAF) #0.01 were removed. Results using these quality

control criteria are shown in Figure 3C, 3D and Figure 4C, 4D.

We also ran PLINK’s HMM without removing individuals that

had #98% genotype call rate as shown in Figure 3E, 3F. We

summarized the effects of these quality control measures for each

of the four Human Variation Panel populations (Table S2).

PLINK’s HMM analysis for the validation dataset was run with

incomplete pedigree information since data for both parents,

which must be specified in a tped file, were not available. Only one

trio was specified. We analyzed the 12 family members’ data in

PLINK using the same quality control measures as above, and no

samples were excluded based on low genotyping rate. 7 SNPs were

removed due to #99% genotype call rate, while 87,234 were

removed due to MAF #0.01 leaving 450,924 SNPs for analysis.

Supporting Information

Figure S1 Reconstruction of pedigrees. Pedigrees inferred from

IBS and IBD sharing are shown for individuals from CAU, CHI,

and MEX populations. Abbreviations: K1, estimate of IBD1 using

our method; x, IBS2*_ratio value. For panel B, the relationship of

NA17626 to two males (NA17655 and NA17656) is via a father for

whom SNP data were unavailable; these relationships are

indicated with a dashed line.

(PDF)

ð12Þ

ð13Þ
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Figure S2 Pedigree for validation dataset. Numbers correspond

to individuals listed in Table 2, and relationships are plotted in

Figure 5. Numbered individuals were those genotyped in pedigree

1 from [17].

(PDF)

Figure S3 Overview of the IBD method. Upper panels:

representative IBS observations between two related individuals

across a typical chromosomal segment (x-axis). Each data point

corresponds to a single locus for which IBS0, IBS1, or IBS2 is

observed and plotted (y-axis). We delineate four regions using an

iterative approach (typically using 300 informative SNPs per

window). In Region 1, having IBS0, we detect IBS0 and infer an

IBD0 region. In Region 2, lacking IBS0 calls, we define the locus

as ‘‘not IBD0.’’ We infer the IBD1 versus IBD2 state depending on

the IBS1 calls (based on allele frequency estimator c). Region 3,

having observed IBS1 calls, is inferred to be IBD1. Region 4,

lacking observed IBS1 calls, is inferred to be IBD2. K0, K1, and

K2 estimates are defined in the figure and correspond to

Cotterman coefficients of relatedness k0, k1, and k2, respectively.

(PDF)

Table S1 Samples with low genotype rate. Genotype rates for

individuals that were removed from PLINK HMM analysis due to

low genotype call rate (#0.980).

(TXT)

Table S2 Quality control information for each ethnic group.

Quality control was performed using PLINK to remove individuals

with #98% genotype call rate, SNPs that failed a HWE (p

,0.0001), SNPs that had #99% genotype call rate, and SNPS with

a MAF #0.01. The first MEX, CHI, CAU, and AA columns

represent the quality control measures in which individuals with low

genotyping rates were removed. The second MEX, CHI, CAU, and

AA columns represent the quality control measures in which

individuals with low genotyping rates were not removed.

(TXT)
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