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Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective
tool to study brain functional activities in real-life context, which reduces the anxiety
or boredom due to difficult or repetitive tasks and avoids the problem of unreliable
collection of brain activity caused by the subjects’ microsleeps during resting state.
Recent studies have made efforts on characterizing the brain’s hierarchical organizations
from fMRI data by various deep learning models. However, most of those models
have ignored the properties of group-wise consistency and inter-subject difference in
brain function under naturalistic paradigm. Another critical issue is how to determine
the optimal neural architecture of deep learning models, as manual design of neural
architecture is time-consuming and less reliable. To tackle these problems, we proposed
a two-stage deep belief network (DBN) with neural architecture search (NAS) combined
framework (two-stage NAS-DBN) to model both the group-consistent and individual-
specific naturalistic functional brain networks (FBNs), which reflected the hierarchical
organization of brain function and the nature of brain functional activities under
naturalistic paradigm. Moreover, the test-retest reliability and spatial overlap rate of
the FBNs identified by our model reveal better performance than that of widely
used traditional methods. In general, our model provides a promising method for
characterizing hierarchical spatiotemporal features under the natural paradigm.

Keywords: naturalistic fMRI, deep belief network, neural architecture search, hierarchical organization of brain
function, functional brain network (FBN)

INTRODUCTION

Neuroscientists have long realized that functional brain networks (FBNs) present varying degrees
of activation responses in a multi-scale hierarchical structure (Ferrarini et al., 2009). In the past,
most of these studies used task-based paradigms to explore the hierarchy of brain network,
which are designed to engage and isolate a particular aspect of brain function such as motor
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or visual perception. However, it is unclear whether and to
what extent such task paradigms could uncover the complex
mental processes in real life. On the other hand, a majority of
studies on FBN/functional connectivity have relied on resting-
state paradigm, which requires low level of performance demand
and thus becomes a popular tool to investigate the FBNs
and clinical populations. However, due to its unconstrained
nature, resting state suffers from unwanted behavioral confounds
such as head motion and microsleep (Vanderwal et al.,
2015). To address limitations of traditional task and resting
state paradigms, recent studies employ naturalistic paradigms,
such as movie viewing, which examine the complex neural
processes during dynamic, naturally engaging stimuli that greatly
resembles the brain function under real-life condition (Sonkusare
et al., 2019). However, brain activities under naturalistic
paradigms are always dynamic and complex with their distinctive
properties (Sonkusare et al., 2019), thus causing difficulty
to model their neural correlates and awaiting appropriate
computational framework.

In previous studies, a variety of conventional methods for
modeling fMRI data to reconstruct and characterize FBN have
been developed, such as general linear model (GLM) (Beckmann
et al., 2003), independent component analysis (ICA) (Calhoun
and Adali, 2006), and sparse dictionary learning (SDL) (Lv
et al., 2015). Although these methods can construct meaningful
FBNs, due to their superficial nature, they may not be able
to detect hierarchical FBNs and temporal features, which is an
important nature for FBNs (Meunier et al., 2009; Qiang et al.,
2020b). In recent years, deep learning models have been widely
used to model fMRI data, due to their powerful representation
and abstraction capabilities, including convolutional neural
network (CNN) (Zhao et al., 2020), deep variational auto-
encoder (DVAE) (Qiang et al., 2020a), deep sparse recurrent
auto-encoder (DSRAE) (Li et al., 2021a), deep convolutional
autoencoder (DCAE) (Huang et al., 2018; Zhao et al., 2021),
and deep belief network (DBN) (Zhang et al., 2019b; Qiang
et al., 2020b). These studies revealed that these deep learning
models significantly outperformed the traditional shallow models
in extracting meaningful hierarchical FBNs and temporal features
from fMRI data. For instances, Huang et al. used DCAE
model to learn medium and high-level features from task-based
fMRI (tfMRI) time series (Huang et al., 2018). Qiang et al.
(2020b) employed DBN to model the volumetric tfMRI data
achieving great performance in characterizing the task-based
functional activations.

However, although these models have exhibited performance
in extracting hierarchical spatiotemporal features of fMRI data
at multiple scales, there still remain big challenges in such
deep leaning models. Firstly, due to the high dimensionality
of fMRI data and a variety of training parameters, manual
design of neural architecture depending on experience is very
time-consuming and less reliable. Hence, it is necessary to
develop computational framework for automatic construction
of optimal neural architecture (NA) for FBNs construction
models. Recently, there have been some literature studies that
successfully applied neural architecture search (NAS) framework
to fMRI data for brain network modeling (Zhang et al., 2019a;

Qiang et al., 2020b; Li et al., 2021b,c). For instance, Zhang
et al. (2019a) has proposed a NASNet with DBN model to
identify hierarchical spatio-temporal features from static task-
based temporal fMRI data, and Qiang et al. (2020b) has proposed
a NAS-vs. DBN framework to model the static task-based
volumetric fMRI data. Specifically, a DBN model is typically
stacked by multiple Boltzmann machine (RBM) (Fischer and
Igel, 2012), which naturally act as an effective hierarchical feature
extractor as a whole to extract hierarchical brain spatio-temporal
features from each hidden layer. Although these studies revealed
the superiority of DBN in characterizing hierarchical FBNs
during task paradigm and the capability of NAS in automatic
identification of neural architecture (NA), these models focused
on uncovering the hierarchical task-based FBNs, still ignoring the
significant nature of brain activities under naturalistic paradigm.

Secondly, various research studies have demonstrated
the intrinsic properties of neural process under naturalistic
paradigm, that brain responses evoked by this condition exhibit
highly consistency across individuals, but also show great inter-
subject variability, especially in heteromodal association cortices
(Golland et al., 2007; Ren Y. et al., 2017), which reflects high
degree of individuality and uniqueness in internal neural process.
However, existing deep learning models on FBNs identification
overlooked this important nature of naturalistic paradigm
(Zhang et al., 2019a; Qiang et al., 2020b; Li et al., 2021b),
thus awaiting suitable computational models that can uncover
hierarchical temporal features and FBNs possessing group
consistency and individual uniqueness simultaneously. Inspired
by the previous successful applications of NAS-DBN framework
and in order to solve the existing problems mentioned above,
we proposed a novel two-stage DBN model with NAS (two-
stage NAS-DBN framework) to extract the group-consistent
and individual-unique temporal and spatial characteristics of
NfMRI signals at multiscale, further suggesting the hierarchical
organization of brain function under naturalistic paradigm.
Furthermore, the effectiveness and reproducibility of our model
were further evaluated against conventional methods, where
our model exhibited improved reliability and overlap rate, thus
offering a superior data-driven strategy for identifying brain
function during naturalistic condition.

MATERIALS AND METHODS

The computational framework of two-stage NAS-DBN is
illustrated in Figure 1. The entire process of NAS was
implemented based on group-level NfMRI data. First, 30 sub-
nets were randomly initialized. Some potential sub-nets were
selected as particles to represent specific network architecture
of DBN model (Figure 1A). Reconstruction error of each sub-
net was calculated after training. Then, evaluation, mutation and
updating operation were conducted iteratively (Figures 1A,B).
After NAS, DBN with the optimal neural architecture was first
trained on group-level NfMRI data (Figure 1C), resulting in
group-level spatial FBNs and temporal features (Figure 1D).
Afterward, we further trained the individual-level DBN model
initialized by group-level DBN results for each subject’s NfMRI
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FIGURE 1 | Illustration of computational framework of two-stage NAS-DBN model, including (A) NAS process, (B) DBN model training process, (C) group-level and
individual-level DBN model, and (D) Identification of spatio-temporal features.

data (Figure 1C), producing individual-level spatial FBNs and
temporal features with group correspondence (Figure 1E).

Experimental Data and Preprocessing
Seventeen right-handed healthy subjects participated in the
study. During scan, participants freely watched a 20-min movie
named “The Butterfly Circus,” which depicts a story of a man
born without limbs who is encouraged by a famous circus
performer to discover his potential. All the subjects signed
a written informed consent and reported that they had not

previously seen the movie. The experiments were composed of
two scanning sessions with a 3-month interval, where all the
subjects watched the same movie in each session (Sonkusare et al.,
2019). We marked the datasets obtained from the two sessions as
session A and session B, respectively.

fMRI images were acquired from a whole-body 3T Siemens
Trio MRI scanner with following scanning parameters:
TR = 2,200 ms, TE = 30 ms, FA = 79◦, FOV = 134 mm× 134 mm,
a 64× 64 acquisition matrix, 44 axial slices, and 3 mm3 isotropic
voxels. The preprocessing pipeline was conducted by Statistical
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Parametric Mapping toolbox (SPM12), including slice timing
correction and motion correction, co-registration, normalization
to 2 mm MNI152 standard template (The Montreal Neurological
Institute), spatial smoothing with 6 mm full width half maximum
Gaussian kernel, band pass filtering (0.0085 ± 0.15 Hz), and
masking. The fMRI signals of each subject contain 530 volumes.
Whole-brain fMRI signals of each subject were extracted and
stacked into a 2D matrix Sx (The Sx represents the 2D fMRI signal
matrix of each subject, where x represents the label of subject.),
where each column represents the fMRI signals of each voxel.
In addition, fMRI time series of each voxel were normalized
to have zero mean and unit variance. We concatenated all
individual subjects’ fMRI time series to a group-wise matrix for
group-level DBN training.

Neural Architecture Search Framework
As the particle swarm optimization algorithm (PSO) owns
multiple advantages (Kennedy and Eberhart, 1995), including less
parameter requirements, simple formula, and easy to implement,
we applied a PSO-based NAS framework to search for the
optimal neural architecture (NA) for our two-stage DBN model.
Specifically, we first randomly generated 30 sub-nets with
different NAs, which consisted of most critical hyperparameters:
the number of nodes and hidden layers. In order to increase the
diversity of sub-nets, some potential sub-nets will be selected
after initialization and performed mutation, to generate new
generation of particles based on the idea of aging evolution
(Real et al., 2019). The sub-net after mutations will be mapped
to the position of each particle. According to the principle of
PSO algorithm, all the particles were evaluated by a fitness
function, which was defined by the reconstruction error of
DBN (Kennedy and Eberhart, 1995). This NAS procedure was
conducted iteratively. Each iteration recorded the current global
optimal NA with the most accurate reconstruction in that
iteration and replaced the original one (Kennedy and Eberhart,
1995). Finally, after all the iterations, a single particle owning the
most accurate reconstruction was selected as global optimal NA.
Specifically, the mutation strategy of PSO algorithm is defined as
follows:

vh+1
i = w ∗ vh

i + c1 ∗ Rand1

(
pbesth

i − nash
i

)
+ c2 ∗ Rand2(gbesth

i − nash
i ) (1)

nash+1
i = nash

i + vh+1
i (2)

In Equations (1) and (2), nash
i and nash+1

i indicate current and
next search of neural architecture, and vh

i and vh+1
i are the current

and next mutative velocity to update the NA. The subscript h
and I represents current iteration/generation; w is the inertia
weight; c1and c2 are constant real values; Rand1 and Rand2 are
random real numbers; pbesth

i represents historical optima for
each sub-net during iterations, and gbesth

i is global optimal NA.
The above constant values are set as the default value according
to previous study (Kennedy and Eberhart, 1995). Due to GPU
memory limitations, the search range of nodes is set to [100, 800],
the search range of layers is set at [2, 10].

Two-Stage Deep Belief Network-Based
Model
In general, DBN is composed of multiple stacked Restricted
Boltzmann Machines (Hinton et al., 2006), which models the
latent distribution of input data through interactions between
visible and hidden variables, and of which structure makes it
suitable to extract the hierarchical features of fMRI data. DBN
consists of visible layer variable v and hidden layer variable h, of
which energy function is as follows:

E
(
v, h

)
=

∑
bivi −

∑
bjhj −

∑
vjhjwij (3)

Where vi and hj represents the activation state of two layers;
bi and bj indicate their bias; wij is the weight between two
layers. In this work, the DBN model with the optimal NA was
applied to define the architecture of DBN model, aiming to
characterize the two-stage hierarchical FBNs and corresponding
temporal features. In the first stage, the optimized DBN was
adopted to model group-level NfMRI data to train a weight
matrix from each layer as Wi ∈ Rkt×m, which represents the
group-wise temporal features. Specifically, all the individual fMRI
signals were concatenated along the time to a group-level NfMRI
matrix for first-stage training. In the second stage, the subject-
specific DBN models were applied to each individual NfMRI
matrix to further identify individual-level temporal features and
FBNs while maintaining their correspondence across subjects.
To achieve this, the group-level weight matrix Wi of each
layer derived from first stage was used to initialize the subject-
specific DBN model. In general, according to previous FBNs
identification literatures (Hu et al., 2018; Zhang et al., 2019a),
extracting FBNs from fMRI signal matrix using DBN/RBM model
can be regarded as a blind source separation problem, which
shares similar structures with matrix factorization problem in
terms of the relationship among the observed fMRI data, latent
temporal features, and spatial maps. Thus, in our model, NfMRI
temporal signals matrix can be decomposed as the temporal
features and spatial maps via DBN model. While the weight
matrix of each layer in DBN was regarded as temporal features,
the output of hidden layer represented the corresponding spatial
maps of these temporal features that can be mapped back
to original 3D brain image space, for both group-level and
individual-level DBN models.

Compare With Widely Used Traditional
Methods
While previous studies have shown that widely used data-driven
methods such as ICA and SDL are effective to identify typical
FBNs (such as Resting state network, RSN), our model overcomes
the weakness of these shallow models in terms of extracting the
complex interactions between brain regions and the hierarchical
organization of FBNs. Thus, to evaluate the performance of the
proposed two-stage DBN model, we compared it to ICA and
SDL in terms of modeling fMRI time series to construct FBNs.
Both group ICA and SDL were applied to spatial-concatenated
group-wise NfMRI signals of all the subjects. Specifically, SDL
was implemented by effective online dictionary learning method
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via a public software1, which decomposes the group-wise fMRI
signals into dictionary matrix D and coefficient matrix A (Mairal
et al., 2010). Note that D is commonly shared by all subjects
and represents extracted temporal features, and the A has the
same spatial voxel organization and group correspondence of
input signals and thus is composed of individual-level FBNs
of each subject. Each coefficient vector in A can be back
into the 3D brain space to derive FBN corresponding to each
dictionary. In addition, ICA was implemented by fast ICA
toolbox (Hyvarinen, 1999), which decomposes the 2D group-wise
NfMRI signal matrix into a set of representative temporal features
and corresponding individual-level spatial patterns. A statistical
coefficient mapping method was adopted to individual-level
FBNs to derive group-level statistical coefficient maps (z-score
maps) for comparison across different methods, according to our
previous study (Ren Y.D. et al., 2017). For fare comparison, the
number of components for SDL and ICA were set as same as
the node number of our modal, and all the FBNs derived by
three methods were using a threshold of z > 1.65 after being
transformed to the standard z-score.

To evaluate the performance of three models in terms of
effectiveness of constructing spatial patterns, quantitatively, we
compared the spatial similarity between spatial patterns (FBNs)
derived by these models and the well-established RSNs, where the
spatial pattern overlap rate O is defined as

O (S, T) =
|S∩ T|
|T|

(4)

where S is the FBN identified by these methods and T is the RSN
template, respectively.

Inter-Subject Correlation Analysis for
Temporal Features
To investigate the hierarchical organization of temporal
responses derived from proposed framework, we calculated
the inter-subject correlation (ISC) using individuals’ temporal
responses extracted from weight matrix of DBN model, where
ISC measures the inter-subject consistency for temporal
responses of each atom from each hidden layer across individuals
(Hasson et al., 2004; Nastase et al., 2019). Specifically, individual-
level ISC value of an atom for subject i is defined as following
equation.

ISCi =
1

N − 1

N∑
j=

rij, where i, j = 1, 2, . . . , 17; i6=j. (5)

Where rij represents the Pearson correlations between the
temporal response corresponding to one atom in one subject i
and that temporal responses in each of the remaining subjects j
in the group. This ISC analysis was conducted for each atom of
each hidden layer for all the subjects, separately. We then derived
the ISC metric for each layer and each subject by averaging the
ISC values across all the atoms belonging to the same layer,
respectively. Moreover, the group-level ISC metric was derived
by averaging all the individual’s ISCs for each layer, respectively.

1http://thoth.inrialpes.fr/people/mairal/spams/

Test-Retest Reliability Analysis for
Functional Brain Networks
To test the reproducibility of each brain network measures
derived from our model and commonly-used methods, we
conducted the same two-stage DBN, group-wise SDL and ICA
on fMRI dataset of session B, and detected matching FBNs,
which share maximum number of overlapping voxels with FBNs
derived from session A. In addition, further careful manual
inspection was conducted to verify the matching FBNs of the two
sessions. Then, we calculated test-retest reliability of each selected
matching FBNs. The reliability is quantified by calculating the
intra-group correlation coefficient (ICC) between two datasets
(Shrout and Fleiss, 1979; Mcgraw, 1996), which is defined as
following equation.

ICC =
MSP −MSe

MSP + (d − 1)MSe
(6)

The details of this procedure were accomplished according
to our previous study (Ren Y.D. et al., 2017). We evaluated the
test-retest reliability of FBNs at voxel-wise level according to
previous study (Guo et al., 2012). The test-retest reliability is
divided into five levels, including excellent (ICC > 0.8), good
(ICC 0.6–0.79), moderate (ICC 0.4–0.59), fair (ICC 0.2–0.39),
and poor (ICC < 0.2).

RESULTS

Two-Stage Neural Architecture
Search-Deep Belief Network
Implementation
To quantitively evaluate the effectiveness and reproducibility of
NAS framework and obtain the reliable optimal architecture
of DBN model, we independently performed 10 times of NAS
processes. Considering subjects and stimuli of the two sessions
are the same, we only used 17 individuals of session A as training
dataset for NAS procedure.

For the 10 results of NAS, the numbers of neurons were
in range from 170 to 200, and layers were always 3, showing
high consistency and robustness (Figure 2). The reconstruction
errors of third layer after performing NAS were less than
10−7. These experimental results show the robust superiority of
our NAS framework. Afterward, we averaged 10 NAS results,
thus determining that the optimal architecture of DBN model
has 3 layers and 184 neurons, which was further used for
characterizing both group-level and individual-level hierarchical
FBNs on session A and session B separately.

For the hyperparameters of two-stage DBN model, as each
individual NfMRI signal has 530 volumes, the number of visible
units of group-level DBN model in the first stage is 9,010
(530 × 17) for both session A and session B. In addition,
the number of neurons and layers in the first-stage DBN were
determined according to results of NAS. The target sparsity
(the ratio of active hidden units) and learning rate in the
first/second/third hidden layer were set as 0.01/0.05/0.05 and
0.001/0.001/0.001, respectively, and the batch size was set as
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FIGURE 2 | Results of 10 independent NAS processes, including (A) the numbers of neurons and (B) the numbers of layers of 10 independent NAS processes.

10. The model converged after approximately 50 epochs. In
the second-stage, the individual DBN model was applied to 17
subjects with 530 visible units, separately. The hidden units and
other hyperparameters set in the second stage of DBN were set
as same as the first stage. In addition, all the experimental results
were run on both session A and session B, including group-level
and individual-level FBNs identification, ISC analysis of temporal
features, and spatial/temporal hierarchy analysis. As two sessions
yielded similar results, we thus mainly presented results based
on session A in the main text, and results based on session B in
the supplementary results as a further validation (Supplementary
Figures 1–5). The code was designed based on the Deepnet
framework2 and ran on a deep learning server with GeForce GTX
1080 TI. The NAS process was accomplished on one GPU card
within acceptable time (8 h).

Identified Group-Level and
Individual-Level Hierarchical Functional
Brain Networks
After the specification of the model architecture, we further
explored the hierarchical FBNs during movie viewing defined
by the our two-stage NAS-DBN framework. We first selected
and showed some representative hierarchical group-level FBNs
identified in the first stage DBN. Some well-known brain
networks can be successfully identified (Figure 3), including
the visual network [layer1(a)], auditory network [layer1(b)],
default mode network [layer1(c)], dorsal attention network
[layer1(d)], sensorimotor network [layer2(a)], frontoparietal
network [layer2(b)], executive control network [layer2(c)]
cerebellum network [layer2(d)]. In addition to those well-
established networks, our framework can also identify some
complex/interactive FBNs, which appear to reveal the functional
interactions between different brain regions/networks, such
as auditory-sensorimotor network [layer3(b)], visual-auditory
network [layer3(a), (c)], visual-executive control network
[layer3(d)]. Interestingly, while simple or well-established FBNs
are derived from shallower layers of DBN model, the complex

2https://github.com/nitishsrivastava/deepnet

interactive FBNs composed of different brain networks are found
in deeper layers, which suggests the hierarchical organization
of FBNs under naturalistic condition. Similar group-level
results were found on session B which were illustrated in
Supplementary Figure 1.

While naturalistic stimuli can trigger highly consistent neural
responses in primary sensory areas, neural activities evoked
by this condition especially in the higher-order heteromodal
cortices also show great inter-subject variability, which can
be modeled by our individual-level DBN model with cross-
subject correspondences kept by group-level DBN model. To
further verify the correspondence of group-level and individual-
level FBNs, we randomly selected and compared representative
group and individual FBNs in an exemplar subject, including
three visual networks, auditory network, default mode network,
sensorimotor network, dorsal attention network, executive
control network (Figure 4). Specifically, the FBNs derived from
two stages correspond well, where most of the spatial patterns
learned in the first stage are perfectly preserved in individuals
FBNs with individual specific variability maintained. This
further demonstrated that our model can effectively characterize
meaningful spatial patterns with well-established correspondence
between group-level and individual-level FBNs, keeping the
important properties of FBNs under naturalistic condition.

Hierarchical Organization of
Spatio-Temporal Patterns Under
Naturalistic Condition
DBN model consists of multiple stacked RBM block, which
makes it a feature extractor to capture the hierarchical temporal
and spatial features from NfMRI data. In general, the hierarchical
temporal features can be derived from weight matrix and
the associated spatial features can be represented by the
output of each hidden layer of DBN model, respectively.
Specifically, our two-stage NAS-DBN framework can not only
characterize hierarchical temporal responses, but also reveal
the meaningful group-level and individual-level FBNs with
hierarchical organization.
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FIGURE 3 | Representative group-level functional brain networks from three layers identified by first-stage DBN model based on session A. Layer 1: (A) visual
network, (B) auditory network, (C) default mode network, and (D) dorsal attention network. Layer 2: (A) sensorimotor network, (B) frontoparietal network, (C)
executive control network, and (D) cerebellum network. Layer 3: (A) visual-auditory network, (B) auditory-sensorimotor network, (C) visual-auditory network, and (D)
visual-executive control network.

FIGURE 4 | Corresponding group-level and individual-level FBNs in an exemplar subject for two sessions (V-1: medial-visual network, V-2: occipital pole-visual
network and V-3: lateral-visual network).

Hierarchical Temporal Organization Revealed by
Inter-Subject Correlation
First, to investigate the hierarchical organization of temporal
responses derived from proposed framework, we measured and
compared the inter-subject correlation (ISC) of individuals’
temporal responses, at both individual-level and group-level.
We averaged the ISC metrics for each layer at individual-level
and group-level, respectively, the lower layer temporal responses

show less inter-subject consistency, while higher layer temporal
responses show higher consistency across individuals at both
individual-level and group-level (Figure 5), which reveals the
existence of hierarchical organization of naturalistic temporal
features. Consistent results were found in session B and shown
in Supplementary Figure 2

In addition, Figure 6 illustrates the top five FBNs with highest
group-level ISC in each layer. Most of these FBNs are localized
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FIGURE 5 | The ISC metric in each layer at individual-level and group-level for session A. Error bar indicates standard error of mean (SEM).

FIGURE 6 | Top 5 spatial maps with highest ISC metrics at each layer. ISC value corresponding to each FBN, and the average and standard deviation ISC value of
each layer are labeled.

in primary sensory cortices, especially in visual or auditory
network, which are consistent with ISC map derived from
naturalistic fMRI studies (Nastase et al., 2019), where most brain
regions show similar neural responses among subjects during
movie viewing. Furthermore, this interesting experimental result
reflected excellent performance of our model in mining temporal
features under natural viewing condition.

Inspired by this, as our proposed model characterized group-
level and individual-level FBNs with good correspondence, we
further calculated the average ISC values derived from all
the individual temporal features corresponding to each FBN
illustrated in Figure 4. As shown in Figure 7, we used Analysis
of Variance (ANOVA) test to evaluate the differences in ISC
value between FBNs, with session A as an example. Specifically,
we can clearly find that the ISC values of visual network and
auditory network are generally significantly higher than other
FBNs, further indicating that neural responses in primary sensory
areas are more consistent than heteromodal cortices triggered by
naturalistic stimuli and the effectiveness of proposed model in
detecting FBNs with this import properties. The results of session
B are quite consistent and illustrated in Supplementary Figure 3.

Functional Brain Networks and Temporal Hierarchy:
Spatial and Temporal Similarity Revealed by
Inheritance Similarity Rate
We here further excavated the hierarchical organization of group-
level FBNs and associated temporal features between adjacent
layers. To quantitatively measure the connection between
hierarchical patterns of different layers, the inheritance similarity
rate (ISR) between a lower layer spatial maps N(L)and a higher
layer space maps N(H) is defined as follows:

ISR
(

N(L), N(H)
)
=

∑n
i=1

∣∣∣N(L)
i ∩ N(H)

i

∣∣∣∑n
i=1(N(H)

i )
(7)

We first calculated ISR metric for FBNs derived from first-
stage DBN model for session A and session B, respectively.
As two sessions yielded similar results, results for session
B were listed in Supplementary Figure 4. Specifically, the
group-level ISR for FBNs between layer 2 and layer 1 and
that between layer 3 and layer 2 are shown in Figure 8.
Note that the ISR between spatial patterns in higher layers
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FIGURE 7 | The average ISC values from individual temporal features corresponding to each FBN for session A, including dorsal attention network, default-mode
network, executive control network, sensorimotor network, auditory network, medial-visual network (V1), occipital pole-visual network (V2) and lateral-visual network
(V3). The error bar refers to standard error of mean (s.e.m). The statistical test was conducted by ANOVA, where ∗ represents FDR-corrected p < 0.001 (FDR: False
discovery rate).

FIGURE 8 | The group-level ISR maps of spatial maps across layers for session A. (A) Is the ISR between layer 1 and layer 2. (B) Is the ISR between layer 2 and
layer 3.

shows more similarity than that between lower layers (two-
sample t-test, p < 10−307), which indicates that FBNs in
higher layer show more complexity and richness, further
suggesting the existence of hierarchical structure of FBNs under
naturalistic condition.

Moreover, we further calculated ISR metrics for temporal
responses derived from first-stage DBN model between adjacent
layers for session A and session B, respectively. As two sessions

yielded similar results, the results of session B were listed in
Supplementary Figure 5. As shown in Figure 9, these results
further validate the existence of temporal hierarchy extracted by
the proposed model (two-sample t-test, p < 10−11). In general,
these ISR maps between associated networks and temporal
features between different layers quantitatively confirmed the
hierarchical organization of spatial distributions and temporal
features, further suggesting the superiority of our proposed
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FIGURE 9 | The group-level ISR maps of temporal responses across hidden layers for session A. (A) The ISR map between layer 2 and layer 1, and (B) the ISR map
between layer 3 and layer 2.

FIGURE 10 | Representative FBNs defined by NAS-two stage DBN, SDL, and ICA, and the corresponding RSNs template. The right three columns represent the
overlap rate of FBNs derived from each method. The overlap rate greater than 0.8 were marked in orange.

model in modeling meaningful spatiotemporal features under
naturalistic condition.

Comparison of Neural Architecture Search Two-Stage
Deep Belief Network With Independent Component
Analysis and Sparse Dictionary Learning
Finally, to evaluate the performance of the proposed two-stage
DBN model, we compared it to widely used data-driven methods,
ICA and SDL, in terms of overlap rate with RSN template
and test-retest reliability of FBNs. As shown in Figure 10, we
found that the overlap of the FBNs derived by our model are
generally higher than that of ICA and SDL, calculated according

to Equation (4). In particular, the overlap rate of auditory and
visual networks, of which neural activities are strongly triggered
by naturalistic stimuli, are higher than 0.8. In addition, while
only few FBNs related to primary sensory cortices derived from
ICA and SDL have overlap rate higher than 0.8, most of FBNs
capture overlap rate lower than 0.6. This result demonstrated that
our proposed framework can define meaningful spatial patterns
during natural viewing condition than conventional data-driven
methods.

Afterward, we would like to evaluate the long-term test-
retest reliability of our method. Two-stage NAS-DBN, group ICA
and SDL were employed to identify FBNs in the repeated scan
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FIGURE 11 | Test-retest reliability of FBNs. Average voxel-wise ICCs of
networks detected by all the methods. Error bars signify standard error of
mean (SEM).

sessions. To compare the test-retest reliability of these methods,
we focused on three networks that can be defined in both sessions
by all three methods, including visual network, auditory network
and default mode network. We assessed the voxel-wise ICC of
each FBN, where all three methods showed a range of reliability at
the voxel level across different networks (Figure 11). Specifically,
the voxel-level ICCs are either good or excellent in the visual
network (layer1, 0.70; layer2, 0.88; layer3, 0.66) and default mode
network (layer1, 0.67; layer2, 0.69; layer3, 0.60) defined by our
method, but generally reduce to fair or moderate level with ICA
(visual, 0.31; default mode, 0.55) and SDL (visual, 0.62; default
mode, 0.53) methods. For the auditory network, average voxel-
ICCs are at the moderate level in layer1 of DBN model (0.59), at
the excellent or good level with layer2 (0.88) and layer3 (0.64),
while ICCs are good in auditory network using SDL (0.62),
and in moderate using ICA (0.50) method. In addition, we also
visualized brain maps of the voxel-level ICCs of our model in
Figure 12 and of ICA, SDL methods in Supplementary Figure 6.

Moreover, to quantitatively assess the statistical differences of
voxel-level ICCs derived from three methods, we applied two-
sample t-tests with multiple testing corrections to ICCs of each
representative network, respectively. Consequently, except that
the ICCs of auditory network derived from layer1 of the proposed
model are significantly lower than that derived from SDL (FDR-
corrected p < 0.001), the ICCs of all the other networks derived
from the proposed model are significantly higher than that
derived from ICA and SDL methods (FDR-corrected p < 0.001),
indicating the superiority of proposed model in characterizing
spatial patterns with good long-term reliability under naturalistic
paradigm (Figure 11).

CONCLUSION

In this study, we proposed a two-stage NAS-DBN framework to
derive group-level and individual-level spatio-temporal patterns
from NfMRI signals, offering one of the first applications of
NAS-DBN framework for analyzing dynamic naturalistic fMRI
data. The advantages of our framework are summarized as
follows. First, based on PSO, our NAS framework can find
feasible optimal solution for neural architecture of DBN within
acceptable time with limited computing resource. In addition,
according to previous NAS-vs. DBN study (Qiang et al., 2020b),
employing testing dataset in NAS process can potentially avoid
overfitting problem, which can be realized using larger NfMRI
dataset in the future work. Second, compared with other
FBNs detection frameworks based on deep learning models,
the proposed model can characterize hierarchical organization
of FBNs and associated temporal features under naturalistic
condition, which is an intrinsic nature of brain function and
can be revealed by our experimental results. Third, compared
with the simple NAS-DBN model, our two-stage NAS-DBN
framework has been developed based on the critical properties
of natural viewing condition, that is, neural processes under
this condition exhibit highly consistency across individuals, and
also show great inter-subject variability especially in heteromodal

FIGURE 12 | Brain maps of the voxel-wise ICCs of manually matching brain network using two-stage DBN.
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association regions (Golland et al., 2007; Ren Y. et al., 2017).
Consequently, with well-established correspondence between
two stages of DBN models, our framework offers potential
advantage in characterizing group-level FBNs that reveal the
consistency of neural processes across subjects and individual-
level FBNs with cross-subject correspondence that maintain
the subject specific variation and reflect high degree of
individuality in internal neural process, verifying this critical
property. Thus, compared with simple NAS-DBN model,
our model provides a powerful tool for conducting inter-
group/inter-subjects comparison of representative temporal
features/FBNs. Finally, based on comprehensive comparisons
with ICA and SDL methods in terms of network identification
and test-retest reliability analyses, the experimental results
demonstrated that our model could be more effective and
reliable in identifying FBNs during naturalistic paradigms,
where good long-term test-retest reliability is a necessary
feature of a successful FBN biomarker for clinical study
(Guo et al., 2012). With the superiority of inter-group/subject
correspondence and meaningful FBNs with good long-term
reliability established by two-stage NAS-DBN model, our
framework could potentially be useful in clinical research, to
elucidate abnormal brain function and develop neuroimaging
markers for neuropsychiatric disorders.
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