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Abstract
To reveal the correlation of dynamic serum tumor markers (STMs) and molecular 
features of epidermal growth factor receptor-mutated (EGFR-mutated) lung can-
cer during targeted therapy, we retrospectively reviewed 303 lung cancer patients 
who underwent dynamic STM tests [neuron-specific enolase (NSE), carcinoem-
bryonic antigen (CEA), carbohydrate antigen 125 (CA125), carbohydrate antigen 
153 (CA153), the soluble fragment of cytokeratin 19 (CYFRA21-1), and squamous 
cell carcinoma antigen (SCC)] and circulating tumor DNA (ctDNA) testing with 
a panel covering 168 genes. At baseline, patients with EGFR mutation trended 
to have abnormal CEA, abnormal CA153, and normal SCC levels. Additionally, 
patients with Thr790Met (T790M) mutation were more likely to have abnormal 
CEA levels than patients without T790M mutation. Among patients with sec-
ondary resistance to EGFR tyrosine kinase inhibitors (TKI), the dynamic STMs 
showed a descending trend in the responsive stage and a rising trend in the resist-
ant stage. However, the changing slopes differed between T790M subgroup and 
the non-T790M subgroup in individual STMs. Our study demonstrated that the 
combination of baseline levels and variations of STMs (including the responsive 
stage and resistant stage) can be suggestive of secondary EGFR-T790M mutation 
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1   |   INTRODUCTION

Lung cancer has become the most commonly diagnosed 
cancer and the leading cause of cancer death in the 
world.1 Various oncogenic drivers have been discovered 
since 1977, including EGFR.2–5 Meanwhile, the use of 
targeted drugs has significantly improved the prognosis 
of patients with targetable mutations.2 However, differ-
ent treatment strategies may result in different outcomes, 
and secondary resistance might be induced during the 
treatment.6

To timely adjust the therapeutic strategy of lung can-
cer, the detections of biomarkers (e.g., tissue biopsy, liquid 
biopsy, serum tumor markers) are employed to moni-
tor the dynamic tumor activity.7–9 Although the golden 
standard for molecular profiling is tissue biopsy, patients 
limited by their poor physical conditions or inoperable le-
sion locations cannot undergo surgery or fine-needle as-
piration biopsy.10 Also, the insufficient tissue specimens, 
potential risks of surgery and tumor transmission, and 
dynamic sampling add difficulty in using tissue biopsy as 
a tool for dynamic monitoring.10–13 For cases with multi-
ple primary lesions, a single lesion biopsy is insufficient 
to reveal tumor activity comprehensively due to tumor 
heterogeneity.11,12 Thus, liquid biopsy has been devel-
oped and has become an important complementary tool 
for biopsy.9 However, liquid biopsy faces challenges in 
widespread clinical application due to its technical lim-
itations and high costs. A more cost-effective alternative 
tool to monitor molecular features of lung cancer during 
targeted therapy is needed.

According to previous studies, STM testing helps 
diagnose suspected cancer and unknown primary 
tumor and evaluate anti-tumor therapy.14–17 The most 
commonly used STM testing for lung cancer includes 
neuron-specific enolase (NSE), carcinoembryonic an-
tigen (CEA), cancer antigen 125(CA125), carbohydrate 
antigen 153(CA153), the soluble fragment of cytokera-
tin 19 (CYFRA21-1), and squamous cell carcinoma an-
tigen (SCC).7,8,14,17 Furthermore, combining CA125 with 

SCC could predict EGFR mutations.18 However, to our 
knowledge, no study was conducted to predict the mo-
lecular features during the targeted treatment by STMs. 
Therefore, we aim to predict molecular features of 
EGFR-mutated lung cancer, including the emergence of 
secondary EGFR-T790M mutation and the clearance of 
EGFR ctDNA, by dynamically monitoring STMs during 
targeted therapy.

2   |   MATERIALS AND METHODS

2.1  |  Study design and patient cohort

We retrospectively reviewed 303 Chinese patients with 
lung cancer who received first-line targeted therapy with 
a 168 genes panel sequencing developed by Burning Rock 
Dox between September 2015 and July 2019 at the First 
Affiliated Hospital of Guangzhou Medical University. 
Their longitudinal plasma or tissue specimens were col-
lected at baseline (within 15 days before starting first-line 
targeted therapy) and throughout the treatment. Besides, 
patients must have had six STMs tested at baseline every 
month, including NSE, CEA, CA 125, CA 153, CYFRA 21-
1, SCC. ctDNA and STMs sampling were collected during 
the same visit. CT scan was also done in all patients every 
1–4 months (depending on patients' symptoms, the timing 
after targeted therapy, and patient's economic capability) 
to evaluate treatment efficacy according to RECIST 1.1. 
The targeted therapy was the first- or second-generation 
EGFR-TKI as first-line therapy in all patients.

To evaluate the predicting ability of STMs on the 
emergence of secondary resistance and clearance of 
EGFR ctDNA, we further excluded 62 patients from the 
EGFR group (n = 130) for the following reasons: (1) 6 
patients were excluded because they showed primary re-
sistance to EGFR TKI or primary EGFR T790M positive; 
(2) 56 patients were excluded because they had not con-
ducted follow-up ctDNA testing or did not have STMs 
done at the same time as the corresponding ctDNA 
(Figure 1).

[area under the curve (AUC) = 0.897] and that changing trends of STMs (within 
8 weeks after initiating the TKI therapy) can be potential predictors for the clear-
ance of EGFR ctDNA [AUC = 0.871]. In conclusion, dynamic monitoring STMs 
can help to predict the molecular features of EGFR-mutated lung cancer during 
targeted therapy.
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circulating tumor DNA, epidermal growth factor receptor Thr790Met, lung cancer, oncogenic 
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2.2  |  Next-generation sequencing (NGS) 
library preparation and capture-based 
targeted DNA sequencing

A total of 10  mL of peripheral blood was used as input 
material for library preparation. The supernatant follow-
ing centrifugation for 10 min at 2000g at 4 °C was trans-
ferred to a new tube and centrifuged again at 16,000g at 
4°C for 10 min. Subsequently, circulating free DNA was 
isolated from plasma using the QIAamp Circulating 
Nucleic Acid kit (Qiagen). Quality was verified by using 
the Qubit 2.0 Fluorimeter with the dsDNA HS assay kits 
(Life Technologies). A minimum of 50 ng of cfDNA is re-
quired for NGS library construction. Circulating free DNA 
was extracted using the QIAamp Circulating Nucleic Acid 
kit (Qiagen). Then subjected to end repair, phosphoryla-
tion and adaptor ligation. Fragments of size 200–400 bp 
were selected by AMPure beads (Agencourt AMPure XP 
Kit). Targeted DNA was captured, selected, and ampli-
fied. Quality of the fragments was assessed by using a 
bioanalyzer high-sensitivity DNA assay. Indexed samples 
were sequenced in one lane on a Nextseq500 sequencer 
(Illumina, Inc.) with pair-end reads. The mean coverage 
depth was 11,828×. Our assay captures 168 genes that are 
listed in the Gene list. The sequencing coverage and qual-
ity statistics, as well as the exact EGFR-T790M mutation 
status are for each sample listed in the Table S1.

2.3  |  Sequence data analysis

Sequence reads were mapped to the human genome (hg19) 
using BWA-MEM (v.0.7.10) with default parameters. 
Following GATK v.3.2, PCR duplicates were first removed 
and subsequently realigned and recalibrated. Variant 
calling was performed using MuTect and VarScan. We 

filtered variants by using the VarScan filter pipeline, with 
loci with depth less than 100 filtered out. We further fil-
tered out mutations tending to be false positives, retaining 
only INDELs supported by at least two supporting reads 
and SNVs supported by at least eight reads. In addition, 
according to the ExAC, 1000 Genomes, ESP6500SI-V2 and 
dbSNP database, we excluded SNPs with population fre-
quency over 0.1% from further analysis. The high-quality 
variants were annotated with SnpEff v3.6. DNA translo-
cations were identified using both Tophat2 and Factera 
1.4.3. White blood cells were used as a reference to filter 
out germline mutations.

2.4  |  STMs measurement

STMs were detected using a commercial chemilumines-
cence immunoassay kit (Abbott Laboratories). Blood sam-
ples from all patients were obtained through peripheral 
venipuncture before the first TKI treatment for baseline 
evaluation, and every month during targeted therapy for 
monitoring. The following thresholds were considered 
the upper limits of normal: NSE, 16.3 mg/L; CEA, 5 mg/L; 
CA 125, 35  U/mL; CA 15–3, 25  U/mL; CYFRA 21-1, 
3.3 ng/mL; SCC, 1.5 ng/mL. Accordingly, tumor marker 
values above these thresholds were considered abnormal

2.5  |  Statistical analysis

We divided the responsive and resistant stages according 
to the changes in tumor size and STMs. Responsive stage: 
CT scan showed that the tumor size continued to de-
crease, and at least half of the STMs continued to decline; 
Resistant stage: at least two STMs change from continuous 
decline to continuous increase. In order to calculate the 

F I G U R E  1   Study design and algorithm of patient selection
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slope of the responsive stage and the resistant stage, three 
critical timepoints were set up, respectively. Timepoint 
1: the last STMs detection before the first-line treatment 
began; timepoint 2: the lowest value of STMs in the re-
sponsive stage, which was also the endpoint of the respon-
sive stage or the start point of the drug resistance stage; 
timepoint 3: the peak value of STMs in the drug resistance 
stage before second-line treatment. The calculation for-
mula for each patient was as follows: The slope of the re-
sponsive stage = (STM value at timepoint 2 – STM value at 
timepoint 1)/(timepoint 2 – timepoint 1); The slope of the 
resistant stage = (STM value at timepoint 3 – STM value 
at timepoint 2)/(timepoint 3 – timepoint 2).

All statistical tests were bilateral with a significance 
level of 0.05 conducted in IBM SPSS software (version 
25.0). The differences in the distribution of categorical 
variables across groups were assessed using the Fisher 
exact test or chi-squared test. Heat maps were drawn in 
GraphPad Prism 8.0 as a visualization method to assess 
the variation of STMs at baseline, responsive stage, and 
resistant stage in the subgroup of EGFR T790M muta-
tion and non-EGFR T790M mutation. The accuracy of 
the multivariate predictors of molecular mechanisms was 
measured using the area under the receiver operating 
characteristic (ROC) curve.

3   |   RESULTS

3.1  |  General baseline characteristics of 
patients

Within the 303 eligible patients in our study, general base-
line characteristics, including gender, age, histological 
type, clinical staging, oncogene type, and percentages of 
patients with an elevated STM regarding each STM, are 
summarized in the Table 1 and the Table S2.

3.2  |  Routine STMs are associated with 
oncogenic types

After grouping the patients according to the oncogenic 
types, the differences in the above variants between pa-
tients harboring mutated type and wild type oncogenes 
were investigated and summarized in the Table  S2. 
Patients with TP53 mutations and EGFR mutations ac-
counted for the largest [159(52.5%)] and the second largest 
[130(42.9%)] proportion. EGFR mutations were signifi-
cantly associated with female gender (57.9% vs. 33.9%; 
p <0.001), abnormal CEA level (48.7% vs. 32.1%; p <0.05), 
abnormal CA153 level (52.1% vs. 35.0%; p <0.05), and nor-
mal SCC level (51.2% vs. 26.5%; p <0.001). In comparison, 

T A B L E  1   General baseline characteristics of patients

Characteristic
No. of patients 
(n = 303)

Percentage 
(%)

Gender

Male 189 62.4%

Female 114 37.6%

Age

Median (range) 63 (23–88)

Histological type

Adenocarcinoma 274 90.4%

Squamous carcinoma 13 4.3%

Adenosquamous 
carcinoma

1 0.3%

SCLC 4 1.3%

Othersa 11 3.6%

Clinical stage

III 63 20.8%

IV 240 79.2%

Oncogenic types

EGFR 130 42.9%

TP53 159 52.5%

ALK 30 9.9%

MET 21 6.9%

KRAS 36 11.9%

ROS1 11 3.6%

BRAF 12 4.0%

ERBB2 16 5.3%

RET 11 3.6%

NSE

Elevated 209 69.0%

Normal 94 31.0%

CEA

Elevated 197 65.0%

Normal 106 35.0%

CA125

Elevated 172 56.8%

Normal 131 43.2%

CA153

Elevated 140 46.2%

Normal 163 53.8%

CYFRA21-1

Elevated 236 77.9%

Normal 67 22.1%

SCC

Elevated 102 33.7%

Normal 201 66.3%
aOthers include epitheliomatoid carcinoma, complex small cell carcinoma, 
and other unknown pathological types of lung cancer.
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TP53 mutations were significantly associated with male 
gender (57.1% vs. 44.7%; p  <0.05), abnormal NSE level 
(56.9% vs. 42.6%; p  <0.05), normal CYFRA21-1 level 
(55.9% vs. 40.3%; p <0.05). Besides, other oncogenic types 
including ALK, MET, KRAS, ROS1, BRAF, ERBB2, and 
RET were analyzed (Table S2). Among all EGFR-mutated 
patients (n = 130), patients with T790M mutation (n = 33) 
were more likely to have an abnormal CEA level (31.3% 
vs. 8.8%; p <0.05) (Table 2).

3.3  |  Dynamic changing patterns of 
STMs during EGFR-TKI therapy

In order to explore the dynamic changes of STMs, ctDNA, 
and tumor size during the targeted therapy, we compared 
them at intervals of 2–4 months (Figure S1, Figure 2A). We 
found that the dynamic changing patterns of CEA value, 
variant allele frequency (AF) of EGFR, and tumor size 
were similar, but the transition time was different. The 

Characteristic EGFR mutated patients (n = 130)

T790M-negative 
(n = 97)

T790M-positive 
(n = 33) p-value

Gender 0.761

Male 47 (73.4) 17 (26.6)

Female 50 (75.8) 16 (24.2)

Age

Median 64 56

Range 33–87 34–83

NSE 0.642

Elevated 66 (75.9) 21 (24.1)

Normal 31 (72.1) 12 (27.9)

CEA <0.01

Elevated 66 (68.8) 30 (31.3)

Normal 31 (91.2) 3 (8.8)

CA125 0.551

Elevated 56 (72.7) 21 (27.3)

Normal 41 (77.4) 12 (22.6)

CA153 0.316

Elevated 52 (71.2) 21 (28.8)

Normal 45 (78.9) 12 (21.1)

CYFRA21-1 0.508

Elevated 76 (76) 24 (24)

Normal 21 (70) 9 (30)

SCC 0.056

Elevated 24 (88.9) 3 (11.1)

Normal 73 (70.9) 30 (29.1)

Pathology

Adenocarcinoma 92 (70.8) 32 (24.6)

Squamous carcinoma 2 (1.5) 0 (0)

Adenosquamous 
carcinoma

0 (0) 0 (0)

SCLC 1(0.8) 0 (0)

Othersa 2 (1.5) 1 (0.8)

Gross 97 (74.6) 33 (25.4)

Values presented are n (%) unless otherwise noted.
aOthers include epitheliomatoid carcinoma, complex small cell carcinoma, and other unknown 
pathological types of lung cancer.

T A B L E  2   Characteristics comparisons 
between EGFR muted patients with and 
without T790M
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STMs were the first to change from a continuous decline 
to a continuous rise. Compared with tumor size, the tran-
sition time of STMs and EGFR came earlier. Additionally, 
the transition time of STMs appeared at least 2  months 
earlier than that of EGFR, both from decline to increase 
and from increase to a decline. Furthermore, the second-
ary T790M mutation was detected 2 months later than the 
STMs turning point, indicating that STMs might be capa-
ble of predicting the occurrence of drug resistance earlier 
than ctDNA testing. (Figure 2A, Table S3).

To further explore the dynamic variations of STMs in 
the EGFR-mutated population who developed second-
ary resistance during the targeted therapy, we excluded 
62 patients with primary resistance to EGFR-TKI, base-
line T790M positive, or incomplete follow-up testing 
(Figure 1B). The remaining 68 patients were considered 
to harbor secondary resistance to EGFR-TKI because they 
had an initial response to EGFR-TKI but developed resis-
tance afterward. Besides, these 68 patients were negative 
for T790M at baseline, and they were further divided into 
the T790M subgroup (n = 26) and the non-T790M subgroup 
(n  =  42) regarding the secondary resistance molecular 

mechanism (Figure  1B). Generally, NSE, CEA, CA125, 
CA153, CYFRA21-1 levels were higher in the T790M 
subgroup than the non-T790M subgroup throughout the 
course and showed different downturns and upturns 
during the responsive and resistant stage, respectively 
(Figure S2). Furthermore, the dynamic changing patterns 
of STMs during the entire treatment courses, evaluated by 
the multiples of rising at baseline, the decline slope, and 
the rising slope of STMs, differed between the T790M and 
the non-T790M subgroups, also between each STM even 
within the same group (Figure 2B–E, Figure S3).

At baseline, NSE, CEA, CA125, CA153, and CYFRA21-1 
in the population with T790M mutation were higher than 
those without T790M mutation, among which CEA and 
CA125 were the most prominent. Notably, the SCC level 
was higher in the non-T790M subgroup than the T790M 
subgroup, distinguishing it from other STMs (Figure 2B, 
Figure S3A).

In the responsive stage, CEA, CA125, CA153, and 
CYFRA21-1 had a greater decline slope in the popula-
tion with T790M mutation than those without T790M 
mutation, among which CEA and CA125 were the most 

F I G U R E  2   Dynamic changes of STMs, ctDNA, and tumor size. Changing trends of CEA (the logarithm of the CEA value), EGFR, and 
tumor size during EGFR-TKI treatment. Each line represents the average value of patients in the corresponding group. Since the follow-up 
times for each test were not synchronous, we used intervals of 2–4 months to compare the dynamic changes between groups. The actual 
follow-up times for each test are controlled within plus or minus 1 month of the corresponding timepoint. We divided the whole treatment 
process into seven timepoints: 0, 4, 6, 9, 12, 16, and 20 months after the initiation of targeted therapy. (A). Heat maps and line charts of the 
STMs in the T790M subgroup and the non-T790M subgroup; Multiples of the rise of the STMs at baseline(B). Decrease slope of the STMs in 
the responsive stage(C). Increase slope of the STMs in the resistant stage(D). The overall trend (The logarithm of the STM level) of STMS in 
the non-T790M resistant subgroup (dotted lines) and the T790M resistant subgroup (solid lines) (E)
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prominent. However, the NSE and SCC levels did not de-
crease in patients without T790M mutation and even ex-
perienced an increase in population with T790M mutation 
(Figure 2C, E, Figure S3B).

In the resistant stage, CEA, CA125, CA153, and 
CYFRA21-1 had a greater rise slope in the population with 
T790M mutation than those without T790M mutation, 
among which CEA and CYFRA21-1 were more evident 
than CA125 and CA153. Significantly, consistent with 
the baseline and responsive stage, SCC had a distinctive 
changing pattern in the resistant stage. It increased more 
in the population without T790M mutation and even 
decreased in those with T790M mutation (Figure 2D, E, 
Figure S3C).

To summarize, the dynamic changes of STMs differed 
between the two subgroups and between each STM, con-
sistently demonstrated by the heat maps and the line 
charts in Figure 2.

3.4  |  STMs are potential predictors of the 
molecular features of EGFR-mutated 
lung cancer

We applied the ROC curves analysis to evaluate the value 
of dynamic STMs in predicting secondary EGFR-T790M 
mutation. When the STM levels (The measured value di-
vided by the upper limit of the respective standard range) 
at baseline were used, the AUC was 0.772[95% confi-
dence interval (CI): 0.645,0.899]. In addition, AUC for the 
declining slopes in responsive stage was 0.719[95% CI: 
0.581,0.857], and AUC for the rising slopes in the resistant 
stage was 0.769[95% CI: 0.650,0.889] (Figure 3A). When 
combining these three factors, the AUC was 0.897[95% CI: 
0.818,0.975] (Figure 3B).

Notably, the ROC curve yielded an AUC of 0.955[95% 
CI: 0.901,1.000] when the above three factors were com-
bined with a cutoff period from baseline to 4–8 weeks 
after initiation of targeted therapy (Figure  3C). When 
the same factors and period setup were used to predict 
the clearance of EGFR ctDNA, the ROC curve yielded 
an AUC of 0.871 [95% CI: 0.756–0.986] (Figure 3D). In 
comparison, using the combination of the baseline lev-
els and the variation trends of STMs to predict other mu-
tations, such as TP53, yielded unsatisfying AUC results 
(Figure S4).

4   |   DISCUSSION

Over the past decade, targeted therapy has become the 
mainstay of therapeutic regimens in lung cancer, especially 
EGFR-mutated type. The targeted therapy application has 

extended from advanced lung cancer to early resectable 
lung cancer in staging, from adjuvant therapy to neoad-
juvant therapy in therapeutic strategies.19,20 Therefore, 
effectively monitoring the dynamic molecular features 
of lung cancer is an essential prerequisite for clinical 
decision-making.

Somatic activating mutations in EGFR are the most 
common oncogenic driver in non-small cell lung cancer 
(NSCLC), which have benefited from EGFR-targeting 
therapies.21 Compared with radiation and chemother-
apy, the response rate (60%–80%) of EGFR TKI for pa-
tients with EGFR mutant subtype (Exon19 deletion and 
Leu858Arg) is significantly higher than that of patients 
with EGFR wild type (10%–20%).22,23 Despite the success 
of EGFR TKIs in EGFR mutant lung cancer, all patients 
eventually develop acquired resistance to these therapies.6 
The prototypical mutation leading to EGFR-TKI resistance 
in NSCLC is the EGFR-T790M mutation, found in ≥50% 
of patients with acquired resistance to early-generation 
EGFR TKIs.24,25 Compared with patients without EGFR-
T790M mutation, the median progression-free survival of 
patients with secondary T790M was significantly shorter. 
Some studies have shown that T790M can be detected 
2–4  months before clinical progressive disease.26–29 The 
standard strategy for T790M-mediated resistance is to use 
the third generation of EGFR-TKIs, such as Osimertinib. 
Therefore, it is helpful to develop methods to identify 
molecular progress before clinical progress, which may 
prompt more profound follow-up and potential treatment 
adjustments.

Previous studies suggested that resistance mechanisms 
can usually be divided into pre-adaption (pre-existence) or 
post-adaption (directed adaption as a response to directed 
choice). Pre-adaption suggests that mutations might exist 
before the treatment but could not be revealed by current 
sequencing techniques.30,31

STMs are tumor markers widely applied to screen 
unidentified tumors and monitor the activity of tumors, 
among which NSE, CEA, CA125, CA153, CYFRA21-1, 
and SCC have been proved to be vital biomarkers related 
to lung cancer.7,8,32 The dynamic change of STMs from 
baseline has prognostic value for advanced NSCLC pa-
tients. High levels of the associated STMs were found to 
be significant as a predictive marker for early relapse,33 
progression,34 effect of treatment,35 or worse survival.36,37 
In contrast, the decrease in associated STM levels was as-
sociated with favorable clinical outcomes.7,38 In addition, 
compared with ctDNA, STMs can be conducted in a timely 
manner with lower costs in country-level or provincial-
level hospitals. Therefore, this study aimed to explore a 
supplementary method based on STMs to reveal the mo-
lecular features of EGFR-mutated lung cancer during tar-
geted therapy.
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Jin et al. reported that the EGFR-mutation rate in-
creased as serum CEA level increased,39 and Wang et al. 
reported that the EGFR mutations were associated with a 
normal serum SCC level.18 Besides, Bearz et al. reported 
that CA153 could serve as a reliable predictor of response 
to EGFR inhibitors in patients with bronchioloalveolar 
carcinoma.40 All the above evidence indicates that serum 
CEA, CA153, and SCC are correlated with EGFR mutation 
or the effect of EGFR TKI, which was confirmed in our 

study. We further explored the association between STMs 
and ctDNA follow-ups and found that abnormal baseline 
CEA level was associated with secondary EGFR-T790M 
mutations. However, the ROC yielded an AUC of 0.614, 
which means that individual static tumor markers cannot 
yield a satisfying predicting performance in this situation.

Different STMs often represent different pathological 
types of cancer, while pathological types of cancer are 
associated with different gene mutations.41,42 Moreover, 

F I G U R E  3   ROC curves of the STMs for predicting secondary EGFR-T790M mutation and clearance of EGFR ctDNA. ROC curves of 
the STM level at baseline, decrease slope of the STMs in response and increase slope of the STMs in resistance respectively for predicting 
secondary EGFR-T790M mutation(A). ROC curves of the combination of three factors for predicting secondary EGFR-T790M mutation 
(B). ROC curves of the combination of the STM level at baseline and variation trends of the STMs at 4 to 8 weeks after initiation of targeted 
therapy for predicting secondary EGFR-T790M mutation (C). ROC curves of the combination of the STM level at baseline and decrease slope 
of the STMs at 4 to 8 weeks after initiation of targeted therapy for predicting clearance of EGFR-ctDNA (D)
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the conversion of dominant STMs sometimes might be 
suggestive of tumoral transformation, and the STM lev-
els are often related to the tumor mutational burdens.43,44 
In addition to the acquired T790M mutation, the trans-
formation from adenocarcinoma to other components 
is one of many mechanisms of acquired resistance to 
an EGFR TKI.45 Our results showed that compared with 
the T790M subgroup and the non-T790M subgroup, SCC 
showed a distinctive pattern from other tumor markers 
at baseline, in the responsive phase, or in the resistant 
phase. Likewise, NSE also had a similar changing pattern 
in the responsive phase and the resistant phase. Previous 
studies have shown that increased SCC is associated 
with lung squamous cell carcinoma, and increased NSE 
is associated with small cell lung cancer.41,46 Therefore, 
our results suggest that when lung cancer patients with 
EGFR mutation show increased NSE and SCC in the re-
sponsive stage of EGFR TKI, the mechanism of second-
ary drug resistance may be the gradual differentiation 
of lung adenocarcinoma into other components, rather 
than the acquired T790M mutation. However, we could 
not find relevant studies on the association between these 
two markers and EGFR-TKI resistance, which is worth 
further exploration.

Furthermore, these may also suggest that applying 
static STMs as indexes is not informative enough to predict 
molecular features, and dynamic monitoring STMs might 
better reveal tumor molecular variations. In our study, the 
ROC yielded an AUC of 0.772 when all baseline STM lev-
els were used to predict secondary EGFR-T790M, which 
was significantly higher than the predictive accuracy of 
baseline CEA alone. Furthermore, the AUC reached 0.897 
when we combined baseline STMs and all variations of 
STMs before the second-line treatment to predict second-
ary EGFR-T790M.

To enhance the practical value of our study, we also 
explored the predicting performance of STMs using a cut-
off period from the baseline to 8 weeks after initiation of 
targeted therapy so that strategy adjustments can be taken 
in the early stage of the treatment. The ROC yielded an 
AUC of 0.955 when the combination of baseline STM 
level and changing trends of STMs within 8 weeks after 
targeted therapy was considered a predictor for secondary 
EGFR-T790M. Significantly, the AUC was 0.871 when we 
explored the predictive accuracy of STMs within 8 weeks 
after targeted therapy for clearance of EGFR ctDNA after 
treatment. Therefore, dynamic STMs can indicate molec-
ular features in EGFR-mutated lung cancer, including 
the emergence of secondary EGFR-T790M and the EGFR 
ctDNA clearance.

Our research provides values for guiding clinical 
work: First, STMs can be expected as a new strategy 
to predict the molecular features and the efficacy of 

targeted treatment at the early stage of the treatment, 
which can timely provide more precise guidance for 
clinical treatment schemes. Second, STM testing is non-
invasive and overcomes the drawbacks associated with 
tissue or liquid biopsies. It also helps clinicians estimate 
the appropriate timing for ctDNA sequencing to avoid 
excessive medical care burdens. To note, the purpose of 
our study is not to advocate that STMs can replace tis-
sue or liquid biopsy. Instead, it complements the clinical 
judgment of clinicians, given a high false-negative rate 
of ctDNA.47

There are several limitations to our study. First, as a 
single-center retrospective study, the selection bias could 
not be avoided entirely, which may limit the accuracy and 
comprehensiveness of the results. Second, the sample size 
was relatively small to make a comprehensive prediction 
comparison of other driver genes and molecular mecha-
nisms of resistance. Further research with larger sample 
size and multi-center testification is warranted. Finally, 
though SuperARMS technology can overcome tumoral 
heterogeneity compared with the tissue biopsy, its higher 
false-negative rate should be considered in clinical appli-
cation.47 Future prospective trials are needed to investi-
gate the predictive accuracy of STMs for other molecular 
mechanisms.

In conclusion, this is the first study based on STMs 
to predict the molecular features of EGFR-mutated 
lung cancer during the targeted therapy, including 
clearance of targeted EGFR ctDNA and the emergence 
of secondary EGFR T790M. The changing trends of 
STMs varied in different oncogenic types and evolu-
tion stages of lung cancer. Therefore, we highlight that 
lung-cancer-related STMs (NSE, CEA, CA125, CA153, 
CYFRA21-1, SCC) could be potential predictors of re-
sistance and prognosis of lung cancer treated with tar-
geted therapy. Further investigations are required to 
evaluate the intrinsic relationship between STMs and 
gene mutations.
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