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Abstract: Catalysis represents the cornerstone of chemistry, since catalytic processes are ubiquitous
in almost all chemical processes developed for obtaining consumer goods. Nanocatalysis represents
nowadays an innovative approach to obtain better properties for the catalysts: stable activity, good
selectivity, easy to recover, and the possibility to be reused. Over the last few years, for the obtaining
of new catalysts, classical methods—based on potential hazardous reagents—have been replaced
with new methods emerged by replacing those reagents with plant extracts obtained in different
conditions. Due to being diversified in morphology and chemical composition, these materials have
different properties and applications, representing a promising area of research. In this context, the
present review focuses on the metallic nanocatalysts’ importance, different methods of synthesis
with emphasis to the natural compounds used as support, characterization techniques, parameters
involved in tailoring the composition, size and shape of nanoparticles and applications in catalysis.
This review presents some examples of green nanocatalysts, grouped considering their nature (mono-
and bi-metallic nanoparticles, metallic oxides, sulfides, chlorides, and other complex catalysts).

Keywords: phyto-nanocatalysts; plant extracts; environmental applications; mono- and bi-metallic
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1. Phyto-Nanocatalysts (PNC)–Next Generation of Catalytic Materials

Catalysis represents the cornerstone of chemistry since catalytic processes are ubiquitous in almost
all chemical processes developed for obtaining consumer goods. Started about 200 years ago, as an
empirical scientific field and no more than an unusual aspect of chemistry, catalysis gains more and
more attention due to his importance in obtaining new compounds. More than 90% of industrial
products (pharmaceutical, fibers, fuels, detergents, polymers) result through several steps which need
an appropriate catalyst. The role of catalyst in the process development consists not only to accelerate
the chemical reaction, but also to improve the whole process, by reducing energy consumption, the
formation of undesired products, and production increase. Our society, as we know, does not exist in
the absence of catalysis.

Over the last few decades, catalysis has been successfully applied in developing methods for
environmental protection, with notable examples being the three ways catalyst for purification of
exhaust gases [1] and water treatment using catalysts in the frame of advanced oxidation processes [2–4].
Catalysis evolution encompasses two main categories: homogeneous type, when reactants and catalysts
are in the same phase, and heterogeneous type, when reactant and catalysts are in different phases.
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Heterogeneous catalysis represents the real breakthrough in this field due to the numerous advantages;
therefore, a large number of scientific papers and patents were focused on developing new catalytic
processes. However, the unchallenged performances of heterogeneous catalysis come with some
drawbacks. Catalyst comes in the form of porous solids with internal channels and pores, in different
shapes and sizes, in order to ensure a large number of active centers [5]. This morphology leads to some
difficulties in modeling and experimental set-up of catalytic reactors due to diffusion phenomena and
fluid transport processes. Therefore, a new approach is required to surpass the disadvantages of both
types of catalysis and to combine their impressive advantages. Nowadays, nanocatalysis represents a
critical way to combine all features of previous approaches: accessibility to catalytic sites, stable activity,
and selectivity, easy to recover, and with the possibility to be reused [6,7]. Nanotechnology represents a
significant step forward in many domains, not only in catalysis. From bulk to nanoparticles smaller than
100 nm, the properties of materials are considerably changing; hence, there is the possibility of a wide
variation of applications, especially in catalytic processes. For example, cobalt oxide is less active for the
oxidation of CO to CO2 in bulk state even at a high temperature, but very active at room temperature
in nano form. Additionally, the gold nanoparticles are very active in an extensive range of reactions [8],
however, while they are in bulk state, they are inactive. Utilization of nanoparticles brings many
improvements in processes where they are involved: cost-efficient, safer catalyst, reduced chemical
waste, lower energy consumption, reduced global warming [9]. Even in the range of nanometric
dimensions, the nano stable properties are shifted to a large extent. The color of suspension of CdSe
nanoparticles is shifted from blue to red when particle size change from 2 to 8 nm [10,11]. Nanomaterials
with catalytic properties are classified after their dimensionality [7] such us zero-dimensional (0D)
(nonporousnanoparticles) [12,13], one dimension (1D) (nanorods, nanofibers) [12], two dimensional (2D)
(nanosheets) [14] and three-dimensional (3D) nanomaterials, which include all types of nanoparticles in
different shapes (nanorods, nanoshells, nanocages) [6]. Another essential feature of nanoparticles is an
outstanding possibility of functionalization, which increases the number of applications in all technical
fields not only in catalysis. The versatility of functionalized nanomaterials makes them so valuable and
fit perfectly the gap between homogeneous and heterogeneous catalysis. Preparation of nanoparticles
tailored in different forms and composition would be difficult without thorough investigations using
modern characterization tools [9,15,16]: ultraviolet–visible (UV-Vis) spectroscopy, Fourier transform
infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence (XRF), X-Ray photoelectron
spectroscopy (XPS), etc. These are complementary techniques that assure a complete assessment of
particle properties and therefore an accurate modality to assign the appropriate applications. The main
advantages of using nanoparticles (NPs) in catalysis are:

• The possibility of high scale production of nanoparticles.
• Long-term stability of the nanoparticles.
• Controlled functionalization of nanoparticles can be achieved.

In order to use nanoparticles in chemical reactions, adequate preparation methods are needed.
Since these materials are diversified in morphology and chemical composition, different methods
were developed. All these methods fall into two main categories: top down synthesis and bottom-up
synthesis [17,18]. The top-down synthesis relies on destructive methods that bring bulk materials to
nano dimensions state. For this category, mechanical milling, chemical etching, and sputtering are the
most common methods used. The bottom-up synthesis uses an opposite approach, generally starting
from atomic or molecular state and building up to nanoparticle dimensions (1–100 nm). Spinning,
template-based synthesis, plasma or flame spraying, laser pyrolysis, atomic or molecular condensation,
chemical vapor deposition, sol-gel, precipitation, solvothermal processing, microemulsion, and
sonochemistry are the usual methods for bottom-up approach. These methods are state-of-the-art in
nanoparticles manufacturing and allow the preparation of a broad range of solid materials. However,
this technique either requires some unique and expensive equipment with high capital costs or expensive
and environmentally hazardous reagents. Preparation of nanoparticles in the bottom-up mode with or
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without the use of reagent is mainly based on the chemical reduction or electrochemical reduction
processes. Generally, metal salts are reduced using sodium borohydride, cetyltrimethylammonium
bromide, ascorbates, glucose, and citrates [19–21]. The nature of the reducing agent determines the
size of the nanoparticles. Strong reducing agents produce bigger particles, while mild reducing agents
induce formation of nanoparticles with smaller dimensions. Particle morphology control is achieved by
utilizing appropriate surfactants (sodium dodecyl sulfate, Triton X, sodium formaldehyde sulfoxylate)
and stabilizers (polyvinyl pyrrolidine (PVP), polymethylmethacrylate (PMMA), polyethylene glycol
(PEG) and polymethyl acrylic acid (PMAA)). Sonochemical reduction of transitional metals occurs
through acoustic cavitation and particle growth in a sonicated liquid medium. Improvement of
nanotechnology field in general and nanocatalysis, in particular, require, besides the development of
new catalytic systems, better preparation methods with less energy consumption and less harmful
reagents. Hence, a clean, biocompatible, and eco-friendly process to synthesize nanoparticles is needed.

Over the last few years, new nanoparticle preparation methods have emerged by replacing the
usual reagents with plant extracts obtained in different conditions. Plant extracts were used from
centuries, as cures in folk medicine and since they have valuable properties, they are also employed
in present days being a serious competitor for synthetic pharmaceuticals. The market of medicinal
plants increases at a rapid pace each year and predicts for the year 2029 are that it will surpass USD
129 billion in revenue. The herbal medicine field has experienced a revival in recent years due to the
growing demand among consumers for ecological oriented chemical-free treatments. The main reason
for the boost in utilization of plant extracts consists of the synergic effect of all components, which
belong to a broad range of classes of organic compounds, and therefore, increase the therapeutic effects.
The complexity of herbal extracts is precisely the reason why these liquids can be selected as substrates
for nanoparticles synthesis, since they contain simultaneously reducing, stabilizers, and surfactants
agents with natural origins, and hence, eco-friendly properties.

Transition to this approach was made based on substantial evolution over the last 20
years of research strategies in the area of natural product chemistry. Advanced extraction and
separation methods [22,23] (hyphenated techniques: High-performance liquid chromatography-mass
spectrometry (HPLC–MS), HPLC-nuclear magnetic resonance (HPLC-NMR), HPLC–MS–NMR,
HPLC–diode array detector–MS–NMR, centrifugal partition chromatography) allow researchers
to improve the isolation of secondary metabolites that help to build extensive databases of
phytoconstituents present in different plants. Development of chemically engineered extract,
dereplication, chemogenomics, metabolomics, fingerprinting, and chemical fingerprinting bring
researchers a selection base for new compounds able to participate in nanoparticles synthesis.
Diversification of extraction methods [24,25], with classic (Soxhlet extraction, percolation, maceration,
hydro distillation, and steam distillation) or with modern instruments such as microwave-assisted
extraction, accelerated solvent extraction, ultrasound-assisted extraction, enzyme assisted extraction,
pulsed electric field extraction, supercritical fluid extraction, ohmic-assisted hydro distillation, and
utilization of numerous solvents with high variation of polarity open the opportunity to obtain a more
tailored extracts, with the appropriate composition for obtaining nanoparticles. The main reason for
developing a plant-mediated synthesis of nanocatalysts is the staggering number of plat metabolites
which can be used, and removing the use of potential hazardous reagents.

For example, more than 8000 polyphenolic compounds are already identified in different plant
species [24]. The most majority occur in conjugated forms with sugar residues linking with compounds
like lipids, organic acids, amines, or even other phenols is very usual. Other important vegetal
constituents (alkaloids, tannins, iridoids, secoiridoids, coumarins, and terpenoids), also in large
numbers, can sustain an ecological path for preparing nanocatalysts.

The field of nanomaterials phytosynthesis in general (and nanocatalysts phytosynthesis in
particular) represented the focus of an increasing number of studies in the last decades, from all-over
the world, as proven by the survey performed using Scopus database (Figure 1). The search was
performed over the time period 2010–September 2019, using the keywords “nanoparticle extract”,
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“nanoparticle phytosynthesis”, and “nanoparticle natural extract”, with “catalyst” within the obtained
results; multiple keywords were used, as the term “phytosynthesis” is not adopted by all authors.
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Figure 1. Distribution of publications per year from Scopus Database according to the presented
keywords, with duplicate data and “false-positive” results removal.

Considering these aspects, the current review focuses on the metallic nanocatalysts’ importance,
different methods of synthesis with emphasis to the natural compounds used as support,
characterization techniques, parameters involved in tailoring the composition, size and shape of
nanoparticles, and possible applications (as reported in the literature). The review will briefly present
some examples of green nanocatalysts, grouped considering their nature (mono- and bi-metallic
nanoparticles, metallic oxides, sulfides, chlorides, and other complex catalysts).

2. Mono- and Bi-Metallic Catalysts: Phytosynthesis, Characterization, and Application

The most encountered materials, when speaking of phytosynthesized nanoparticles, are
represented by the noble metal nanoparticles (especially silver and gold). Several review and research
papers were published in the last years, covering the green synthesis (including phytosynthesis) of
monometallic and bimetallic nanoparticles [26–32], with focus especially on their biological properties.
The following subchapters will present some examples on the application of such nanoparticles in the
area of catalysis.

2.1. Silver Nanoparticles (AgNP)

Phytosynthesis of silver nanoparticles (AgNP) was described by Gangula et al. [33] using the stem
extract of Breynia rhamnoides, the reduction of the metal salts being attributed by the authors to the
phenolic glycosides and reducing sugars present in the extract. The obtained nanoparticles were used
for the reduction of 4-nitrophenol to 4-aminophenol (4-AP) in the presence of NaBH4, reaction that was
found to be depend on the nanoparticle size. In 2014, Vidhu and Philip [34] obtained almost spherical
silver nanoparticles, with diameters of approximately 20 nm, having excellent catalyst properties for
the reduction of Methylene blue.
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Silver nanoparticles were obtained using aqueous extracts of dried Alstonia macrophylla leaves
by Borase et al. [35], having an average diameter of 70 nm. The nanoparticles proved to be
efficient in the catalytic reduction of 4-nitrophenol and p-nitroaniline to 4-aminophenol, and
p-phenylenediamine, respectively. Similar silver nanoparticles were obtained by Vidu and Phillip [36]
and Nasrollahzadeh et al. [37] using aqueous extracts of Trigonella foenum-graecum seeds and Euphorbia
condylocarpa M. bieb root. The nanoparticles were evaluated by the authors for the catalytic degradation
of methyl orange, methylene blue and eosin Y [36] for the catalytic synthesis of N-monosubstituted
ureas in water [37], with promising results.

Reduction of 4-nitrophenol to 4-aminophenol was also studied by Naraginti and Sivakumar [38]
and Seralathan et al. [39] using silver nanoparticles obtained via aqueous Coleus forskohlii root,
and Salicornia brachiate extract, while the reduction of methylene blue by phytosynthesized silver
nanoparticles was studied by Ashokkumar et al. [40,41]. The differences in terms of catalytic activity
observed between the two studies can be assigned to the variation in particle size.

Using phytosynthesized silver nanoparticles, reduction of 4-nitrophenol to 4-aminophenol was
achieved in 2015 by Bindhu and Umadevi [42] and Joseph and Mathew [43]. Gavade et al. [44] obtained
silver nanoparticles (20–30 nm) using aqueous Ziziphus jujuba leaf extract for the reduction of the silver
salt, which was successfully used for the reduction of 4-nitrophenol and methylene blue. Degradation
of methylene blue was also achieved by Ajitha et al. [45,46] using silver nanoparticles phytosynthesized
by Momordica charantia leaf broth and Lantana camara leaf extract. The authors also propose a mechanism
for the phytosynthesis of AgNP using M. charantia, assigning the main role in the silver reduction
process to the flavonoid content of the extract. Several environmentally hazardous organic dyes
(methylene blue, methyl orange, and methyl red) were degraded by Ahmed et al. [47] using silver
nanoparticles obtained using a Ferredoxin–NADP+ reductase/ferredoxin (from spinach leaves). Two
other studies published in the same year describes the catalytic application of phytosynthesized AgNP
for the degradation of cellulose by cellulase [48] and for the synthesis of propargylamines [49].

Reduction of 4-nitrophenol using AgNP obtained by a greener route (involving the use of
commercially available gallic acid, a phytoconstituent commonly found in natural extracts) was
presented in 2016 by Park et al. [50]. In the same year, several other studies successfully applied the
phytosynthesized AgNP for the degradation of dyes: direct yellow-12 [51], Acridine Orange [52],
Congo red and methyl orange [53], cresyl blue [54], and methylene blue [55].

A reduction of 4-nitrophenol by AgNP was also presented in 2017 by Bello et al. [56] (reaching
95% degradation after 36 min), Arya et al. [57], Manjari et al. [58], Farhadi et al. [59], Francis et al. [60],
Bonigala et al. [61], Muthu and Priya [62], Karthika et al. [63], Mohanty and Jena [64], Patil et al. [65],
and Naraginti and Li [66]. Similar catalytic properties of silver nanoparticles were demonstrated for
the degradation of Congo red [56,63], methylene blue and Congo red [57,58], methylene blue, methyl
orange and methyl red [61], methyl orange [62], methylene blue [64,66], eosin Y (>97% degradation after
60 min) [67], Congo red [63,68], Coomassie Brilliant Blue G-250 [69], and a reduction of p-nitroaniline
to p-phenylenediamine [70]. Phytosynthesized silver nanoparticles were also evaluated as catalysts for
hydration of cyanamides in aqueous medium [71] and for the construction of pyrimido[1,2-b]indazole
derivatives under solvent-free conditions [72].

In 2018 studies, Zaheer [73] and Arya et al. [74] presented the catalytic degradation of the
carcinogenic dye 4-nitrophenol, using silver nanoparticles phytosynthesized in aqueous palm date fruit
extract and aqueous Prosopis juliflora bark extract. The two studies noticed a 95% degradation in 8 min,
correlated with the amount of AgNP used, respectively a 90% degradation in 80 min. Zaheer [73]
proposed a mechanism for the phytosynthesis of the AgNP, assigning the main role in the reduction
of the silver salt to the pyranoid fructose present in the fruit extract. Vijayan et al. [75,76] presented
the reduction of o/p-nitroanilines, respectively, 4-nitrophenol and o/p nitroaniline catalyzed by AgNP
obtained using leaf extract of Indigofera tinctoria andaqueous extract of Orthosiphon aristatus leaves,
respectively. In the first study, the reaction was completed in 10 min for both p- and o-nitroaniline,
while in the second case, the reactions were completed in 6 min for o-/p- nitroaniline and in 10 min for
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4-nitrophenol. Similar observations (but with longer reaction times) were made by Francis et al. [77]
for the reduction of 4-nitrophenol, 2-/4-nitroaniline, and eosin Y, using AgNP obtained by aqueous
leaves extract of Elephantopus scaber. Reduction of 4-nitrophenol, methylene blue, methyl orange
and methyl red, and, respectively, 4- nitrophenol, methylene blue and Congo red, was described by
Bonigala et al. [78] and Vijayan et al. [79], using AgNP obtained by the application of Stemona tuberosa
Lour and Myxopyrum serratulum A.W. Hill extracts.

Photocatalytic degradation of methylene blue was monitored by Khan et al. [80] and
Sumitha et al. [81] using extracts of Longan fruit peel and Durio zibethinus seeds. Their results
showed a 99% degradation of methylene blue in 7 min and 73.49% in 180 min, respectively. The
differences between their results can most probably be attributed to the differences both in terms of
morphology and average size between the obtained NPs (as presented in Table 1). Application of
AgNPs for the degradation of several other dyes (Reactive Black 5, methyl orange, direct yellow-142;
Coomassie Brilliant Blue; methylene blue, eosin yellowish, safranin, direct dye, reactive dyes; methyl
orange, rhodamine B; Rose Bengal) was further investigated in a series of research papers, using AgNP
phytosynthesized via Convolvulus arvensis [82], Gardenia jasminoides Ellis [83], Allium cepa [84], Nervalia
zeylanica [85] and Bauhinia tomentosa Linn. [86] extracts.

An extensive study was also published by Nakkala et al. [87] on the phytosynthesis of silver
nanoparticles using aqueous rhizome extract of Acorus calamus. The authors evaluated the obtained
AgNP for in vitro anticancer activity, in vivo toxicity in rats, as well as for the catalytic degradation
of several dyes: 4-nitrophenol, 3-nitrophenol, 2, 4, 6-trinitrophenol, picric acid, Coomassie brilliant
blue, Congo red, eosin Y, rhodamine B, methylene blue, methyl red, methyl orange, cresol red, acridine
orange, eriochrome black T, and phenol red. The degradation reactions were completed in 6–60 min,
for all the tested dyes.

In a study published in 2019, Wang et al. [88] evaluated the catalytic properties of AgNP obtained
using aqueous Ginkgo biloba leaves extract for the reduction of 4-nitrophenol, Congo red, methyl orange,
and rhodamine B, achieving full conversion in 15–100 min. Vijayan et al. [89] applied an aqueous extract
for the phytosynthesis of AgNP and evaluated the obtained materials for the catalytic degradation of
methylene blue and rhodamine B. Yu et al. [90] evaluated the influence of reaction temperature on
the phytosynthesis of AgNP via Eriobotrya japonica (Thunb.) leaves extract. Their observations were
that the reaction temperature had a direct effect on the phytosynthesized nanoparticles (the higher the
temperature, the larger the obtained NPs) and, as a consequence, on their catalytic properties.

Silver nanoparticles are, by far, the most encountered phytosynthesized metallic nanoparticles,
mainly due to their known antimicrobial properties; the last years witnessed the increased application
of the silver nanoparticles in other areas, including in catalytic applications. As is the case for the other
nanoparticles, the efficiency of their final application and catalytic rates is related to their particle size
and shape. The morphology of the obtained nanostructures depends on phytochemical composition of
the extracts, which in turn varies depending on different extraction parameters. In perspective, for
the improvement of AgNP phytosynthesis, it is necessary to optimize the synthesis process (in terms
of used extract composition); another viable perspective is represented by the use of other groups
of plant (less explored in comparison with common angiosperms and algae) like bryophytes and
pteridophytes. These somewhat under-exploited plants contain highly oxidant agents and might be
involved in producing stable nanoparticles.

2.2. Gold Nanoparticles (AuNP)

Although not as abundant as the papers regarding AgNP, several research articles offer numerous
examples regarding the application of phytosynthesized gold nanoparticles (AuNP) in catalytic
processes. In 2010, Gupta et al. [91] proposed the application of AuNP phytosynthesized using green
tea for the catalytic reduction of methylene blue in the presence of stannous chloride. In 2012, Ghosh et al.
applied phytosynthesized AuNP for the reduction of 4-nitrophenol [92], while in 2014, several studies
present the application of phytosynthesized AuNP for the reduction of 4-nitrophenol [93,94] or
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methylene blue [94]. Application of phytosynthesized AuNP for the degradation of 4-nitrophenol
was also described in 2016 by Borhamdin et al. [95], Ghosh et al. [96] and Lim et al. [97]; the
reduction of the anthropogenic pollutant o-nitroaniline using AuNP was presented by Dauthal and
Mukhopadhyay [98], who also proved their catalytic recyclability, while Choudhary et al. [99] presented
the phytosynthesis of AuNP using Lagerstroemia speciosa leaf extract and their application for the
reduction of different pollutants in wastewater (methylene blue, methyl orange, bromophenol blue,
bromocresol green, and 4-nitrophenol). The authors also suggested a mechanism for the phytosynthesis:
according to the authors, the biomolecules from the extract (such as penta-O-galloyl-d-glucopyranose,
lagerstroemin, corosolic acid) attract negatively charged gold anions, while (through the transformation
of phenolic C-OH groups to C=O keto) releasing electrons involved in the reduction of gold anions.
In two 2017 studies, phytosynthesized AuNP were applied for the reduction of 4-nitrophenol [100]
and methylene blue [101]. The application of AuNP for the reduction of 4-nitrophenol was also
presented by Wacławek et al. [102] in their 2018 study. The authors managed to tune the shapes and
sizes of the nanoparticles as a function of the pH of the synthesis solution, extract and gold salt
concentration. Additionally, the comparison of the catalytic properties of different shaped AuNP
(spherical and triangular) showed that the reduction of 4-nitrophenol was achieved 1.5 times faster
using triangular AuNP.

Several other studies describe the application of phytosynthesized gold nanoparticles, by
comparison with silver nanoparticles. The gold nanoparticles phytosynthesized by Gangula et al. [33]
using Breynia rhamnoides extract showed superior catalytic properties for the reduction of 4-nitrophenol
compared with the silver nanoparticles. A similar observation was made by Joseph and Mathew [43],
who observed superior catalytic activity of gold nanoparticles phytosynthesized using aqueous Aerva
lanata leaves extract, compared with silver nanoparticles and by Francis et al. [60] for the degradation
of 4-nitrophenol, rhodamine B and methyl orange. On the contrary, Park et al. [50] noted superior
catalytic activity for AgNP, compared with AuNP, both types of NPs obtained using gallic acid as a
reducing agent. This can also be explained by the lower dimensions of the AgNPs, compared with
AuNPs. A similar observation was made by Manjari et al. [58], who observed minor differences
between the degradation capacities of AuNP and AgNP towards methylene blue and Congo red (99%
for AuNP, 99.9% for AgNP) and 4-nitrophenol (95% for AuNP and 97% for AgNP), also correlated with
the variation of the particle dimensions. In a 2017 study, Karthika et al. [63] found gold nanoparticles
to have inferior catalytic properties for the degradation of 4-nitrophenol and Congo red compared
with AgNP.

The comparative study of Vijayan et al. [75] regarding the application of AgNP and AuNP for
the reduction of o- and p-nitroaniline showed inferior results for AuNP (complete degradation time
18 min), that the authors assigned to the irregular shape of AuNP (although the NPs had similar
dimensions). Similar, to the irregular shapes of the AuNP obtained was assigned by Bonigala et al. [78]
and Vijayan et al. [79] the inferior catalytic properties, compared with AgNP, observed for the reduction
of 4-nitrophenol, methylene blue, methyl orange and methyl red, and, respectively, 4- nitrophenol,
methylene blue, and Congo red. The AuNP obtained by Vijayan et al. [88] using Bauhinia purpurea leaf
extract presented longer times (when compared with AgNP obtained in the same conditions). Again,
it can be assumed that the differences in terms of catalytic activity are mainly due to the differences
observed in terms of morphology.

Recently, a very interesting review paper was published by Teimouri et al. [103], presenting the
phytosynthesis of AuNP, their characterization, and application for the degradation of 4-nitrophenol
from industrial wastewater, alongside their insecticidal activity.

Regarding the phytosynthesis of AuNP, it can be noticed the variation in terms of NP
morphology. The study suggested that triangular-shaped AuNPs with small dimensions present the
best catalytic properties.
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2.3. Palladium Nanoparticles (PdNPs)

Palladium represents an important metal, widely used in environmental protection, for numerous
catalytic applications [104,105]. Considering its catalytic potential, palladium became in the last years
an important research topic, several works describing its phytosynthesis.

In 2014, Khan et al. [106] presented the phytosynthesis of palladium nanoparticles (PdNP) using
Pulicaria glutinosa extract, as well as their catalytic application in the Suzuki coupling reaction,
obtaining a complete conversion of bromobenzene to biphenyl in under 5 min. The authors assign the
reduction of Pd to nanoparticles to the presence of flavonoids and polyphenols of the used extract.
Veisi et al. [107] presented in 2015 the phytosynthesis of monodisperse PdNP using herbal tea extract,
for the same catalytic application. The authors suggested that flavonoids and polyols play the main
role in the NP production. More than that, by conducting the Suzuki reaction open to air, they were
able to prove the PdNP stability, while the catalyst was able to support eight catalytic cycles, without
any loss in activity. In the same year, Nasrollahzadeh et al. [108] applied phytosynthesized PdNP for
Hiyama and Stille cross-coupling reactions, observing a minimum five cycles of reusability for the
catalyst. Duan et al. [109] phytosynthesized PdNP using an aqueous extract of Eucommia ulmoides bark,
obtaining spherical and quasi-spherical nanoparticles, with an average size of 12.2 nm. The obtained
NPs showed very good activity for the excellent catalytic activity for the electro-catalytic oxidation of
hydrazine and the catalytic reducing degradation of p-aminoazobenzene, alongside a good stability in
time in aqueous solutions.

In 2016, Nasrollahzadeh and Mohammad Sajadi [110] presented the application of
phytosynthesized PdNP as a heterogeneous catalyst for the Suzuki-Miyaura coupling reaction,
while Tahir et al. [111] studied the influence of phytosynthesis temperature on the dimensions of PdNP
and applied the optimized materials to the photodegradation of methylene blue, obtaining a 90%
degradation in 70 min. The authors assign the rapid degradation of the dye to small sizes of the PdNP
and to the phytoconstituents attached to their surface.

An interesting approach was adopted by Hazarika et al. [112], who used for the phytosynthesis
Garcinia pedunculata Roxb as bio-reductant and starch as bio-stabilizer. They obtained small-size,
dispersed NPs, with very good catalytic for the Suzuki-Miyaura cross-coupling reaction, alcohol
oxidation and Cr(VI) reduction. In the same year, other groups presented the application of
phytosynthesized PdNP for the degradation of different compounds (such as 4-nitrophenol or Congo
red) [113–115] or for selective oxidation of alcohols [116].

In a recent work, Garole et al. [117] presented the phytosynthesis of PdNP assisted by Lagerstroemia
speciosa leaves extract. The obtained nanocatalyst (136.5 nm) was used for the reduction of organic
pollutants (methylene blue, methyl orange, and 4-nitrophenol) in the presence of sodium borohydride,
obtaining complete reduction within 10 min.

2.4. Iron Nanoparticles (FeNP)

Njagi et al. [118] used aqueous sorghum bran extracts for the phytosynthesis of amorphous
iron nanoparticles (FeNP), which were successfully used for the H2O2-catalyzed degradation of
bromothymol blue. Machado et al. [119] obtained FeNP using black tea, grape marc, and vine leaves
aqueous extracts that were applied for the degradation of ibuprofen both from aqueous solutions and
sandy soils, obtaining degradation efficiency up to 66% for aqueous solutions (pH dependent) and
over 95% for soils.

Lin et al. [120] studied the effect of reaction atmosphere on the dimensions of FeNP
phytosynthesized using green tea extract. The authors noticed that larger particles were obtained in
oxygen atmosphere, that, through XPS determinations were proved to be predominantly iron oxide in
nature. The FeNP obtained in nitrogen atmosphere had smaller dimensions (approximately 84 nm)
and had superior capacity for the removal of methylene blue (98.7%, 85.7% within 5 min).



Molecules 2019, 24, 3418 9 of 35

Using phytosynthesized FeNP, different degradation of different dyes (such as methylene blue,
methyl orange, allura red, brilliant blue, green S, or rhodamine B) was achieved by Garole et al. [121],
Radini et al. [122], and Khan and Al-Thabaiti [123].

2.5. Copper Nanoparticles (CuNP)

Nasrollahzadeh and Sajadi [124] described the phytosynthesis of copper nanoparticles (CuNP)
using Ginkgo biloba L. extract and their application for Huisgen [3 + 2] cycloaddition of azides
and alkynes at room temperature. The authors obtained spherical nanoparticles, with a narrow
size distribution (15–20 nm), and observed over 93% yields for the studied reaction, at 5 h and a
concentration of the CuNP of 10 mol%. Prasad et al. [125] obtained, using broccoli extract, CuNP
with spherical morphologies and average size of 4.8 nm. The CuNP were successfully applied for
the reduction of 4-nitrophenol in the presence of NaBH4 (reaction completed within a few minutes
with high values of reaction rate constants) and degradation of methylene blue (68% degradation
after 28 h) and methyl red (32% degradation after 28 h). At the same time, the authors performed
catalyst re-usability studies, observing no significant change in the conversion percent even at the fifth
cycle; however, a prolongation of the time necessary to complete the reaction (at the fifth cycle, the
time necessary being of 12 min). Superior results were obtained by Nazar et al. [126] for the catalytic
degradation of methylene blue (87.11%, after 3 h) using CuNP phytosynthesized via Punica granatum
seeds extract.

Nasrollahzadeh et al. [127] used aqueous extract obtained from Plantago asiatica to phytosynthesize
CuNP with spherical morphology and dimensions between 7-35 nm, in 5 min. The nanoparticles were
applied as catalyst for the cyanation of aldehydes, obtaining yields ≥85% (pure isolated product) at
reaction times 30–60 min, superior to the classical methods for the synthesis of aryl nitriles.

2.6. Bi-Metallic Nanoparticles

Besides the mono-metallic nanoparticles, another important area in nanomaterials phytosynthesis
is represented by the bi-metallic nanoparticles. These types of nanoparticles can come in a wide
variety of sizes and morphologies [28]. As can be expected, the majority of the studies regarding
catalytic applications of bi-metallic nanoparticles are focused on Ag/Au NPs. Ravi et al. [128]
described the phytosynthesis of crystalline Ag/AuNP using Silybum marianum seed extract as
reducing and stabilizing agent. The spherical polycrystalline NPs had dimensions ≤40 nm and
exhibited good catalytic performance for the reduction of 4-nitrophenol. The Ag/AuNP (10–20 nm)
phytosynthesized by Karthika et al. [63] using bark extract of Guazuma ulmifolia L. also showed good
reducing capability towards 4-nitrophenol and Congo red. More than that, the bimetallic nanoparticles
were found to have the best catalytic properties for the decolorization of 4-nitrophenol, compared with
individual nanoparticles.

Bi-metallic Fe/PdNP were obtained by Luo et al. [129] using grape leaf aqueous extract. The
nanoparticles exhibited significant catalytic effect for the removal of Orange II dye (98% in 12 h). The
kinetic study performed by the authors revealed that the removal fitted to the pseudo-first-order
reduction and pseudo-second-order adsorption model, implying that the removal phenomenon
involved both adsorption and catalytic reduction.

Al-Asfar et al. [130] phytosynthesized bi-metallic Ag/FeNP using Palm date fruit extract. The
nanoparticles presented as disks and with irregular morphologies, with dimensions 5–40 nm. The authors
observed a complete decolorization of the bromothymol blue dye in 60 min for the Ag/FeNP/H2O2

catalytic system. Similar bi-metallic nanoparticles were also obtained by Taghizadeh et al. [131] using
Cupressus sempervirens extract and their catalytic activity was tested for methyl orange removal, reaching
a 98.5% removal after 4 h.



Molecules 2019, 24, 3418 10 of 35

3. Metallic Oxides and Chlorides Nanoparticles

Unlike mono-metallic nanoparticles, metal oxides nanoparticles cover a wider range of metals (such
as Fe, Cu, Zn, Zr, Ce, Ni, and others). Their phytosynthesis was recently reviewed by Sharma et al. [132],
Singh et al. [133], or Basnet et al. [134], covering the plausible mechanisms involved in their formation,
as well as potential application in catalysis.

Phytosynthesis of Fe3O4 was presented by Basavegowda et al. [135]. The authors used aqueous
extract of Artemisia annua leaves to obtain ferromagnetic nanoparticles, with average diameters of
6.4 nm. Their application as catalyst in organic synthesis led to the synthesis of benzoxazinone and
benzthioxazinone derivatives in high yields (over 80%). Vasantharaj et al. [136] proposed the use of
Ruellia tuberosa leaves extract for the phytosynthesis of hexagonal nanorods Fe3O4NP. The obtained
NPs were used for the degradation of crystal violet dye under solar irradiation, obtaining a degradation
of 80% after 150 min reaction.

Spherical copper oxide nanoparticles (CuONP) were obtained by Nasrollahzadeh et al. [137]
in 2015 using an aqueous Gundelia tournefortii leaves extract. The nanoparticles were applied for
the degradation of 4-nitrophenol (observing the disappearance of the specific 4-nitrophenolate ions
UV-Vis peak in 70 seconds after the addition of CuONP) and for the hydration of cyanamides
to N-monosubstituted ureas using acetaldoxime (with yields over 88%). Considering the catalyst
reusability, the authors observed a decrease in the reaction yield of phenylcyanamide hydration (from
94% for fresh and 1st cycle catalyst to 90% for the 4th cycle). The same group [138] obtained CuONP
using Thymus vulgaris aqueous leaves extract and applied them for the N-arylation of indoles and
amines. The obtained NPs (having diameters under 30 nm) exhibited good catalytic activity (58–98%
yields for the arylation of indoles with aryl halides and 86–96% yields for the arylation of amines with
aryl iodides). Regarding the catalyst reusability, the authors observed that the catalyst could be used
for five times with almost consistent activity (97–92% yield) for the N-arylation of indoles.

Devi et al. [139] obtained CuO and ZnONP using the aqueous extract of Centella asiatica, considering
as phytosynthesis responsible molecules the polyphenols and protein (or amino acids) constituents of
the extract. When applying the obtained NPs as catalyst for the reduction of methylene blue using
NaBH4, the authors observed a higher catalytic activity of CuONP (rate constant 4.261, compared with
0.311 for ZnONP), that was attributed to their lesser work function value. The catalytic application
of phytosynthesized CuONP was also studied by Sathiyavimal et al. [140], Prakash et al. [141], and
Gu et al. [142], for the reduction of dyes, such as crystal violet and methyl red, bromothymol blue, and
methylene blue or for the production of 3,4-dihydropyrimidinones by Biginelli reaction [141].

Zinc oxide nanoparticles (ZnONP) were phytosynthesized by Suresh et al. [143] using Artocarpus
gomezianus fruit extract. The authors obtained porous nanoparticles, with dimensions dependent
on the concentration of the extract used for the phytosynthesis. The nanoparticles exhibited good
catalytic properties for the degradation of methylene blue, especially in alkaline pH, both under direct
sunlight and UV light. The degradation of the same dye was studied by Anbuvannan et al. [144] using
ZnONP phytosynthesized by aqueous Phyllanthus niruri leaves extract, obtaining an almost complete
disappearance of the specific UV-Vis peak at 664 nm in under 30 min Patel et al. [145] obtained ZnO
nanorods using Aloe vera gel and established its catalytic superiority for the thermal decomposition
of potassium perchlorate, compared with nanorods of ZnO obtained using a commercial surfactant
(poly(ethylene)glycol).

The same type of nanoparticles, obtained using different plant extracts were successfully applied
by Raja et al. [146], Ishwarya et al. [147], and Ali et al. [148] for the photodegradation of dyes (methylene
blue and methyl orange), all the authors observing an elevated degradation efficiency, especial towards
methylene blue (over 90% degradation). Phukan et al. [149] obtained ZnO nanotapes, with widths
within 9 nm using Lantana camara flowers extract and applied the nanostructures for ipso-hydroxylation
of different aryl/ hetero-arylboronic acid to phenol. Khan et al. [150] obtained spherical ZnONP using
Trianthema portulacastrum plant extract and applied them for the degradation of a textile dye (Synozol
Navy Blue-KBF), obtaining a 91% degradation of the dye in 159 min The author also proposed a
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mechanistic pathway for the dye degradation, involving the physical adsorption of the dye on the
nanoparticles surface, followed by the photocatalytic degradation under the action of OH radicals.

Tin oxide nanoparticles (SnO2NP) were obtained by Haritha et al. [151] using Catunaregam spinosa
bark extract. The nanoparticles were applied for the degradation of the Congo red dye, obtaining
a 92% degradation after 45 min of reaction. The authors assign the main role in the phytosynthesis
to the hydroxyl group containing phytomolecules. Begum and Ahmaruzzaman [152] used for the
phytosynthesis of SnO2NP using an aqueous extract of the pods of a tropical leguminous tree (Parkia
speciosa Hassk). The obtained structures were applied for the degradation of the acid yellow 23 dye,
reaching a 98% degradation under UV-C irradiation for 24 min and a reusability of five cycles, without
any losses in terms of stability and morphology.

Phytosynthesized titania nanoparticles (TiO2NP) were obtained by Thandapani et al. [153] and
Udayabhanu et al. [154] and applied for the catalytic degradation of dyes (methylene blue, methyl
orange, crystal violet, and alizarin red), obtaining degradation efficiencies over 77% after 6 h. In both
studies, the best effect (over 92% degradation) was observed for methylene blue, while the lowest
degradation efficiencies were observed for alizarin red (77.3%) and methyl orange (77.5%). Considering
the comparable morphologies and sized of the NPs (Table 1), it can be concluded that the differences in
terms of catalytic activity are due to the different phytochemicals from the used extracts.

Other types of metallic oxides nanoparticles (such as Mn3O4NP, CeO2NP, ZrONP, or NiONP)
were phytosynthesized by different groups [155–158] and used for different catalytic applications
(catalytic thermal decomposition of ammonium perchlorate; degradation of crystal violet; degradation
of methyl orange; photocatalytic degradation of 4-clorphenol).

Although not as common as the metallic oxides, phytosynthesized metallic chlorides are also
encountered in the literature. For example, Huo et al. [159] obtained, using aqueous root extract
of Glycyrrhiza uralensis, silver chloride nanoparticles (AgClNP). The obtained nanoparticles were
successfully applied for the degradation of methylene blue, as a model test pollutant.

As many catalytic processes are related to the metal surface, NPs are usually more reactive than
the bulk metal, a consequence of their smaller sizes and larger surface areas. Comparing metallic oxides
nanoparticles, iron oxide magnetic nanoparticles could be considered a more desirable alternative
for real-life applications, as they are easier to recover from the system, by applying an exterior
magnetic field.

4. Complex Catalytic Structures Based on Phytosynthesized Nanoparticles

Besides the nanoparticles described in the previous chapters, the literature also presents complex
structures, incorporating phytosynthesized nanomaterials, starting from the simple M1/M2

xNy catalysts
(where M1 and M2 are metals, N = O, Cl) to composites such as membrane or zeolite-metallic
nanoparticles catalysts. In the following paragraphs, we will present a short overview of the recent
advances registered in this area.

Nasrollahzadeh et al. [160] used aqueous cocoa seeds extract for the phytosynthesis of Pd/CuO
nanoparticles with average size of 40 nm, assigning the main role in the phytosynthesis process to
different compounds (epicatechin, catechin, flavonoid and phenolic acids) present in the extract. The
nanoparticles were applied for the reduction of 4-nitrophenol with NaBH4, obtaining a complete
disappearance of the specific absorption peak at 400 nm in 60 seconds, with a reusability of over
six cycles. The nanoparticles were also proven to be a highly efficient and stable heterogeneous
catalyst for phosphine-free Heck coupling reaction. Using aqueous Silybum marianum L. seeds extract,
Sajadi et al. [161] obtained magnetic Cu/Fe3O4NP used as catalysts for the reduction of various
nitroarenes (with yields of 88-97% and a recyclability of at least five cycles). Nasrollahzadeh and
Sajadi [162] applied phytosynthesized Pd/TiO2NP as a catalyst for the ligand-free Suzuki–Miyaura
coupling reaction (registering yields up to 98% and a four cycles reusability without a significant yield
decrease). Reduction of different compounds (4-nitrophenol, methyl orange, Congo red, and methylene
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blue) was achieved by Atarod et al. [163] and Momeni et al. [164] in 2016, using phytosynthesized
Ag/TiO2NP and Cu/ZnONP, with very low reaction time.

Sajadi et al. [165] applied phytosynthesized Ag/Fe3O4NP for the [2+3] cycloaddition of
arylcyanamides and sodium azide, while Hag et al. [166] used Ag/NiONP for the catalytic degradation
of rhodamine B.

Ag/AgCl nanoparticles were obtained by Devi et al. [167,168] using Momordica charantia and
Benincasa hispida extracts. The authors applied the nanoparticles for the reduction of 2-, 4-dinitrophenyl
hydrazine for the degradation of malachite green oxalate under sunlight irradiation.

Other types of phytosynthesized catalytic material are represented by the metal oxide/metal oxide
nanostructures. For example, Bharati and Suresh [169] proposed the application of phytosynthesized
ZnO/SiO2 nanostructures for the reduction of acenaphthylene from refinery waste water, while Maria
Magdalane et al. [170] used CeO2/CdO multilayered nanoplatelet for the degradation malachite green
and catalytic hydrogenation of 4-nitrophenol.

Using aqueous Opuntia dilenii haw, Azadirachta indica, Ocimum sanctum, and Saraca indica extracts,
Kombaiah et al. [171] and Garg et al. [172] obtained nano-ferrite (ZnFe2O4) and bismuth oxychloride
(BiOCl), and demonstrated their potential for the oxidation of glycerol into formic acid for the
degradation of methyl orange and bisphenol A.

Another widely encountered strategy is represented by the incorporation of phytosynthesized in
porous materials (especially zeolites). For example, Zhan et al. [173] reported the obtaining of a AuNP/

titanium silicalite-1 composite for vapor phase propylene epoxidation, Nasrollahzadeh et al. [174]
reported the N-formylation of amines using CuNP/zeolite (Natrolite) as a “green” catalyst, and
Hatamifard et al. [175] used AgNP/zeolite nanocomposite for the ligand-free hydroxylation of
phenylboronic acid to phenol and the reduction of 4-nitrophenol (4-NP), methyl orange (MO),
Congo red (CR), methylene blue (MB) and rhodamine B, while Das et al. [176] applied AgNP/zeolite
(mesoporous silicate-1) catalyst for the reduction of 4-nitrophenol.

Catalytic composites constructed with reduced graphene oxides (RGO) and phytosynthesized
nanoparticles were evaluated by Nasrollahzadeh et al. (PdNP/RGO) [177], Atarod et al.
(Pd/RGO/Fe3O4) [178], Maham et al. (Ag/RGO/Fe3O4) [179], Nasrollahzadeh et al. (Cu/RGO/Fe3O4) [180],
Khan et al. (Pd/RGO) [181], and Anasdass et al. [182] for the reduction of nitroarenes, reduction
of 4-nitrophenol, reduction of 4-nitrophenol, Congo red and Rhodamine B, direct cyanation of
aldehydes with K4[Fe(CN)6], as catalyst for the Suzuki-Miyaura coupling, and as catalyst for Suzuki
cross-coupling reactions.

Smuleac et al. [183] incorporated mono- and bi-metallic phytosynthesized nanoparticles (Fe
and Fe/Pd) in a polyacrylic acid-coated polyvinylidene fluoride membrane and applied them for the
degradation of trichloroethylene, observing the preservation of the membrane reactivity after 4 months
of use. Momeni et al. [184] applied Ag/bone nanocomposites for the hydration of cyanamides and
Goswami et al. [185] used AgNP supported on cellulose for the degradation of methylene blue, methyl
orange, bromophenol blue, Eosin Y and Orange G, while Naeimi et al. [186] phytosynthesized MoO3

nanoparticles and used them for the construction of MoO3/Copper Schiff base complex with application
in the oxidation of alcohols.

Another interesting approach, presented by several authors, is represented by the deposition
of the phytosynthesized nanoparticles on different supports (by-products or wastes from different
industries). Rostami-Vartooni [187] obtained CuONP deposited on seashell surface and applied the
composites for the reduction of 4-nitrophenol and Congo red in the presence of NaBH4, while Bordbar
and Mortazavimanesh [188] applied PdNP/walnut shell composites for the reduction of 4-nitrophenol,
Congo red, methylene blue, and rhodamine B, with reaction times under 1 min Khodadadi et al. [189]
deposited PdNP on apricot kernel shells and used them as catalysts for the reduction of 4-nitrophenol,
methyl orange, methylene blue, rhodamine B, and Congo red at room temperature (reaction completed
in seconds); the same group [190] applied the developed strategy for obtaining AgNP/ peach kernel
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shells, for the reduction of 4-nitrophenol, methyl orange, and methylene blue (reaction times under
15 min).

The general procedure for developing the presented phytosynthesized nanocatalysts (as concluded
from the reviewed articles) and the synthesis mechanisms are presented in Figure 2.Molecules 2019, 24, 3418 13 of 36 
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Figure 2. General procedure and phytosynthesis mechanisms for obtaining the “green” nanocatalysts
(adapted from [28,32,127] and [167] and for the characterization steps (Transmission electron
microscopy-TEM images of silver-AgNP, gold-AuNP and gold/silver nanoparticles-Ag/AuNP from the
authors’ unpublished results).

Table 1 presents the main applications of phytosynthesized nanoparticles in the field of catalysis,
including the extracts used for phytosynthesis, applied characterization techniques, and NPs
characteristics, for quick reference. The schematic representation of some of the catalytic applications
of nanoparticles identified in the present review is presented in Figure 3.
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Table 1. Examples of the phytosynthesized nanoparticles, applied characterization techniques and their catalytic applications 1.

NPs Plant Extract Used NPs Characteristics Applied Characterization
Techniques Catalytic Activity Ref.

Ag, Au Breynia rhamnoides Ag–spherical, 64 nm Au–spherical,
27 nm

UV-Vis, TEM, FTIR, particle size
distribution Catalytic conversion of 4-nitrophenol [33]

Ag Aqueous Saraca indica flowers
extract Spherical, 18–22 nm UV-Vis, TEM, XRD, FTIR Reduction of Methylene blue [34]

Ag Aqueous Alstonia macrophylla leaf
extract Spherical, 70 nm UV-Vis, FTIR, XRD, SEM, particle

size distribution Reduction of 4-nitrophenol and p-nitroaniline [35]

Ag Aqueous Trigonella foenum-graecum
seeds extract

Spherical and quasi-spherical,
22–32 nm UV-Vis, XRD, TEM, FTIR Catalytic degradation of methyl orange,

methylene blue and eosin Y [36]

Ag Aqueous Euphorbia condylocarpa M.
bieb root extract Spherical, diameters not determined UV-Vis, FTIR, TEM Catalytic synthesis of N-monosubstituted ureas

in water [37]

Ag Coleus forskohlii root extract
Triangular and spherical, 30–40 nm

and 35–55 nm, depending on the
extract quantity

UV-Vis, XRD, TEM, FTIR Catalytic reduction of 4-nitrophenol [38]

Ag Aqueous Salicornia brachiate extract Spherical, rod-like, prism, triangular,
pentagonal and hexagonal, 30–40 nm UV-Vis, SEM, TEM Catalytic reduction of 4-nitrophenol [39]

Ag Aqueous Leucas martinicensis leaves
extract Nearly spherical 20–30 nm UV-Vis, XRD, TEM, FTIR Reduction of methylene blue [40]

Ag Aqueous Tribulus terrestris extract Spherical, 15–40 nm UV-Vis, XRD, TEM, FTIR Reduction of methylene blue [41]

Ag Aqueous beetroot extract Spherical, 15 nm UV–Vis, XRD, TEM Reduction of 4-nitrophenol to 4-aminophenol [42]

Ag, Au Aqueous Aerva lanata leaves extract Ag–Quasi-spherical, 18.62 nm
Au–different morphologies, 17.97 nm UV-Vis, FTIR, XRD, TEM Reduction of 4-nitrophenol to 4-aminophenol [43]

Ag Aqueous Ziziphus Jujuba leaves
extract

Different shapes, 20–30 nm,
hydrodynamic size 28 nm

UV-Vis, XRD, FT-IR, TEM, DLS,
Zeta potential Reduction of 4-nitrophenol and methylene blue [44]

Ag Aqueous Momordica charantia
leaves extract Spherical, 16 nm XRD, SAED, SEM, XPS, UV-Vis,

FTIR Reduction of methylene blue [45]

Ag Aqueous Lantana camara leaves
extract

Almost spherical, 23–30 nm, varying
with silver precursor concentration

XRD, SEM, TEM, UV-Vis, FTIR,
Zeta potential Reduction of methylene blue [46]

Ag
Ferredoxin–NADP+

reductase/ferredoxin obtained from
spinach extract

Spherical, 10–15 nm UV-Vis, TEM, FTIR Degradation of methylene blue, methyl orange
and methyl red [47]

Ag

Aqueous extracts of Mentha arvensis
var. piperascens, Buddleja officinalis
Maximowicz, Epimedium koreanum
Nakai, Artemisia messer-schmidtiana

Besser, Magnolia kobus

Average particle sizes 24.7 to 40 nm EDS, SEM, EDX, XPS, TEM Degradation of cellulose by cellulase [48]
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Table 1. Cont.

NPs Plant Extract Used NPs Characteristics Applied Characterization
Techniques Catalytic Activity Ref.

Ag Aqueous extract from dried
Euphorbia helioscopia Linn leaves Spherical, 2–14 nm TEM, XRD, FT-IR, UV-Vis Synthesis of propargylamines [49]

Ag Aqueous bark extract of Terminalia
cuneata Distorted spherical shape, 25–50 nm FTIR, XRD, DLS, TEM, EDX Reduction of direct yellow-12 dye [51]

Ag Aqueous extract of Erigeron
bonariensis Spherical, average size 13 nm SEM, TEM, XRD, SAED, AFM,

FTIR, UV-Vis Degradation of Acridine Orange [52]

Ag Aqueous extract of Anacardium
occidentale testa Distorted spherical shape, 25 nm UV-Vis, FTIR, XRD, TEM Degradation of Congo red and methyl orange [53]

Ag Aqueous extract of Crotolaria retus
leaves Spherical, 80 nm UV-Vis, TEM, DLS Reduction of cresyl blue [54]

Ag Aqueous extract of Lychee (Litchi
Chinensis) fruit peel Spherical, 4–8 nm UV-Vis, XRD, EDX, SAED, TEM,

FTIR Photocatalytic degradation of methylene blue [55]

Ag Aqueous extract of Guiera
senegalensis Spherical, 50 nm FTIR, TEM, SEM, XRD, EDX Degradation of 4-nitrophenol and Congo red [56]

Ag Aqueous extract of Cicer arietinum
leaves Spherical, 88.8 nm UV-Vis, SEM, TEM, DLS, EDX,

FTIR,
Degradation of 4-nitrophenol, methylene blue

and Congo red [57]

Ag, Au Aqueous Aglaia elaeagnoidea flower
extract

Ag–spherical, 17 nm
Au–spherical, 25 nm

UV–Vis, FTIR, XRD, SEM, EDX,
TEM

Degradation of 4-nitrophenol, methylene blue
and Congo red [58]

Ag Aqueous Phoenix Dactylifera extract Spherical, 25–60 nm UV-Vis, XRD, FTIR, SEM, TEM,
AFM, EDX, Zeta potential Degradation of 4-nitrophenol [59]

Ag, Au Aqueous leaf extract of Mussaenda
glabrata

Ag–spherical, 51.32 nm
Au–triangular and spherical, 10.59

nm

UV-Vis, FTIR, XRD, EDX, SAED,
TEM, AFM

Degradation of 4-nitrophenol, rhodamine B and
methyl orange [60]

Ag Aqueous leaf extract of Cascabela
thevetia and Wrightia tomentosa Not determined UV-Vis Degradation of 4-nitrophenol, methylene blue,

methyl orange and methyl red [61]

Ag Fractionated Cassia auriculata L.
flower aqueous extract Spherical and triangular, 10–35 nm UV-Vis, FTIR, XRD, TEM Degradation of 4-nitrophenol, methyl orange [62]

Ag, Au, Ag/Au Aqueous bark Guazuma ulmifolia L.
extract

Ag–spherical, 10–15 nm
Au–spherical, 20–25 nm

Ag/Au–spherical, 10–20 nm
UV-Vis, FTIR, XRD, AFM, TEM Degradation of 4-nitrophenol, Congo red [63]

Ag 90% ethanol extract of Dillenia
indica bark Spherical, 15–35 nm UV-Vis, XRD, TEM, FTIR Degradation of 4-nitrophenol, methylene blue [64]

Ag Terminalia bellirica fruit aqueous
extract Spherical, ≤20.6 nm UV–Vis, FTIR, Zetasizer, SEM, EDX,

XRD Degradation of 4-nitrophenol [65]



Molecules 2019, 24, 3418 16 of 35

Table 1. Cont.

NPs Plant Extract Used NPs Characteristics Applied Characterization
Techniques Catalytic Activity Ref.

Ag, Au Actinidia deliciosa fruit extract Ag–spherical, 25–40 nm
Au–spherical, 7–20 nm EDAX, XPS, XRD, FTIR Degradation of 4-nitrophenol, methylene blue [66]

Ag Aqueous extract of Camellia japonica
leaves Spherical, 12–25 nm UV-Vis, XRD, FTIR, TEM, EDX Photocatalytic degradation of eosin-Y [67]

Ag Aqueous extract of Caulerpa
serrulate algae Spherical, 10 ± 2 nm UV–Vis, FT-IR, XRD, TEM Degradation of Congo red [68]

Ag Artemisia tournefortiana Rchb
ethanol extract

Spherical, average diameter 22.89 ±
14.82 nm

UV-Vis, TEM, SEM, EDX, XRD,
FTIR

Degradation of Coomassie Brilliant Blue G-250
under UV light [69]

Ag Aqueous bark extract of
Acanthopanax sessiliflorus

Roughly-spherical, average diameter
~20 nm UV-Vis, XRD, TEM Reduction of p-nitroaniline to

p-phenylenediamine [70]

Ag Aqueous Gongronema latifolium leaf
extract Spherical, 12–30 nm XRD, SEM, EDS, TEM, UV-Vis,

FTIR
Synthesis of N-monosubstituted ureas via the
hydration of cyanamides in aqueous medium [71]

Ag Aqueous extract of Radix Puerariae Spherical, 10–35 nm TEM, XRD, SEM, DLS, EDX,
UV-Vis

Construction of pyrimido[1,2-b]indazole
derivatives under solvent-free conditions [72]

Ag Aqueous extract of Aqueous palm
date fruit pericarp extract Spherical, 3–30 nm SEM, TEM, SAED, EDX, DLS Catalytic degradation of 4-Nitrophenol [73]

Ag Prosopis juliflora bark extract Spherical, 10–50 nm UV-Vis, DLS, SEM, FTIR Catalytic degradation of 4-Nitrophenol [74]

Ag, Au Aqueous leaf extract of Indigofera
tinctoria

Ag–spherical, 9–26 nm
Au–spherical, triangular, hexagonal,

6–29 nm

UV-vis, FTIR, XRD, TEM, EDX,
AFM Reduction of o/p-nitroanilines [75]

Ag Leaf extract of Orthosiphon aristatus Spherical, 15–45 nm UV-Vis, FTIR, XRD, TEM, EDX Reduction of 4-nitrophenol and o-/p- nitroaniline [76]

Ag Aqueous extract of Elephantopus
scaber Spherical, 20–60 nm UV-Vis, FTIR, XRD, TEM, EDX,

AFM
Reduction of 4-nitrophenol, 2-/4-nitroaniline and

eosin Y [77]

Ag, Au Aqueous extract of Stemona tuberosa
Lour

Ag–spherical, 25 nm
Au–irregular, 20–30 nm

UV-Vis, EDX, XRD, FTIR, SEM,
TEM, SAED, Zeta potential

Degradation of 4-nitrophenol, methylene blue,
methyl orange and methyl red [78]

Ag, Au Aqueousleaves extract of
Myxopyrum serratulum A. W. Hill

Ag–spherical, 20–50 nm
Au–irregular, 6–29 nm UV-Vis, FTIR, XRD, TEM, EDX Reduction of 4- nitrophenol, methylene blue and

Congo red [79]

Ag Aqueous extract of Longan fruit
peel Spherical, 20 nm UV-Vis, XRD, EDX, TEM, FTIR Degradation of methylene blue [80]

Ag Aqueous extract of Durio Zibethinus
seeds Spherical, rod shaped, 20–75 nm UV-Vis, SEM, TEM, Zeta potential,

XRD, EDX Degradation of methylene blue [81]

Ag Aqueous Convolvulus arvensis
leaves extract Spherical, 10–30 nm UV-Vis, SEM, TEM, EDX, XRD,

DLS, Zeta potential
Reduction of Reactive Black 5, methyl orange,

direct yellow-142 [82]
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NPs Plant Extract Used NPs Characteristics Applied Characterization
Techniques Catalytic Activity Ref.

Ag Aqueous seed extract of Gardenia
jasminoides Ellis Spherical, average size 20 nm UV-Vis, TEM, XRD, EDX, particle

size analyses, FTIR Reduction of Coomassie Brilliant Blue [83]

Ag Aqueous extract of Allium cepa Spherical, 50–100 nm UV-Vis, SEM, TEM, Particle size,
Zeta potential, EDX, XRD, FTIR

Degradation of methylene blue, eosin yellowish,
safranin, direct dye, reactive dyes [84]

Ag Aqueous Nervalia zeylanica leaves
extract

Spherical, average particle size 34.2
nm

UV-Vis, FTIR, XRD, AFM, EDX,
TEM Degradation of methyl orange, rhodamine B [85]

Ag Aqueous extract of Bauhinia
tomentosa Linn. leaves Spherical, 8–25 nm UV-Vis, XRD, FTIR, SEM, EDX,

TEM Degradation of Rose Bengal [86]

Ag Aqueous rhizome extract of Acorus
calamus

Spherical, hydrodynamic diameter
31.83 nm

UV-Vis, TEM, EDX, FTIR, zeta
potential, DLS

Degradation of nitrophenol, 3-nitrophenol, 2, 4,
6-trinitrophenol, picric acid, Coomassie Brilliant

Blue, Congo red, eosin Y, rhodamine B,
methylene blue, methyl red, methyl orange,

cresol red, acridine orange, eriochrome black T,
and phenol red

[87]

Ag Aqueous Ginkgo biloba leaves
extract Spherical, 20–40 nm UV-Vis, XRD, XPS, SEM, TEM, DLS Reduction of 4-nitrophenol, Congo red, methyl

orange, and rhodamine B [88]

Ag, Au Aqueous leaf extract of Bauhinia
purpurea

Ag–quasi-spherical Au–spherical,
hexagonal, triangular, nanorods UV-Vis, FTIR, XRD, TEM, EDX Degradation of methylene blue and rhodamine B [89]

Ag Aqueous Eriobotrya japonica
(Thunb.) leaves extract

Spherical, 9.26 ± 2.72, 13.09 ± 3.66,
and 17.28 ± 5.78 nm, temperature

dependent

UV-Vis, SEM, XRD, TEM, FTIR,
EDX, SAED

Degradation of Reactive Red 120 and Reactive
Black 5 [90]

Au Aqueous extract of green tea leaves Mostly spherical, 20 nm UV-Vis, TEM, XRD Degradation of methylene blue [91]

Au Aqueous extract of Gnidia glauca
flower

Varying morphology, mostly
spherical, 10 nm, with particles up to

150 nm
UV-Vis, TEM, DLS, XRD, FTIR Degradation of 4-nitrophenol [92]

Au 70% ethanol Phoenix dactylifera L.
leaves extract Spherical, 32–45 nm UV-Vis, TEM, FTIR, AAS Degradation of 4-nitrophenol [93]

Au Aqueous Salicornia brachiata extract Spherical, 22–35 nm UV-Vis, SEM, EDX, TEM, XRD Degradation of 4-nitrophenol and methylene
blue [94]

Au Aqueous leaf extract of Polygonum
minus Mostly icosahedral, 23 nm UV-Vis, XRD, FTIR, TEM, EDX Degradation of 4-nitrophenol [95]

Au Aqueous Gnidia glauca leaves and
stem extracts Mostly spherical, 10–60 nm UV-Vis, TEM, DLS, XRD, FTIR Degradation of 4-nitrophenol [96]
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Au Aqueous Artemisia capillaris
extracts, different conditions

Spherical, 16.88 ± 5.47~29.93 ± 9.80
nm

UV-Vis, TEM, particle dimension,
zeta potential, XRD, FTIR Degradation of 4-nitrophenol [97]

Au Aqueous Delonix regia leaves extract Spherical, 4–24 nm UV-Vis, TEM, XRD, EDX, SEM,
FTIR Degradation of o-nitroaniline [98]

Au Aqueous Lagerstroemia speciosa
leaves extract

Triangular and hexagonal, some
spherical, 41–91 nm TEM, UV-Vis, XRD, FTIR

Reduction of methylene blue, methyl orange,
bromophenol blue, bromocresol green, and

4-nitrophenol
[99]

Au Aqueous Cotoneaster horizontalis
leaves Spherical, 18 ± 2 nm UV-Vis. XRD, TEM, FTIR, SEM,

EDX Degradation of 4-nitrophenol [100]

Au Aqueous Sueda fruciotosa extract Spherical, 2–12 nm UV-Vis, FTIR, XRD, TEM Degradation of methylene blue [101]

Au Ethanol Artemisia dracunculus
extract

Spherical, hexagonal, and triangular
shapes, depending on phytosynthesis

conditions, wide variety of
dimensions

UV-Vis, SEM, DLS, zeta potential,
FTIR Reduction of 4-nitrophenol [102]

Pd Aqueous Pulicaria glutinosa extract Spherical, 20–25 nm UV-Vis, XRD, TEM, EDX, FTIR Catalytic conversion of bromobenzene to
biphenyl [106]

Pd Aqueous Stachys lavandulifolia
extract Nearly spherical, 5–7 nm UV-Vis, TEM, XRD, FTIR, SEM,

EDX, ICP Suzuki reaction, for a wide range of aryl halides [107]

Pd Aqueous extract of leaves of
Euphorbiathymifolia L. Spherical, 20–30 nm XRD, TEM, FTIR, UV-vis Catalyst for Stille and Hiyama cross-coupling

reactions [108]

Pd Aqueous extract Eucommia ulmoides
bark

Spherical and quasi-spherical, 10–20
nm TEM, EDX, XRD, Electro-catalytic oxidation of hydrazine and

catalytic degradation of p-aminoazobenzene [109]

Pd Aqueous Euphorbia granulate leaves
extract 25–35 nm FTIR, TEM Catalyst for the Suzuki-Miyaura coupling

reaction [110]

Pd Aqueous Sapium sebiferum leaves
extract

Spherical, 2–14 nm, depending on the
synthesis temperature

UV-Vis, XRD, TEM, SAED, TGA,
DLS, FTIR Photodegradation of methylene blue [111]

Pd Aqueous Garcinia pedunculata Roxb
and starch Spherical and non-spherical, 2–4 nm FTIR, XRD, TEM, XPS, SEM, EDX,

UV-Vis, TGA, DLS
Catalyst for Suzuki-Miyaura cross-coupling

reaction, alcohol oxidation and Cr(VI) reduction [112]

Pd Aqueous Santalum album extract Spherical, 10–40 nm UV-Vis, TEM, XRD, FTIR Catalytic reduction of 4-nitrophenol [113]

Pd Aqueous Camellia sinensis leaves
extract Near spherical, 5–8 nm UV-Vis, XRD, FTIR, SEM, TEM,

EDS

Catalytic reduction of 4-nitrophenol,
heterogeneous catalyst for Suzuki coupling

reactions
[114]

Pd Aqueous Pimpinella Tirupatiensis
leaves extract Spherical, 12.25 nm UV-Vis, XRD, FTIR, TEM Catalytic degradation of Congo red [115]
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Techniques Catalytic Activity Ref.

Pd Aqueous Origanum vulgare L.
extract Spherical, 2–20 nm UV-Vis, FTIR, XRD, TEM, EDX,

TGA Selective oxidation of alcohols [116]

Pd Aqueous Lagerstroemia speciosa
leaves extract 136.5 nm UV-Vis, SEM, EDX, XRD, FTIR,

TGA
Reduction of methylene blue, methyl orange

and 4-nitrophenol [117]

Fe Aqueous sorghum bran Spherical, 40–50 nm UV-Vis, SEM, TEM, XRD, zeta
potential Degradation of Bromothymol Blue [118]

Fe Black tea, grape marc, and vine
leaves aqueous extracts 15–45 nm UV-Vis, TEM Degradation of ibuprofen [119]

Fe Aqueous green tea extract
Spherical, 84.7 ± 11.5 nm and 141.2 ±
26.3 nm, depending on the synthesis

atmosphere
SEM, XPS, FTIR Degradation of methylene blue [120]

Fe Aqueous Lagerstroemia speciosa
leaves extract Spheroidal, 50–100 nm UV-Vis, FTIR, EDX, SEM, XRD,

TGA
Degradation of methylene blue, methyl orange,

allura red, brilliant blue, green S dyes [121]

Fe Aqueous extract of Trigonella
foenum-graecum seed 7–14 nm UV-Vis, XRD, FTIR, TGA/DTG,

TEM, magnetization, Degradation of methyl orange [122]

Fe Hibiscus Sabdariffa flower aqueous
extract

Spherical, 18–44 nm, depending on
the iron salt concentration UV-Vis, TEM, FTIR Degradation of rhodamine B [123]

Cu Aqueous Ginkgo biloba L. extract Spherical, 15–20 nm TEM, EDX, FTIR, UV-Vis Huisgen [3 + 2] cycloaddition of azides and
alkynes [124]

Cu Aqueous broccoli extract Spherical, average particle size 4.8
nm

UV-Vis, FTIR, TEM, DLS, XRD,
cyclic voltammetry

Reduction of 4-nitrophenol, degradation of
methylene blue and methyl red [125]

Cu Aqueous Punica granatum seeds
extract Spherical, 40–80 nm, average size 43.9 UV-Vis, XRD, SEM, EDX, FTIR,

AFM Degradation of methylene blue [126]

Cu Aqueous Plantago asiatica leaf
extract Spherical, 7–35 nm FTIR, UV–Vis, TEM, XRD Cyanation of aldehydes usingK4Fe(CN)6 [127]

Ag/Au Aqueous Silybum marianum extract Spherical, ≤40 nm UV-Vis, DLS, XRD, TEM, SAED,
EDX, XPS, FTIR Reduction of 4-nitrophenol [128]

Fe/Pd Grape leaf aqueous extract Quasi-spherical, 10–100 nm SEM, FTIR Removal of Orange II [129]

Ag/Fe Aqueous Palm dates fruit extract Disks, irregular, 5–40 nm UV-Vis, TEM, EDX Degradation of bromothymol blue [130]

Ag/Fe Cupressus sempervirens extract Core-shell, 22–72 nm, mean particle
size 36.7 nm UV-Vis, TEM, XRD, FTIR Degradation of methyl orange [131]

Fe3O4
Aqueous Artemisia annua leaves

extract Spherical, 3–10 nm
UV-Vis, XRD, TEM, EDX, FTIR,

TGA vibrating sample
magnetometry

Catalytic synthesis of benzoxazinone and
benzthioxazinone derivatives [135]
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Fe3O4
Aqueous Ruellia tuberosa leaves

extract Hexagonal nanorods, 20–80 nm UV-Vis, FTIR, SEM, EDX, TEM,
DSC, DLS Degradation of crystal violet [136]

CuO Aqueous Gundelia tournefortii
leaves extract Spherical, not determined UV-Vis, SEM, TEM, EDX, XRD,

FTIR
Reduction of 4-nitrophenol and synthesis of

N-monosubstituted ureas [137]

CuO Aqueous Thymus vulgaris leaves
extract Quasi-spherical, ≤30 nm UV-Vis, TEM, EDX, XRD, FTIR,

TGA, DTG N-arylation of indoles and amines [138]

CuO, ZnO Aqueous Centella asiatica extract Spherical, average diameter 7 nm UV-Vis, XRD, SEM, TEM, DLS,
FTIR Reduction of methylene blue [139]

CuO Aqueous Sida acuta leaves extract Nanorods, 50 nm UV-Vis, FTIR, SEM, EDX, TEM Reduction of crystal violet and methyl red [140]

CuO Aqueous Cordia sebestena flowers
extract Spherical, 20–35 nm UV-Vis, FTIR, SEM, EDX, TEM,

XRD, DLS, SAED, zeta potential

Production of 3,4-dihydropyrimidinones by
Biginelli reaction, degradation of bromothymol

blue
[141]

CuO Aqueous Cystoseira trinodis algal
extract Spherical, 7–9 nm UV-Vis, FTIR, SEM, EDX, TEM,

AFM, Raman, FTIR Degradation of methylene blue [142]

ZnO Aqueous Artocarpus gomezianus
fruits extract Spherical, porous, 5–47 nm XRD, SEM, TEM, UV – Vis Degradation of methylene blue [143]

ZnO Aqueous Phyllanthus niruri leaves
extract

Quasi-spherical, rectangle, triangle,
radial hexagonal, rod shaped, 25.61

nm

UV-Vis, photoluminescence, XRD,
SEM, TEM, FTIR, Degradation of methylene blue [144]

ZnO Aloe vera gel Nanorods, 15–20 nm XRD, TEM, SAED, SEM, FTIR, DTG Thermal decomposition of potassium
perchlorate [145]

ZnO Aqueous Tabernaemontana divaricata
leaves extract. Spherical, 20–50 nm XRD, UV-Vis, TEM, FTIR Degradation of methylene blue [146]

ZnO Ulva lactuca seaweed extract Sponge-like asymmetrical shaped,
10–50 nm XRD, UV-Vis, FTIR, SAED, TEM Degradation of methylene blue [147]

ZnO Aqueous Conyza canadensis leaves
extract Spherical, ≤10 nm UV-Vis, FTIR, XRD, TEM, SEM,

EDX
Degradation of methylene blue and methyl

orange [148]

ZnO Aqueous Lantana camara flowers
extract Nanotapes, widths within 9 nm

UV-Vis, XRD, FTIR, TGA, TEM,
specific surface area,
photoluminescence

Ipso-hydroxylation of different
aryl/hetero-arylboronic acid to phenol [149]

ZnO Aqueous Trianthema portulacastrum
extract Spherical, 25–90 nm UV-Vis, XRD, FTIR, SEM, EDX,

TEM, XPS Degradation of Synozol Navy Blue-KBF [150]

SnO2
Aqueous Catunaregam spinosa bark

extract Spherical, average size 47 ± 2 nm UV-Vis, XRD, FTIR, TEM, EDX Degradation of Congo red [151]
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SnO2
Aqueous Parkia speciosa Hassk pods

extract Spherical, average size 1.9 nm UV-Vis, XRD, FTIR, TEM, EDX,
SAED Degradation of acid yellow 23 [152]

TiO2
Aqueous Parthenium hysterophorus

leaves extracts Spherical, 20–50 nm UV-Vis, FTIR, SEM, EDX, XRD Degradation of methylene blue, methyl orange,
crystal violet, alizarin red [153]

TiO2
Aqueous Euphorbia hirta leaves

extract Spherical, 20–50 nm UV-Vis. FTIR, XRD, SEM, EDX Degradation of methylene blue, methyl orange,
crystal violet, alizarin red [154]

Mn3O4NP Aqueous Azadirachta indica leaves
extract Spherical, 20–30 nm XRD, FTIR, XPS, SEM, TEM,

specific surface area
Catalytic thermal decomposition of ammonium

perchlorate [155]

CeO2NP Methanolic Moringa oleifera peel
extract Spherical, average size 40 nm UV-Vis, FTIR, XRD, TEM, SAED Degradation of crystal violet [156]

ZrONP Aqueous Lagerstroemia speciosa
Leaves extract

Tetragonal, few oval, average particle
size 56.8 nm UV-Vis, FTIR, XRD, SEM, TEM Degradation of methyl orange [157]

NiONP Hydroalcoholic Aegle marmelos
leaves extract Spherical, 8–10 nm UV-Vis, XRD, SEM, TEM Degradation of 4-clorphenol [158]

AgClNP Aqueous root extract of Glycyrrhiza
uralensis Spherical, 5–15 nm UV-Vis, TEM, SAED, EDX, XRD,

DLS, FTIR Degradation of methylene blue [159]

Pd/CuO Aqueous Theobroma cacao L. seeds
extract 40 nm FTIR, EDX, XRD, TEM, UV-Vis Reduction of 4-nitrophenol, catalyst for Heck

coupling reaction under aerobic conditions [160]

Cu/Fe3O4
Aqueous Silybum marianum L.

seeds extract Spherical, 8.5–60 nm XRD, TEM, EDX, UV-vis Catalytic reduction of nitroarenes [161]

Pd/TiO2
Aqueous Myrtus communis L.

extract Spherical, 17–25 SEM, TEM, FTIR, UV-Vis, EDX Catalyst for ligand-free Suzuki-Miyaura
coupling reaction [162]

Ag/TiO2
Aqueous Euphorbia heterophylla

leaves extract Core-shell, under 24 nm FTIR, UV-Vis, XRD, SEM Reduction of 4-nitrophenol, methyl orange,
Congo red, methylene blue [163]

Cu/ZnO Aqueous Euphorbia prolifera leaves
extract

Core-shell, spherical CuNP 5–17 nm
shell FTIR, UV-Vis, XRD, SEM, EDX Reduction of Congo red, methylene blue [164]

Ag/Fe3O4
Aqueous Euphorbia peplus L. leaves

extract Spherical, 5–10 nm XRD, SEM, TEM, EDX, FTIR,
UV-Vis

Catalyst for the [2+3] cycloaddition of
arylcyanamides and sodium azide [165]

Ag/NiONP Aqueous Azadirachta indica L.
leaves extract Irregular morphologies XRD, SEM, TGA Degradation of Rhodamine B [166]

Ag/AgCl Aqueous Momordica charantia
leaves extract Spherical, average size 15 nm UV-Vis, FTIR, SEM, EDX, XRD,

TEM, SAED, TEM Reduction of 2, 4-dinitrophenyl hydrazine [167]

Ag/AgCl Aqueous Benincasa hispida peel
extract Spherical, 25–30 nm UV-Vis, XRD, FTIR, EDX, SEM, XPS Degradation of malachite green oxalate [168]
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ZnO/SiO2
Aqueous Butea monosperma flowers

extract Spherical, 3–45 nm Specific surface area, SEM, EDX,
XRD, FTIR Reduction of acenaphthylene [169]

CeO2/CdO Concentrated Citrus limonum fruit
extract

Nanoplatelets, diameter 10 nm,
length 50–100 nm.

XRD, FTIR, SEM, TEM, SAED,
UV-Vis, TGA-DTG

Degradation of malachite green and catalytic
hydrogenation of 4-nitrophenol [170]

ZnFe2O4 Aqueous Opuntia dilenii haw extract

Spherical, 23–50 nm for microwave
assisted synthesis

Spherical, 380–680 nm for classical
temperature synthesis

FTIR, UV-Vis, EDX, XRD,
Magnetization measurements, DLS Oxidation of glycerol into formic acid [171]

BiOCl
Aqueous extracts of Azadirachta

indica, Ocimum sanctum and Saraca
indica leaves

Nanoflower structures, 50–400 nm,
depending on the extract

XRD, XPS, SEM, EDX, TEM,
UV-Vis, specific surface area Degradation of methyl orange and bisphenol A [172]

AuNP/ titanium
silicalite-1 Cacumen Platycladi extract 1.7 ± 0.3–4.6 ± 0.5 nm TEM, specific surface area, TGA,

UV-Vis Propylene epoxidation with H2/O2 mixture [173]

CuNP/zeolite Aqueous Anthemis xylopoda flowers
extract 28.5 ± 3 nm (NPs) XRD, SEM, XRF, UV-Vis, FTIR,

TEM, EDX N-formylation of amines [174]

AgNP/zeolite Aqueous Euphorbia prolifera leaves
extract Semi-spherical, 15 nm (NPs) FTIR, XRD, SEM, EDX, TEM,

UV-Vis

Catalyst for ligand-free hydroxylation of
phenylboronic acid to phenol, reduction of
4-nitrophenol, methyl orange, Congo red,

methylene blue, rhodamine B

[175]

AgNP/zeolite Aqueous extract of Carambola fruit Spherical, 10–15 nm SEM, TEM, EDX, XRD, FTIR,
specific surface area, UV-Vis Reduction of 4-nitrophenol, [176]

PdNP/RGO Barberry fruit extract Spherical, average size 18 nm UV-vis, XRD, FTIR, SEM, TEM,
EDX Reduction of nitroarenes [177]

Pd/RGO/Fe3O4
Aqueous Withania coagulans leaves

extract Spherical, ≤15 nm FTIR, XRD, UV-Vis, SEM, TEM,
EDX, magnetic properties, Reduction of 4-nitrophenol [178]

Ag/RGO/Fe3O4
Aqueous Lotus garcinii leaves

extract Spherical, 7–20 nm (AgNP) FTIR, SEM, EDX, XRD, TEM,
UV-Vis

Reduction of 4-nitrophenol, Congo red,
Rhodamine B [179]

Cu/RGO/Fe3O4
Aqueous Euphorbia bungei Boiss

leaves extract 50–80 nm UV-Vis, FTIR, XRD, SEM, EDX Direct cyanation of aldehydes with K4[Fe(CN)6] [180]

Pd/RGO Aqueous Pulicaria glutinosa extract
Triangular, 15–18 nm, spherical,

isotropic at higher Pd concentration,
7–8 nm

UV-Vis, TEM, EDX, XRD, FTIR,
Raman Catalyst for the Suzuki-Miyaura Coupling [181]

Pd/RGO Aqueous Ficus carica fruit extract Spherical, 0.16 nm UV-Vis, XRD, FTIR, TEM, Raman Catalyst for Suzuki cross-coupling reactions [182]
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Fe and
Fe/Pd/PAA/PVDF

membrane
Aqueous green tea extract Spherical, 20–30 nm, aggregation

80–100 nm SEM, EDX, XRD Degradation of trichloroethylene [183]

Ag/bone Aqueous Myrica gale L. extract Spherical, 5–10 nm XRD, SEM, TEM, EDX, FTIR,
UV-Vis Hydration of cyanamides [184]

AgNP/cellulose Aqueous seed extract of Hibiscus
sabdariffa Spherical, 4 nm UV-Vis, XRD, FTIR, TEM, SEM Degradation of methylene blue, methyl orange,

bromophenol blue, Eosin Y, Orange G. [185]

MoO3/Copper
complex Aqueous Sesbania sesban extract Cylindrical, 80 × 30 nm FTIR, EDX, SEM, TEM, AFM Oxidation of alcohols [186]

CuONP/ seashell Aqueous Rumex crispus seeds
extract Spherical, 8–60 nm FTIR, XRD, SEM, EDX, TEM,

UV-Vis Reduction of 4-nitrophenol and Congo red [187]

PdNP/walnut shell Aqueous Equisetum arvense L.
leaves extract Spherical, 5–12 nm FTIR, UV-Vis, photoluminescence,

XRD, SEM, EDX, TEM
Reduction of 4-nitrophenol, Congo red,

methylene blue, and rhodamine B. [188]

PdNP/apricot kernel
shell 70% ethanol Salvia hydrangea extract Spherical, ≤10 nm FTIR, SEM, UV-Vis, EDX, TEM,

XRD
Reduction of 4-nitrophenol, methyl orange,

methylene blue, rhodamine B, and Congo red [189]

AgNP/ peach kernel
shells

Aqueous Achillea millefolium L.
extract Spherical, ≤20 nm FTIR, UV-Vis, XRD, SEM, EDS,

TGA-DTG, TEM
Reduction of 4-nitrophenol, methyl orange, and

methylene blue [190]

1 Where AAS—Atomic absorption spectroscopy; AFM—Atomic force microscopy; DLS—Dynamic light scattering; DSC—Differential scanning calorimetry; DTG—Differential
thermogravimetry; EDX—Energy-dispersive X-ray spectroscopy; FTIR-Fourier-transform infrared spectroscopy; ICP-MS—Inductively coupled plasma mass spectrometry; Raman—Raman
spectroscopy; SAED—Selected area electron diffraction; SEM—Scanning electron microscope; TEM—transmission electron microscopy; TGA—Thermogravimetric analysis;
UV-Vis—Ultraviolet–visible spectroscopy; XPS—X-ray photoelectron spectroscopy; XRD—X-ray diffraction.
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5. Conclusions and Perspectives

From all the presented examples, it can be concluded that the application of phytosynthesized
nanoparticles represents a promising area of research in catalysis. When dealing with this type of
nanoparticles, the authors should pay special attention to the complete characterization of the obtained
materials. UV-Vis spectrometry can provide an important insights on the formation and dimensions
of the nanoparticles (by the position of the specific absorbance peaks, as is the case, for example, for
AuNP, CuNP, or AgNP, or by the disappearance of adsorption peaks specific for the metal salt, as is the
case for Pd, for example). However, the formation of the nanoparticles should be confirmed by other
techniques, such as XRD or selected area electron diffraction (SAED) (for the study of their crystalline
structure, as well as for the calculation of crystallite size). As for catalytic studies, the size and shape
of nanoparticles represents an important parameter, morphology studies should be employed in all
studies (most appropriate being TEM, allowing both morphological studies and determination of size
distribution of the NP). The main disadvantage of other techniques applied for the determination of
particle size (such as Dynamic light scattering (DLS)) is that the technique offers the hydrodynamic
diameter, not the “real” diameter of the nanoparticles.

The extracts used for the phytosynthesis also play an important role in the final application.
Different types of extraction procedures lead to variations in the composition of the extracts, leading
to different sizes and morphologies, thus influencing the catalytic application. Multiple extraction
techniques (classical temperature extraction, microwave-assisted, ultrasounds assisted, and accelerated
solvent extraction, just to name few examples) could and should be used, in order to optimize the
phytosynthesis for the desired application. This observation leads to the major bottleneck in the
phytosynthesis of the nanoparticles: although various groups proposes as responsible molecules the
phenolic compounds, the flavonoids, or other biomolecules, very few articles applies the fractionation
of the extracts and compounds separation, in order to fully elucidate the reaction mechanisms and the
biomolecules acting as reducing and capping agents.
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Considering the catalytic applications, most of the studies demonstrate the application of NP in
synthetic aqueous matrixes, not in real conditions. However, in order to reach this step, the proposed
catalytic structures should be incorporated in water treatment installations, easily to separate from
the water sources and to prove their re-usability. In spite the depicted drawbacks, we consider the
area of NP application in catalysis as a promising research field, which could provide important
technological advances and knowledge. It is important to get a thorough understanding of all of the
aspects regarding specific interaction of biomolecules with inorganic materials in order to produce NPs
with hierarchical structures. The quest of elucidating the specificity of a biomolecule and its adsorption
on the surface of a particle still remain a challenge. Additionally, in the future, the plant extract-based
catalyst preparation should focus on using vegetal wastes since they contain the same organic agent
like raw materials and therefore the circle of sustainability can be complete.
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