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It is not well-understood how the human Mediator complex, TFIIH, and RNA polymerase II 

(pol II) work together with activators to initiate transcription. Activator binding alters 

Mediator structure, yet the functional consequences of such structural shifts remain 

unknown. The p53 C-terminus and its activation domain (p53AD) interact with different 

Mediator subunits and we find that each interaction differentially affects Mediator structure; 

strikingly, distinct p53–Mediator structures differentially affect pol II activity. Only p53AD 

induces formation of a large pocket domain at the Mediator-pol II interaction site, and this 

correlates with activation of stalled pol II to a productively-elongating state. Moreover, we 

define a Mediator requirement for TFIIH-dependent pol II CTD phosphorylation and 

identify substantial differences in pol II CTD processing that correspond to distinct p53–

Mediator structural states. Our results define a fundamental mechanism by which p53 

activates transcription and suggest Mediator structural shifts trigger activation of stalled pol 

II complexes.

Although every gene does not rely upon the same set of regulatory factors for its expression, 

a subset of general transcription factors—including Mediator and TFIIH—appear to be 

required to transcribe the majority of protein-coding genes1. Comparatively little is known 

about the Mediator co-activator complex, due in part to its more recent discovery in human 

cells2 and a lack of identifiable functional domains within its 26 subunits. Yet it is clear that 

Mediator is the primary regulator of the Pre-Elongation Complex (PEC, which includes 

TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, Mediator and pol II, see Supplementary 

Information for description of this terminology), which in various forms is responsible for 

genome-wide transcriptional regulation of protein-coding genes. Indeed, Mediator 

physically or functionally interacts with most components of the 3.5 MDa PEC, including a 

tight association with pol II itself3–6. Thus, potential structural changes within the 1.2 MDa 

Mediator complex might significantly impact gene expression by altering PEC structure and 

function.
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The p53 transcription factor has been identified as a key regulator of aging in mammals7,8 

and is one of the most widely-studied proteins in cancer biology because of its strong tumor 

suppressor function9. Despite this, the molecular mechanisms by which p53 actually 

activates transcription are not well-defined. It is not clear how the mere presence of p53 at a 

promoter translates into gene activation, particularly since many p53 target genes display 

characteristics of genes poised for activation: their promoters contain pre-loaded pol II but 

remain inactive10. Thus, one mechanism by which p53 likely activates gene expression is 

via post-recruitment events that trigger pol II promoter clearance and transcription 

elongation. Precisely how p53 might control such post-recruitment events remains unclear, 

yet one plausible means involves Mediator, which appears to regulate post-recruitment 

events in Elk-1-dependent Egr1 gene activation11.

Past work has revealed p53 binds two different Mediator subunits: Med17 and Med1. The 

N-terminal activation domain of p53 (p53AD) interacts specifically with Med17, whereas a 

different domain within p53 binds directly to Med112,13. Interestingly, mutation of two 

residues in the p53AD (L22Q and W23S in human p53; a.k.a. p53QS) prevents expression 

of most p53 target genes and leads to tumor formation14–16; thus, p53AD is critical for the 

tumor suppressor function of p5317. As expected, these p53AD mutations (p53QS) prevent 

its interaction with Med17; however, the second, p53-Med1 interaction is unaffected by the 

p53QS mutations13, indicating that p53QS can still bind Mediator (via the Med1 subunit) 

yet is defective in activating transcription. This suggested the p53AD–Mediator interaction 

was playing an additional role in gene activation that did not involve Mediator recruitment.

Over the past 40 years, the factors required to initiate gene expression have been identified. 

A major unanswered question that remains is how these factors work together with 

transcription factors—such as p53—to activate gene expression. About 8 years ago it was 

discovered that activator binding could trigger significant structural shifts within the human 

Mediator complex18, suggesting a simple means to regulate its activity. Yet it was unclear 

whether such structural shifts might serve any regulatory function. Here we describe a 

structural and functional analysis of p53–Mediator. Our results suggest p53-induced 

structural shifts within Mediator are essential for regulating post-recruitment steps in gene 

activation. In particular, a specific p53AD–Mediator structural shift appears to coordinate 

activation of TFIIH and pol II within the PEC, whereas alternate Mediator structures 

maintain stalled pol II in an inactive state. The ability of p53 to indirectly control the activity 

of TFIIH and pol II via structural changes in Mediator offers fundamental insight into how 

p53 functions as an activator of transcription. Perhaps more significant, the structural shift 

linked to activation by p53–Mediator is also observed in other activator-Mediator structures, 

suggesting a unifying theme in transcription activation.

RESULTS

PEC assembly can occur independently of p53 in vitro or in cells

Although past studies have shown that p53AD binds directly to Med1713, the p53 domain 

responsible for interaction with Med1 was not known12. To better define this second, Med1-

interacting domain within p53, we completed a series of experiments (see Supplementary 
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Information and Supplementary Fig. 1–2) that mapped this domain to 31 residues within its 

C-terminus (residues 363–393: the p53CTD).

At 1.2 MDa, Mediator represents a major sub-assembly within the PEC. As an independent 

domain that interacts with Mediator, we examined whether the p53CTD alone might 

promote PEC assembly on a promoter template. We completed a series of immobilized 

template assays in which promoter occupancy was examined as a function of p53AD or 

p53CTD. These experiments were completed essentially as described19. Briefly, we 

incubated immobilized GAL4 DNA templates with either GAL4–p53CTD or with a GAL4–

p53AD/CTD fusion protein, followed by addition of HeLa nuclear extract, which contains 

the full complement of PEC factors. After a series of washes, promoter-bound factors were 

detected by immunoblotting. As shown in Figure 1a, the occupancy of PEC components 

TFIIB, IID, IIE, IIF, IIH, pol II, and Mediator was similar in both experiments. In addition, 

using purified factors from a reconstituted transcription system20, we examined PEC 

assembly at the GAL4 promoter in the context of chromatin. Factor binding was assessed 

with a chromatin sedimentation assay, as described20. As expected, the p53CTD alone 

enabled assembly of the PEC on chromatin templates, as shown in Supplementary Figure 3. 

Chromatin sedimentation assays completed at the native HDM2 promoter with wild type 

and p53QS mutant p53 tetramers revealed similar results. That is, p53QS mutant tetramers, 

which possess a mutation within p53AD that prevents the p53AD–Med17 interaction but not 

the p53CTD–Med1 interaction, were also capable of PEC assembly, as was WT p53, on the 

native HDM2 promoter (data not shown). Thus, the chromatin sedimentation and 

immobilized template experiments suggested that PEC recruitment did not require p53AD. 

Importantly, these results were supported by ChIP data in HCT116 cells, as described 

below.

To further assess whether PEC occupancy might be dependent upon p53AD, we expressed 

WT p53, the p53QS mutant, or a p53ΔCTD mutant in p53-null HCT116 cells 

(Supplementary Fig. 4a). We then performed ChIP assays at the HDM2 gene to determine if 

differential promoter occupancy would be observed. Each p53 protein tested (WT p53, 

p53ΔCTD, p53QS, Fig. 1b) occupied the HDM2 promoter after transfection (Fig. 1c). As 

shown in Figure 1c, Mediator and pol II promoter occupancy was largely similar for each 

p53 protein examined (p53QS, WTp53, or p53ΔCTD). In fact, each complex appeared to be 

pre-loaded at the HDM2 gene, consistent with past reports21. Similarly, the general 

transcription factors TFIIH, TFIID, and TFIIB occupied the HDM2 promoter in the absence 

of p53 and also in the presence of wild-type or mutant p53 tetramers (Fig. 1c). ChIP assays 

at the p21 gene yielded similar results (Supplementary Fig. 4b–d). Thus, it appeared that in 

cells, as observed in vitro, PEC recruitment did not require WT p53.

p53AD–Mediator and post-recruitment activation of transcription

Past in vitro and in vivo studies have demonstrated that p53AD is critical for activating most 

p53 target genes14–16. Yet functional assays in yeast have suggested Mediator recruitment 

alone can trigger gene activation in vitro and in vivo22,23.

To identify whether p53CTD might functionally resemble p53AD as an activator of 

transcription, we compared the transcriptional activity of p53AD and p53CTD—two p53 
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domains capable of recruiting Mediator—in cell-based reporter assays. As shown in Figure 

2a, p53AD strongly activated transcription as expected, whereas p53CTD was incapable of 

activating transcription. To probe this further, we utilized a chromatin-based reconstituted 

human transcription system (Fig. 2b) consisting of highly purified PEC components, 

including TFIIA, IIB, IID, IIE, IIF, IIH, pol II, and Mediator (ref. 20; see also 

Supplementary Fig. 6a–c). Note that Mediator was required for transcription in these assays 

(Fig. 2c, compare lanes 2 and 4). Strikingly, the p53CTD was incapable of activating 

transcription in these experiments. In fact, transcript levels with p53CTD matched those 

without an activator, whereas p53AD displayed potent activity in this assay (Fig. 2c, 

compare lanes 3–5). The inability of p53CTD to activate transcription was not due to a 

defect in recruiting Mediator or pol II to the chromatin template, as revealed by chromatin 

sedimentation assays, described above. Furthermore, primer extension products of just 85 bp 

are detected from the GAL4 template, indicating that pol II does not clear the promoter 

without p53AD. A GAL4–p53AD/CTD fusion protein was also capable of activating 

transcription, indicating the p53CTD does not negatively impact the activation function of 

p53AD in these assays (Fig. 2c, lane 6). The significance of the p53AD–Mediator 

interaction was further highlighted by experiments in which recombinant Med17, which will 

competitively block p53AD–Mediator binding, was able to repress p53AD-dependent 

transcription (Fig. 2d, compare lanes 1, 2, and 4). However, recombinant Med17 had no 

effect on transcription activated by VP16 (Fig. 2d, compare lanes 5, 6, and 8), which 

interacts with Mediator through the Med25 subunit24,25. Thus, Med17 itself is not a general 

repressor in this assay but can block activation dependent upon p53AD. Incidentally, 

recombinant Med1, which competes for the p53CTD-Med1 interaction, had little effect on 

transcript levels (Fig. 2d, compare lanes 1 and 3), suggesting that the p53CTD-Med1 

interaction is not critical for transcription activation in this context. By contrast, recombinant 

Med1 was a potent repressor of VDR-dependent transcription (data not shown), since VDR 

binds Mediator via the Med1 subunit26.

Reconstituted transcription assays with the GAL4-p53 proteins were designed to show what 

p53AD and p53CTD each contributed to Mediator/PEC function. We next examined each 

p53 domain within its native context: full-length p53, which binds DNA as a tetramer. Full-

length p53 was expressed in insect cells and was isolated as an intact tetramer, based upon 

gel filtration chromatography and EM analysis (Supplementary Fig. 6d–f). To further define 

p53AD and p53CTD functions within the tetramer, we also expressed and purified p53 

tetramers with a truncated CTD (p53ΔCTD, containing residues 1–362) or with point 

mutations that inactivate p53AD function (p53QS, with L22Q and W23S mutations). The 

transcriptional activity of each p53 tetramer was evaluated in the reconstituted transcription 

system on the native HDM2 promoter, which is strongly induced by p53 in vivo and 

contains tandem, consensus p53 binding sites. As expected, p53 tetramers containing intact 

activation domains (wild-type p53 or the p53ΔCTD tetramer) strongly activated 

transcription from the HDM2 promoter (Fig. 3a, lanes 4 and 6), whereas the p53QS mutant 

was unable to activate transcription (Fig. 3a, lane 5). In fact, the p53QS mutant was 

functionally equivalent to “no activator” control experiments (Fig. 3a, lane 3). Furthermore, 

chromatin sedimentation assays revealed that WT p53 did not differentially recruit 

Mediator, pol II, or other PEC components to the HDM2 promoter relative to p53QS (data 
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not shown). Thus, similar to experiments with the GAL4 template, it appeared that PEC 

occupancy at the HDM2 promoter did not correlate with activation and that without an intact 

p53AD, pol II occupied the promoter but was unable to transition to a productively-

elongating state. (In fact, primer extension products of just 155 bp would be detected from 

the HDM2 template.) As with the GAL4 template experiments, p53-dependent activation at 

the HDM2 promoter could be blocked with addition of recombinant Med17 (but not Med1, 

Fig. 3b), again suggesting the p53AD–Mediator interaction was playing a key role in the 

activation mechanism that did not involve factor recruitment.

We next compared the activity of wild-type p53 with the p53QS or p53ΔCTD mutants in 

cells. Each protein was expressed in p53-null HCT116 cells (Supplementary Fig. 4a). We 

compared the ability of each p53 protein to activate transcription at the HDM2 or the p21 

gene, each of which has been shown to possess stalled pol II at their promoters21,27–29. As 

shown in Figure 3c, HDM2 mRNA levels were consistent with our in vitro transcription 

results from the native HDM2 promoter: p53QS was unable to activate transcription, 

whereas WT p53 or p53ΔCTD strongly enhanced HDM2 mRNA levels. RT-QPCR assays at 

the p21 gene yielded similar results (Fig. 3d). Coupled with the data shown in Figure 1 and 

2, the data summarized in Figure 3 corroborate numerous in vitro and in vivo studies that 

link p53AD to activation of p53 target gene expression13–16, yet also demonstrate that 

p53AD is not required for PEC assembly and functions primarily at a post-recruitment step 

to activate HDM2 or p21 transcription.

Pol II CTD processing and pol II promoter escape

Within the PEC, the pol II CTD is phosphorylated by TFIIH, and this correlates with pol II 

promoter clearance and transcript elongation. To probe the activity of TFIIH within the 

PEC, we completed a series of immobilized template kinase assays at the native HDM2 

promoter. In these assays, PECs were assembled from purified components—not extracts—

so that no contaminating kinase activities would be present. Thus, purified TFIIA, IIB, IID, 

IIE, IIF, IIH, Mediator and pol II (see ref. 20) were assembled on immobilized HDM2 

promoter templates, together with WT p53, the p53QS mutant, or no activator controls. We 

observed that despite similar PEC–pol II occupancy, levels of phosphorylated pol II CTD 

were substantially lower in the presence of WT p53 compared with the p53QS mutant or no 

activator controls (Fig. 4a). These results provided evidence that WT p53 was triggering 

transcription activation via rapid pol II promoter clearance (and thus less pol II CTD 

phosphorylation within the PEC), whereas with the p53QS mutant, pol II remained inactive 

within the PEC. Indeed, the increased levels of pol II CTD phosphorylation observed in 

lanes 4 and 6 (Fig. 4a) correspond to inactive PECs, as assessed by reconstituted 

transcription assays (Fig. 3a, lanes 3 & 5). Thus, the increased levels of pol II CTD 

phosphorylation observed with the p53QS mutant or no activator control experiments (Fig. 

4a, lanes 4 & 6) suggest pol II does not efficiently transition to a productively-elongating 

state in the absence of p53AD. The data in Figure 4a also indicate that pol II CTD 

phosphorylation did not occur in PECs assembled without pol II itself (Fig. 4a, lane 2) or 

without the kinase, TFIIH (Fig. 4a, lane 1), as expected. Somewhat unexpected was the 

complete dependence upon Mediator for TFIIH-dependent phosphorylation of the pol II 

CTD (Fig. 4a, compare lanes 3 and 5), suggesting that within the PEC, Mediator and TFIIH 
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function synergistically to control pol II CTD phosphorylation. This Mediator requirement 

for pol II CTD phosphorylation was also observed within PECs assembled on GAL4 

promoter templates (data not shown).

Having identified a functional interdependence between human Mediator and TFIIH, we 

next examined whether the p53QS mutation might affect pol II processing at the HDM2 

gene in cells. The human pol II CTD consists of 52 heptapeptide repeats with the consensus 

sequence YSPTSPS. The major pol II S5 CTD kinase is TFIIH, whereas the major pol II S2 

CTD kinase is P-TEFb. The HDM2 gene was probed for S5P and S2P modified forms of the 

pol II CTD using ChIP. These experiments revealed that cells expressing the p53QS mutant 

showed reduced pol II occupancy within the HDM2 and p21 genes, despite high pol II 

occupancy at the promoter. Indeed, major reductions in phosphorylated forms of pol II were 

observed within the body of the HDM2 and p21 genes (Fig. 4b, c and Supplementary Fig. 

7), providing further evidence that pol II was not transitioning to a productively-elongating 

state in the absence of an intact p53AD. Note these ChIP results were entirely consistent 

with the reconstituted transcription data (Fig. 2c and Fig. 3a), which clearly demonstrated 

that p53AD was required for pol II to transition off the promoter to generate a transcript. 

Differences in pol II CTD phosphorylation did not appear to result from differences in the 

occupancy of distinct pol II CTD kinases (TFIIH, P-TEFb, or CDK8) at the HDM2 or p21 

genes, as evaluated by ChIP (Fig. 1c, Fig. 4d, e, and Supplementary Fig. 4 and 7).

The multi-subunit NELF complex has been shown to regulate post-recruitment events in 

transcription initiation30 and therefore we also examined the promoter occupancy of NELF 

at the HDM2 and p21 genes. These results, described further in the Supplementary 

Information and Supplementary Figure 9, revealed that although NELF may play auxiliary 

roles in regulating HDM2 and p21 expression, NELF does not appear to be required for 

controlling p53AD-dependent changes in gene expression.

p53AD triggers a structural shift within Mediator distinct from p53CTD

So what is p53AD doing that enables activation of pre-loaded or stalled pol II complexes? 

Although p53 does not contact pol II directly, p53AD interacts with high affinity to 

Mediator via the Med17 subunit13. Mediator, in turn, interfaces extensively with the pol II 

enzyme4,6. Past studies with human Mediator established that its structural state can be 

altered significantly by transcription factor binding18. In fact, different transcription factors 

(which can bind different Mediator subunits) are capable of inducing different structural 

states, establishing a link between the subunit target and the structural state of Mediator. To 

investigate whether a structural shift might provide a basis for the difference in Mediator 

activity when bound to p53AD versus p53CTD, we completed EM analysis and single-

particle reconstruction of Mediator bound to either p53AD or p53CTD. The 3D structure of 

p53AD– and p53CTD–Mediator is shown in Figure 5a and 5b (see also Supplementary 

Information, Supplementary Fig. 10–14 and Supplementary Movie 1–2). In each case, 

Mediator adopts a dramatically different 3D architecture, indicating that, as expected, 

different Mediator targets (Med17 for p53AD; Med1 for p53CTD) trigger distinct structural 

changes within the complex. Strikingly, the p53AD–Mediator structure contains a large 

“pocket” domain (arrow, Fig. 5a) that is of sufficient size and shape to accommodate the pol 
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II enzyme31. In fact, pol II binds Mediator at this site, as shown in Supplementary Figure 

14c; pol II has also been observed to bind at the pocket site within yeast Mediator4. The 

pocket domain was preserved within the structure of Mediator bound to wild-type p53 

tetramers (Fig. 5c and Supplementary Movie 3) and the p53ΔCTD tetramer (Supplementary 

Fig. 15a and Supplementary Movie 4), each of which show strong activity in vitro and in 

cells (Fig. 3). By contrast, the p53CTD–Mediator structure lacks this pol II pocket and does 

not resemble other activator-bound Mediator structures (Supplementary Fig. 14a); instead, 

p53CTD–Mediator contains a wall of protein density that occupies the pol II site (Fig. 5b) 

and appears to represent an inactive structural state. Collectively, these structural data 

establish a link between p53AD-directed structural changes and Mediator-dependent, post-

recruitment activation of pol II within the PEC.

DISCUSSION

Because of its large size and low-abundance, EM is the only structural technique suited to 

study the 1.2 MDa human Mediator complex. Despite the limited resolution of this 

technique, EM reconstructions of p53–Mediator clearly define major structural shifts that 

provide insight into how p53AD coordinately regulates the activity of Mediator, TFIIH, and 

pol II within the PEC. Interestingly, Mediator, TFIIH, and pol II are each generally required 

for expression of protein-coding genes1 and the structural and functional data outlined here 

provide the first demonstration that activator-induced structural shifts within Mediator serve 

important regulatory functions, including activation of stalled pol II (Fig. 6). Past studies of 

p53 activation at p21 implied a post-recruitment role for Mediator29; our data confirm this 

and provide evidence for a conformational switching mechanism whereby p53–Mediator 

activates stalled pol II complexes at p21 and HDM2. However, not all p53-regulated genes 

appear to possess promoter-associated pol II prior to activation21. Thus, alternate regulatory 

mechanisms may predominate at other genes within the p53 network. It will be interesting to 

compare how Mediator–PEC assembly and structure might vary during activation of these 

distinct p53 target genes. It will be also be important to define how Mediator might work 

together with auxiliary factors, such as NELF and P-TEFb30, that likely help enforce the 

activation of stalled pol II in different promoter contexts.

Our results also point to a general mechanism that may govern activator-dependent 

transcription. Among the activator-bound Mediator structures examined to date, each has 

been shown to trigger significant structural shifts relative to the unbound, activator-free 

state18,31. In each case—with the exception of the transcriptionally inactive p53CTD–

Mediator structure shown here—a defined, pol II pocket domain is a shared feature, 

suggesting this structural shift represents a fundamental means by which transcription 

factors help activate gene expression (Fig. 7). Because Mediator physically or functionally 

interacts with many PEC components, activator-dependent structural shifts may affect 

multiple or different steps in transcription initiation in different promoter contexts. The 

structural plasticity of other general transcription factors (including TFIIB and TFIID) 

suggests activator-dependent structural changes within the PEC represents a common 

regulatory strategy32–35. Such a strategy could allow for more diverse transcriptional 

responses to combinatorial regulatory inputs and provides a straightforward mechanism for 

regulating transcription after pol II recruitment.
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Structural analysis of p53–Mediator has revealed major differences in its conformational 

state upon binding either p53AD or p53CTD, and these structural shifts were preserved 

within the context of the p53 tetramer. In particular, formation of a large pocket domain 

within Mediator was induced upon binding the wild-type p53 tetramer or p53AD alone, 

whereas the pocket domain was clearly absent in the p53CTD–Mediator structure. Using 

immobilized template and chromatin sedimentation assays, we observed similar promoter 

occupancy of PEC factors irrespective of p53AD. Yet reconstituted transcription assays 

revealed an absolute dependence upon p53AD for activation of transcription. ChIP and RT-

QPCR assays in cells suggested a similar phenomenon: PEC factors (including Mediator, 

pol II, and TFIIH) were pre-loaded at the p53-regulated HDM2 and p21 genes, yet an intact 

p53AD was required for activation of transcription. We also observed that the presence of 

p53AD at the promoter had a major impact on pol II promoter clearance and pol II CTD 

phosphorylation both in vitro and in cells. Coupled with our EM analysis of p53–Mediator, 

these results suggest that p53AD–Mediator structural shifts enable stalled pol II complexes 

to transition off the promoter to a productively-elongating state. Notably, p53AD-dependent 

formation of the pocket domain within Mediator does not appear necessary for pol II 

recruitment; rather, formation of the pocket domain correlates with changes in pol II 

processing and promoter escape. How might this occur? What surfaces within Mediator and 

pol II are involved in this transition, and how might the Mediator-pol II interface change 

during the p53AD-directed structural shift? Delineation of such questions will require 

further studies involving cryo-EM analysis of structurally distinct p53–Mediator-pol II 

assemblies.

Significant differences in TFIIH-dependent pol II CTD phosphorylation were observed 

within PECs assembled in the presence of WT p53 compared to PECs assembled without an 

activator or with the oncogenic p53QS mutant. Given the Mediator requirement for pol II 

CTD phosphorylation within the PEC, these observations, considered together with the 

functional and structural data, define a mechanism by which p53 precisely coordinates 

Mediator structural shifts, pol II activation, and TFIIH-dependent pol II CTD 

phosphorylation. Yeast Mediator is known to physically interact with TFIIH3, hinting that 

Mediator structural shifts might directly impact TFIIH structure and function within the 

PEC. Immobilized template assays at the native HDM2 promoter revealed a Mediator 

requirement for TFIIH-dependent pol II CTD phosphorylation within the fully-assembled 

PEC. This result indicates that in this context, Mediator must properly orient the pol II CTD 

for efficient phosphorylation by TFIIH. Immobilized template assays were completed in the 

presence of WT p53, the oncogenic p53QS mutant, and also in the absence of an activator. 

Interestingly, pol II CTD phosphorylation occurred in each circumstance, although 

transcripts were generated only in the presence of WT p53. These results indicate that pol II 

CTD phosphorylation per se does not correlate with activation of transcription; these data 

also introduce the intriguing possibility that within these different contexts (Mediator 

structure will be different in each case), alterations in the pol II CTD phosphorylation 

pattern might underlie the stark differences in pol II activity.

In addition to Mediator, the p53AD has been shown to interact with other PEC components, 

including TFIID and TFIIH, and these interactions may play alternate roles in activation36–
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38. However, a p53AD affinity column purifies only the Mediator complex from the 

P1M/Q1M fraction, with no detectable co-purifying TFIID or TFIIH (Supplementary Fig. 

10a–c). Because the P1M/Q1M fraction is enriched in TFIID and TFIIH as well as 

Mediator, this suggests that potential p53AD interactions with TFIID or TFIIH are of much 

lower affinity. It is also notable that there is a Mediator requirement for activated 

transcription (i.e. not basal transcription) in both yeast and human systems, highlighting 

Mediator’s essential role in activator-dependent transcription39,40. Yet we cannot exclude 

the possibility that secondary p53AD interactions with TFIID or TFIIH might play auxiliary 

roles in activating transcription; moreover, post-translational modifications within p53AD 

may regulate these interactions in specific promoter contexts41,42. Other co-regulatory 

factors, including CBP/p300 and HDM2, are targeted by p53AD and clearly serve important 

roles in regulating p53-dependent gene expression16,43,44. It is currently unclear how the 

binding of these and other factors might be coordinately regulated; however, because four 

activation domains could potentially mediate p53-cofactor interactions at the promoter, 

multiple factors might interact with p53 simultaneously.

Finally, many p53-regulated genes feature pol II and other factors pre-loaded at the 

promoter21. Since even transient re-activation of p53 can cause tumor regression45,46, a 

strategy to re-activate certain p53 target genes might involve agents that trigger p53AD-

specific structural shifts within Mediator, perhaps by targeting the p53AD-Med17 interface.

METHODS

Purification of p53AD- and p53CTD–Mediator

We isolated Mediator bound to p53AD or p53CTD with a GST-p53AD or GST-p53CTD 

affinity column from the P1M/Q1M fraction, essentially as described20.

Purification of p53 tetramers

We expressed wild-type p53, p53QS, or p53ΔCTD (residues 1–362) in baculovirus-infected 

insect cells, as described47.

Isolation of WT p53–Mediator and p53ΔCTD–Mediator

Mediator was purified in an activator-free state using an anti-Med26 antibody resin and 

eluted with peptide, as described20. Purified p53 tetramers (WT p53 or p53ΔCTD) were 

added to this activator-free Mediator sample (in approximately 5-fold excess) and mixed for 

1 h at 4 °C to allow for p53 tetramer binding to Mediator. These samples were then used for 

EM experiments.

in vitro transcription

We completed chromatin assembly and in vitro transcription as described20, with a few 

modifications. For reactions on both the GAL4 and the HDM2 templates, we added PC4 and 

HMG1 (ProteinOne, Bethesda, MD), to 31 nM and 33 nM, respectively, based upon past 

studies that showed these factors served as co-activators for p5348,49. Although 

supplementation with PC4 and HMG1 resulted in small but detectable levels of basal 

transcription (e.g. see Fig. 2c, lane 3 or Fig. 3a, lane 3), these cofactors increased levels of 
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activated, Mediator-dependent transcription in the reconstituted system (data not shown). 

For GAL4–p53AD, GAL4–p53AD/CTD, WT p53, and p53ΔCTD activators, we completed 

control experiments in which the concentration of each was titrated over a 50-fold range to 

determine the optimum concentration for the assay. Concentrations used in the transcription 

assays were approximately 5 nM for GAL4–p53 proteins and 20 nM for p53 tetramers. With 

respect to the transcriptionally inactive proteins (GAL4–p53CTD and p53QS), we titrated 

these over a 200-fold range to ensure that each did not harbor any significant transactivation 

function. In all experiments shown with GAL4–p53CTD or p53QS, we added each to a 

concentration equal to GAL4–p53AD or WT p53, respectively.

RT-QPCR and ChIP

We maintained p53-null HCT116 cells in McCoys 5A media (Gibco-Invitrogen) 

supplemented with 10% fetal bovine serum and antibiotic/antimycotic mix. We transfected 

p53 expression vectors (WT p53, p53ΔCTD, or p53QS) into these cells with Lipofectamine 

2000 (Invitrogen). Expression levels of each p53 protein were measured by western blot to 

ensure equal expression among different p53-transfected cell populations (Supplementary 

Fig. 4a). We performed RT-QPCR and ChIP assays as described50. We obtained antibodies 

from Santa Cruz (p53, Med1, pol II, TFIIB, TBP, NELF, CDK8, CDK9) and Covance (pol 

II S2P and pol II S5P). The TFIIH (ERCC3) antibody is a lab stock.

Electron microscopy and image processing

We applied Mediator samples to glow-discharged carbon-coated 400-mesh grids (EM 

Sciences) and negatively-stained with a 4% uranyl acetate solution following buffer-

exchange in a 5% trehalose buffer (0.15M KCl, 20 mM HEPES, 0.1 mM EDTA, pH 7.9). 

We obtained micrographs on a Tecnai F20 FEG at 29,000× magnification and data was 

collected on either Kodak SO-163 film or digitized from a Gatan 4k × 4k CCD camera.

We completed image processing with the SPIDER and WEB software package51, 

essentially as described31. Briefly, we selected and windowed single-particle images into 

120 × 120 pixel images (p53AD– or p53CTD–Mediator) or 160 × 160 pixel images (WT 

p53– or p53ΔCTD–Mediator) prior to multi-reference alignment and classification. A 

micrograph of the p53AD–Mediator sample is shown in Supplementary Figure 10d. The 

pixel size was 4.29 Å (film) or 3.71 Å (CCD). We used untilted (0°) micrographs for 

alignment and classification of single-particle images whereas tilted (25–45°) micrographs 

were used to generate 3D reference volumes that were cross-correlated against each other to 

establish a homogenous data set. For p53AD–Mediator, 7166 single-particle images 

comprised the entire data set, 58% of which were used for the final 3D reconstruction, 

whereas for p53CTD–Mediator, the data set contained 1738 images, of which 69% were 

used for angular refinement. EM data for WT p53–Mediator and p53ΔCTD–Mediator 

contained 3758 and 3090 single-particle images, respectively, of which 76% and 45% were 

merged, based upon cross-correlation, for subsequent angular refinement. Based upon the 

0.5 Fourier shell correlation coefficient52, we low-pass filtered structures to 34 Å resolution 

(p53AD–Mediator and WT p53–Mediator), 36 Å resolution (p53ΔCTD–Mediator), or 38 Å 

resolution (p53CTD–Mediator). Angular distribution of single-particle images reveals a 

good representation of Mediator orientations in 3D space (Supplementary Fig. 11 and 12).
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For cryo-EM analysis of p53AD–Mediator, we applied the sample to a glow-discharged 

grid, followed by blotting and buffer exchange (to remove glycerol) with a 0.1M KCl/

HEPES buffer containing 5% trehalose. We then floated the grid on a solution of 16% 

ammonium molybdate, blotted, and vitrified by rapid plunging into liquid ethane, as 

described53,54. We collected cryo-EM data on a Tecnai F20 FEG at 29,000× magnification 

at defocus values ranging from 2.0 to 3.0 µm underfocus. No CTF correction was needed at 

these defocus values, based upon the resolution of the final 3D reconstruction (see below). 

After selection of p53AD–Mediator particles from the cryo-EM micrographs, we 

rotationally and translationally aligned single-particle images (2297 from 84 micrographs) 

against a series of noise-free 2D projection views obtained from a p53AD–Mediator 

structure filtered to very low resolution (60 Å). Following a series of angular refinement 

steps (with a total of 798 reference projections for the final alignment and back projection), 

we filtered the final 3D reconstruction to 38 Å resolution (based upon 0.5 Fourier Shell 

Correlation) and rendered to a volume consistent with its predicted molecular weight of 1.2 

MDa.

p53 tetramer docking

We completed structure docking of the WT p53 tetramer47 into the WT p53–Mediator or 

the p53ΔCTD–Mediator structure with both Chimera and SITUS with similar results. The 

p53 tetramer structure was obtained from the macromolecular structure database 

(EMD-1141).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The p53AD is not required for PEC assembly in vitro or in cells. (a) Immobilized template 

assays. Occupancy of PEC components in the presence of promoter-bound GAL4–p53CTD 

or a GAL4–p53AD/CTD fusion protein. Note that endogenous p53 will not bind the GAL4 

promoter. Antibodies—pol II: Rpb1; Mediator: Med1; IIH: ERCC3; IIF: Rap74; IIE: IIEα; 

IID: TBP. (b) Schematic of WT p53 and mutant p53 proteins used in this study. (c) ChIP 

assays at HDM2 in p53-null HCT116 cells following transfection with wild-type p53 (WT, 

blue bars), p53 with a truncated CTD (residues 1–362; ΔCTD, red bars), or p53QS mutant 

(QS, yellow bars). Data from no transfection controls (No T, green bars) are also shown. 

The probe location in red (B) represents the promoter/transcription start site. Note that PEC 

factors appear to be pre-loaded at the promoter, as observed previously21. *ChIP output was 

normalized to WT p53, typically from C primer. For clarity, error bars are not shown but can 

be viewed in Supplementary Figure 5. (d) Schematic of the HDM2 locus, showing ChIP 

probe locations.
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Figure 2. 
p53AD is required to activate stalled pol II in vitro and in cells; PECs assembled in the 

absence of p53 or with p53CTD remain inactive. (a) The p53CTD cannot activate 

transcription in cells. Luciferase reporter assays in HEK293 cells transfected with GAL4–

p53AD or GAL4–p53CTD; results shown represent mean and standard error from three 

independent experiments. (b) Outline of reconstituted transcription assay. (c) Reconstituted 

transcription20 on a promoter containing tandem GAL4 sites; AD: GAL4–p53AD; CTD: 

GAL4–p53CTD; AD/CTD: GAL4–p53AD/CTD fusion protein. Representative data are 
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shown; plot shows mean and s.e.m. from multiple experiments (n = 4, 10, 6, 4 for lanes 3–

6). (d) Recombinant Med17, which blocks the p53AD–Mediator interaction, can block p53-

dependent activation in vitro. Transcription is repressed upon addition of recombinant 

Med17 (lanes 2 and 4); however, Med17 had no detectable impact on VP16-dependent 

activation (lanes 5–8). VP16 interacts with Mediator through the Med25 subunit24,25. 

Quantitation of transcripts is shown in the bar graph, and bars represent the s.e.m. for lanes 1 

and 2 (n = 10, 2, respectively). Each experiment shown in c and d contained equivalent 

amounts of chromatin template, general transcription factors (TFIIA, IIB, IID, IIE, IIF, IIH, 

and pol II), and NTPs. Activators and Mediator added as shown.
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Figure 3. 
p53AD activates stalled pol II within the context of the native tetramer in vitro and in cells. 

(a) Reconstituted transcription from the native HDM2 promoter. As with the GAL4 

template, transcription was dependent upon Mediator and an intact p53AD. Activators tested 

were wild-type p53 (WT), p53 with a mutated activation domain (QS), and p53 lacking the 

CTD (ΔCTD). Each p53 protein was purified as a tetramer. Plot shows mean and s.e.m. 

from multiple experiments (n = 5, 10, 4, 4 for lanes 3–6). (b) As with the GAL4 template 

(Fig. 2d), recombinant Med17 could strongly repress p53-dependent transcription at the 

HDM2 promoter, whereas recombinant Med1 had little effect. The bar graph shows 

quantitation of transcripts, with bars representing s.e.m. (n = 10, 2 for lanes 1 and 2). 

Experiments shown in a and b followed the same timeline as shown in Figure 2b and 

contained the same concentration of HDM2 chromatin template, TFIIA, IIB, IID, IIE, IIF, 

IIH, pol II, and NTPs. Mediator and activators added as shown. (c) and (d) Summary of 

results from RT-QPCR experiments measuring HDM2 or p21 mRNA levels in response to 

the p53 proteins shown. Experiments were completed in p53-null HCT116 cells; dashed line 

represents mRNA levels measured in non-transfected control cells. Note that similar mRNA 
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levels observed with WT p53 and p53ΔCTD result from their overexpression upon 

transfection. When expressed at physiological levels, p53ΔCTD is still observed to activate 

HDM2 and p21, but to a lesser extent relative to WT p53, due to its decreased ability to 

stably bind DNA55.
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Figure 4. 
Mediator is required for TFIIH-dependent pol II CTD phosphorylation within the PEC; 

oncogenic mutations within p53AD (p53QS) prevent activation of stalled pol II. (a) 
Immobilized template assays with the native HDM2 promoter. Purified PEC factors (TFIIA, 

IIB, IID, IIE, IIF, IIH, Mediator, and pol II; see ref. 20) were allowed to assemble on the 

HDM2 promoter; unbound factors were removed by washing, at which time rNTPs were 

added (including [32P]-ATP) to visualize and quantitate pol II CTD phosphorylation. Data 

shown follows a 6-minute incubation with rNTPs; radio-labeled bands migrated around 250 

Meyer et al. Page 20

Nat Struct Mol Biol. Author manuscript; available in PMC 2010 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



kDa, the approximate size of Rpb1. Bar graph represents mean and s.e.m. from multiple 

independent experiments (n = 6, 10, 4 for lanes 4–6, respectively). Occupancy of PEC 

components was measured by western blot, several of which are shown below the bar graph. 

PECs lacking only one specific component (TFIIH, pol II, or Mediator: lanes 1–3) indicate a 

Mediator requirement for pol II CTD phosphorylation. (b) and (c) ChIP data reveals that 

phosphorylated forms of pol II are diminished within the HDM2 gene in the absence of an 

intact p53AD. (d) and (e) Occupancy of pol II CTD kinases CDK9 (a component of P-

TEFb) and CDK8 are not negatively impacted by p53AD mutations. Note that occupancy of 

another major pol II CTD kinase, TFIIH, is also not altered by p53AD mutations, as 

observed by ChIP in Figure 1c. The probe location in red (B) represents the promoter/

transcription start site. *ChIP output was normalized to WT p53, typically from primer C. 

For clarity, error bars are not shown but can be viewed in Supplementary Figure 8.
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Figure 5. 
p53AD triggers a structural shift within Mediator distinct from p53CTD. (a) and (b) 
Different views of Mediator bound to p53AD or p53CTD. Volumes shown at 34 Å and 38 Å 

resolution, respectively, are rendered to 1.2 MDa, the approximate molecular weight of each 

complex. A defined pocket domain is evident in p53AD–Mediator (transcriptionally active) 

whereas in p53CTD–Mediator (transcriptionally inactive), this region is occupied by a wall 

of protein density. Bar: 100 Å. Note the pocket domain corresponds to the Mediator-pol II 

interaction site, as shown in Supplementary Figure 14c. (c) The structure of Mediator bound 

to the wild-type p53 tetramer (34 Å resolution). Like p53AD–Mediator, the pocket domain 
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represents a prominent structural feature. The volume shown is rendered to 1.4 MDa, the 

approximate molecular weight of the WT p53–Mediator assembly. The general location of 

the p53 tetramer is highlighted, with asterisks representing the p53 DNA-binding domains. 

Larger asterisks are closer to the viewer. Lower panels show views of the docked WT p53 

tetramer structure47 within the WT p53–Mediator EM map. The p53 tetramer is solid 

whereas WT p53–Mediator is shown in mesh.
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Figure 6. 
Model outlining how p53AD appears to trigger pol II promoter escape and transcription 

elongation. Top: Despite full PEC assembly, promoter-proximally stalled pol II remains 

unable to transition to a productively elongating state in the absence of the p53AD-directed 

structural shift within Mediator. Bottom: Mediator structural shifts, orchestrated by p53AD, 

activate stalled pol II to transition to a productively-elongating state. This Mediator-

dependent activation appears to be triggered by formation of the pocket domain within 

Mediator, which interfaces extensively with pol II. Note the location and path of the pol II 

CTD within the PEC has not been clearly defined.
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Figure 7. 
The pocket domain represents a common structural feature within activator-bound Mediator. 

Shown are “bottom” views of Mediator complexes bound to different activation domains. 

The location of the pocket is noted by the arrows. Mediator structures labeled “active” have 

been shown to activate transcription in a reconstituted system. Note that transcriptionally 

inactive structures (unliganded Mediator or p53CTD–Mediator structure) lack the pocket 

domain. The unliganded Mediator structure is not bound to an activator18. Studies with both 

yeast4 and human Mediator (Supplementary Fig. 14c) reveal that the pocket domain 

represents the pol II binding site within Mediator. For reference, the structure of the yeast 

pol II enzyme (pdb 1y1v) is also shown to the same relative scale.
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