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Abstract

Severe respiratory failure from coronavirus disease 2019 (COVID-19) pneumonia

not responding to non-invasive respiratory support requires mechanical ventilation.

Although ventilation can be a life-saving therapy, it can cause further lung injury if

airway pressure and flow and their timing are not tailored to the respiratory system

mechanics of the individual patient. The pathophysiology of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infection can lead to a pattern of lung injury

in patients with severe COVID-19 pneumonia typically associated with two distinct

phenotypes, along a temporal and pathophysiological continuum, characterized by

different levels of elastance, ventilation-to-perfusion ratio, right-to-left shunt, lung

weight and recruitability. Understanding the underlying pathophysiology, duration of

symptoms, radiological characteristics and lung mechanics at the individual patient

level is crucial for the appropriate choice ofmechanical ventilation settings to optimize

gas exchange and prevent further lung injury. By critical analysis of the literature,

we propose fundamental physiological and mechanical criteria for the selection of

ventilation settings for COVID-19 patients in intensive care units. In particular, the

choice of tidal volume should be based on obtaining a driving pressure < 14 cmH2O,

ensuring the avoidance of hypoventilation in patients with preserved compliance and

of excessive strain in patients with smaller lung volumes and lower lung compliance.

The level of positive end-expiratory pressure (PEEP) should be informed by the

measurement of the potential for lung recruitability, where patients with greater

recruitability potential may benefit from higher PEEP levels. Prone positioning is often

beneficial and should be considered early. The rationale for the proposed mechanical

ventilation settings criteria is presented and discussed.
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1 INTRODUCTION

At the time of writing,> 4million people in theUK have tested positive

for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

virus infection (Dong et al., 2020), but< 25,000 have developed illness

severe enough towarrant critical care admission (ICNARC, 2021). This

severe respiratory illness, termed coronavirus disease 2019 (COVID-

19) pneumonia, typically develops 8 days after symptom onset (Hu

et al., 2021) and, when it does not respond to non-invasive respiratory

support, it requires advanced respiratory support, including high

concentrations of inspired oxygen and mechanical ventilation. Such

therapies are also required for the acute respiratory distress syndrome

(ARDS) (Ranieri et al., 2012), which has been widely studied over

several decades. This review highlights the pathophysiology of SARS-

CoV-2 infection and subsequent COVID-19 pneumonia, its similarities

with and differences from classical ARDS, and the implications for

mechanical ventilation strategies to support COVID-19 patients in the

intensive care unit.

During inspiration, the lung expands owing to a positive trans-

pulmonary pressure. In spontaneous ventilation, this gradient is

produced by a negative pleural pressure created by the inspiratory

muscles, mainly the diaphragm. In contrast, controlled mechanical

ventilation relies upon a positive airway pressure driving gas into the

lungs, with the positive transpulmonary gradient dependent upon an

increased alveolar pressure, and passive movement of the chest wall.

The fundamental ventilator parameters that can be set are airway

pressure and flow and their timing, which need to match the patient’s

respiratory system resistance and elastance (inverse of compliance). At

each time point during inspiration, airway pressure is determined by

the equation of motion and equals the sum of end-expiratory alveolar

pressure, the product of flow and resistance to flow, and the product

of tidal volume and elastance of the respiratory system. Mechanical

ventilation can be delivered in mandatory mode or in assisted mode

to support spontaneous breathing. In the latter modality, the patient’s

inspiratory effort triggers the delivery of breaths (Pham et al., 2017),

the work of breathing is shared in various proportions between the

respiratory muscles and the mechanical ventilator, and the trans-

pulmonarypressure is generatedbya combinationof a negative pleural

pressure and a positive alveolar pressure.

This ventilatory support can be necessary to sustain life in the

acute phase of the disease while the immune system fights the

viral infection, yet can cause harm to the patient if the levels of

positive pressure are not tailored to the associated lung mechanics

(ventilator-induced lung injury). Ventilator-induced lung injury is

well studied in classical ARDS, a syndrome associated with a

distinct histopathological entity termed diffuse alveolar damage

(DAD). Diffuse alveolar damage is a widespread, heterogeneous

inflammatory reaction comprising alveolar infiltrates with leuco-

cytes and proteinaceous deposits, damage to alveolar pneumocytes,

the basement membrane and endothelium, and patchy areas of

haemorrhage (Nash et al., 1967; Ware & Matthay, 2000). Under-

standing themicrostructural changes in disease processes is a requisite

for effective ventilatory management, with large-scale clinical trials

New Findings

∙ What is the topic of this review?

This review presents the fundamental concepts of

respiratory physiology and pathophysiology, with

particular reference to lung mechanics and the

pulmonary phenotype associatedwith severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2)

infection and subsequent coronavirus disease 2019

(COVID-19) pneumonia.

∙ What advances does it highlight?

The review provides a critical summary of the main

physiological aspects to be considered for safe and

effective mechanical ventilation in patients with

severe COVID-19 in the intensive care unit.

supporting the use of low tidal volumes (ARDSnet, 2000) and driving

pressures (Amato et al., 2015) to reduce the risk of stretch or over-

pressure damage to the already injured, fragile lung parenchyma

(Slutsky & Ranieri, 2013). It is not clear whether and how these

guidelines for ventilation of patients with ARDS are applicable for the

management of patients with COVID-19 pneumonia, which appears to

demonstrate a distinct pattern of injury.

2 PATHOPHYSIOLOGY OF HYPOXAEMIA IN
COVID-19 PNEUMONIA

Early COVID-19 pneumonia is a process predominantly affecting the

peripheries of both lungs (Fox et al., 2020; Shi et al., 2020). The lack of a

significant burden of atelectatic, consolidated lung in early COVID-19

pneumonia explains the lack of response to increases in positive end-

expiratory pressure (PEEP) in this cohort (Ball et al., 2021; Chiumello

et al., 2020), who nevertheless demonstrate a significant reduction

in oxygenation (Gattinoni, Chiumello, Caironi et al., 2020; Figure 1).

The disease progresses with development of patchy bilateral ground-

glass opacification and, finally, dense consolidation in keeping with

ARDS (Shi et al., 2020), and post-mortem studies of patients who died

with COVID-19 pneumonia have identified alveolar injury similar or

identical to DAD, even in those patients who did not receive invasive

mechanical ventilation (Fox et al., 2020; Konopka et al., 2020; Menter

et al., 2020).

All post-mortem studies by their definition include patients who

did not survive their disease, probably determining a disproportion of

evidence available with greater weight to the late-/end-stage disease

and associated bias. Biopsies from living patients earlier in the disease

process, however, demonstrate a number of important differences

from classical ARDS histology, including a marked absence of DAD

features, hyperplasia of type 2 pneumocytes and an increased number
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F IGURE 1 Computed tomography (CT) scans showing different degrees of lung consolidation associated with similar levels of arterial
oxygenation in patients with coronavirus disease 2019 (COVID-19). (a) The CT scanwas acquired during spontaneous breathing and associated
with lowHounsfield unit values, indicating well-aerated compartments. (b) The CT scanwas acquired during controlledmechanical ventilation,
with positive end-expiratory pressure at 5 cmH2O, and associated with amarked proportion of high Hounsfield unit values, indicating non-aerated
compartments. Abbreviations: FI,O2

, fraction of inspired oxygen; PaO2
, arterial partial pressure of oxygen. Reproducedwith permission from

Gattinoni, Chiumello, Caironi, et al. (2020)

and size of both interstitial capillaries and postcapillary venules

(Doglioni et al., 2021).

A small autopsy series, looking at patients who died earlier in the

disease process, also demonstrated some differences from classical

DAD, with a lymphocytic alveolar infiltrate in the early stages followed

by a progression to intra-alveolar fibrin deposition and microvascular

injury (Copin et al., 2020). This latter finding of severe microvascular

injury associated with pulmonary capillary microthrombi was also pre-

sent in other series (Fox et al., 2020;Menter et al., 2020).

The pathogenesis of these microthrombi is likely to be related to

direct pulmonary endothelial cell damage attributable to SARS-CoV-

2 infection, in addition to widespread immunothrombosis triggered

by a widespread dysregulated immune response (‘cytokine storm’)

(Gupta et al., 2020). SARS-CoV-2 spike proteins, similar to those on

the original SARS-CoV-1, interact with the angiotensin-converting

enzyme 2 (ACE2) receptor (Hoffmann et al., 2020; Li et al., 2003).

The ACE2 receptor is abundantly expressed on type 2 pneumocytes

and on endothelial cells (Hamming et al., 2004), and it is postulated

that viral particles interacting with this receptor lead to endocytosis

of the SARS-CoV-2/ACE2 complex and the subsequent pneumonia

and local pro-inflammatory, pro-thrombotic response. This endothelial

injury is similar to the endotheliitis associated with T-cell-mediated

rejection of solid organ transplants (Ackermann, Mentzer, et al., 2020;

Varga et al., 2020) and is associated with alveolar capillary and post-

capillary venule thrombosis to anextentup tonine timesgreater than is

seen in other viral pneumonias, such as H1N1 pneumonia (Ackermann,

Verleden, et al., 2020; Figure 2). Brisk neovascularization, particularly

intussusceptive, is also seen early in the disease process in COVID-19

pneumonia (Ackermann, Verleden, et al., 2020).

Using a variety of imaging methodologies including iodine maps

from dual-energy computed tomography (CT) imaging and positron

emission tomography/single photon emission computed tomography

(PET/SPECT) imaging, different groups have confirmed the co-

existence of widespread pulmonary perfusion deficits both with and
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F IGURE 2 The interalveolar septa of a 78-year-old male patient
who died from coronavirus disease 2019 (COVID-19), showing slightly
expanded alveolar walls andmultiple fibrinousmicrothrombi
(arrowheads) in the alveolar capillaries. Scale bar: 50 µm. Reproduced
with permission fromAckermann, Verleden, et al. (2020), Copyright
MassachusettsMedical Society

without radiologically visible thrombi (Grillet et al., 2020; Patel et al.,

2020; Ramos et al., 2021; Ridge et al., 2020; Santamarina, Boisier, et al.,

2020; Santamarina, Boisier Riscal, et al., 2020), the latter hypothesized

to reflect vascular inflammation or alteration of the vascular tone

(Busana et al., 2021). Regions of reduced perfusion demonstrated

otherwise near-normal lung parenchyma and air spaces. There is

additionally evidence that pulmonary blood volume is redistributed

towards regions of ground glass opacification, with the potential to

exacerbate shunt (Si-Mohamed et al., 2020). These findings fit with

clinical evidence of increased dead space, as measured by ventilatory

ratio (Chiumello et al., 2020; Patel et al., 2020), in addition to venous

admixture (Chiumello et al., 2020) in COVID-19 pneumonia.

Based upon these imaging studies and the known endothelial

dysfunction induced by SARS-CoV-2 infection, one of the causes of

ventilation–perfusion (V̇∕Q̇) mismatching and therefore hypoxaemia in

COVID-19 pneumonia is hypothesized to be loss of the normal hypo-

xic pulmonary vasoconstriction (HPV) response (Gattinoni, Chiumello,

Caironi et al., 2020; Ramos et al., 2021), in addition to the physical

redistribution of blood owing to occlusive thrombi.

Macrovascular complications, including pulmonary emboli, are also

common in severe SARS-CoV-2 infection (Helms et al., 2020) and

can arise either from lower limb sources consistent with widespread

immunothrombosis or from in situ pulmonary thrombosis (Loo et al.,

2021).

3 COMPARISONS WITH CLASSICAL ARDS

In ARDS with other aetiology, the severity of disease, evaluated using

the arterial partial pressure of oxygen/fraction of inspired oxygen

(PaO2
∕FI,O2

) ratio according to theBerlindefinition (Ranieri et al., 2012),

is directly proportional to the quantity of lung oedema and to the

amount of non-aerated lung tissue (Caironi et al., 2015). This inverse

relationship between the PaO2
∕FI,O2

ratio and the quantity of non-

aerated lung tissue is a hallmark of ARDS, and because of the strong

relationship, it is possible to estimate the shunt fraction and therefore

the PaO2
∕FI,O2

ratio from the amount of collapsed tissue obtained from

the lung CT (Reske et al., 2013).

The implication of this relationship is that a progressively more

severe disease is associated with progressively smaller lung volumes

available for ventilation (‘baby lung’) and a progressively larger

amount of collapsed but potentially recruitable lung (Gattinoni et al.,

2006). These two characteristics underpin the widely accepted

recommendations on the use of ventilation with a lower tidal volume

(to protect the baby lung) and a progressively higher amount of PEEP

(according to PEEP/FI,O2
tables), to keep open the atelectatic but

potentially recruitable lung.

Although some uncertainty remains with regard to the under-

lying mechanisms, the hypoxaemia observed early in COVID-19

results from a more complex interaction between a dysregulation in

pulmonary perfusion through alteration of angiotensin II metabolism,

vascular inflammation, loss of hypoxic pulmonary vasoconstriction,

neo-angiogenesis and immunothrombosis (Ackermann,Verleden, et al.,

2020; Busana et al., 2021; Habashi et al., 2021; Sherren et al., 2020).

As the disease progresses, as evidenced by serial CT and post-mortem

examinations, changes consistent with classical ARDS are seen. As

such, two differing phenotypes of COVID-19 pneumonia have been

proposed: ‘type L’, associatedwith lowelastance, V̇∕Q̇ ratio, lungweight

and recruitability, and ‘type H’, associated with high elastance, right-

to-left shunt, lung weight and recruitability (Gattinoni, Chiumello,

Caironi et al., 2020). In terms of the underlying pathophysiology, type L

relates to the early peripheral disease process, where the hypoxia is

mediated by perfusion deficits and an increased dead space, whereas

type H refers to a pathophysiology consistent with classical ARDS.

Such a distinction must be made with caution, because it is clear that

some patients will exhibit features of both types, some will trans-

ition between types, and some will remain in one or the other for

the entirety of their disease process. Understanding the particular

underlying pathophysiology in any particular patient is crucial for the

appropriate choice of mechanical ventilation settings, both in order to

optimize gas exchange and to prevent further damage to the already

injured lung.

Owing to the primarily vascular phenomena in type L disease,

the alteration in gas exchange (venous admixture and dead space

ventilation resulting in hypoxaemia and hypercapnia) can occur in the

presence of near-normal lung volumes (Gattinoni, Chiumello, Rossi,

et al., 2020; Gattinoni, Coppola, et al., 2020; Gattinoni, Meissner,

et al., 2020; Gattinoni et al., 2021). In this case, there is a complete

dissociation between the severity of alterations in gas exchange

(mainly hypoxaemia) and the relatively preserved lung volumes and

therefore compliance of the respiratory system (Chiumello et al.,

2020).

Ultimately, some patients with COVID-19 pneumonia develop

irreversible pulmonary fibrosis (George et al., 2020; Mo et al., 2020),

which is also seen late in ARDS (Masclans et al., 2011). This phenotype
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manifests as a restrictive lung pathology with minimal potential for

lung recruitment (PLR) and is associated with difficulties in weaning

from mechanical ventilation and a poor prognosis, in some cases

warranting lung transplantation (Bharat et al., 2020).

The above considerations are essential for the appropriate

management of patients with hypoxaemic respiratory failure

secondary to COVID-19 (Habashi et al., 2021; Robba et al., 2020). This

management requires a shift between the concepts of selecting low

tidal volumes based on the severity of hypoxaemia and the selection

of PEEP based on the PaO2
∕FI,O2

ratio (Marini & Gattinoni, 2020) and

will require a more global assessment of the patient, which starts with

an understanding of the duration of the symptoms, the radiological

characteristics (particularly CT) and an assessment of lung mechanics,

preferably at PEEP 5 cmH2O (Caironi et al., 2015; Chiumello et al.,

2020).

4 SELECTION OF TIDAL VOLUME

Typically, a tidal volume of 6 ml/kg predicted body weight (PBW) is

used in patients with the ARDS because, compared with the delivery

of larger tidal volumes, it increases both survival and the number of

days spent without ventilation (ARDSnet, 2000). Given the above-

mentioned dissociation between the severity of oxygenation and lung

volumes, a tidal volume of 6 ml/kg PBW may not be appropriate for

every patient at every stage of the disease process. Recent studies

make it clear that selecting total volumes based on a value of driving

pressure (DP; measured as plateau pressure minus PEEP or as tidal

volumedividedby compliance) is a betterwayof personalizing the total

volume to the lung compliance, and therefore the lung volume, hence

adapting tidal volumes to the different phenotypes of the disease, with

the aim of maintaining lung strain within a narrow range (Amato et al.,

2015; Costa et al., 2021; Goligher et al., 2021).

Practically, the first approach in a patient receiving controlled

mechanical ventilation should be to select a tidal volume that reflects

a threshold of driving pressure rather than being based on PBW, or

to set the lowest driving pressure (in pressure control) to achieve

any initial tidal volume of 8 ml/kg PBW. If the driving pressure is

< 14 cmH2O (Tsolaki et al., 2021), the associated tidal volume can

be maintained. However, the driving pressure might be well above

14 cmH2O in patients with reduced compliance, and in this case the

tidal volume needs to be lowered until the target driving pressure has

been achieved (Marini & Gattinoni, 2020). This approach of selecting

total volume based on obtaining a driving pressure < 14 cmH2O

ensures the avoidance of both hypoventilation in patients with pre-

served compliance and the excessive strain in patients with smaller

lung volumes and lower lung compliance.

The total energy delivered by the mechanical ventilator to the

respiratory system every minute can be calculated by combining tidal

volume, PEEP, plateau and peak inspiratory pressures and respiratory

rate, all used to determine mechanical power. The trade-off between

a decrease in tidal volume and an increase in respiratory rate to

achieve a given minute ventilation necessary to remove a sufficient

quantity of carbon dioxide can be calculated using either the formula

of mechanical power (Giosa et al., 2019) or an abbreviated practical

formula of 4DPRR (4×driving pressure+ respiratory rate) (Costa et al.,

2021). Using this formula, it is possible to select the most appropriate

total volume (based on driving pressure) and respiratory rate that will

give the lowest possible total value of 4DPRR (Costa et al., 2021).

5 SELECTION OF POSITIVE END-EXPIRATORY
PRESSURE

The selection of PEEP in COVID-19 is complex, given the dissociation

between hypoxaemia and anatomical shunt fraction, which normally

reflects the amount of non-aerated lung tissue (Chiumello et al.,

2020). Choosing high PEEP based solely on the severity of hypo-

xaemia in patientswith preserved lung compliancewill add static stress

and strain, alter lung perfusion and haemodynamics, and ultimately,

increase the static component of mechanical power and contribute to

volutrauma (Güldner et al., 2016).

The best approach to evaluate the effects of different levels of PEEP

is by measuring the PLR either through the CT scan or, more simply,

at the bedside using a single-breath recruitment-to-inflation ratio (R/I

ratio). This ratio is calculated as the compliance of the lung volume

recruited with an abrupt release of PEEP from 15 to 5 cmH2O (or

to airway opening pressure) divided by the compliance at a PEEP of

5 cmH2O (or airway opening pressure). An R/I ratio > 0.5 indicates

higher lung recruitability, and these patients may benefit from higher

levels of PEEP (Chen et al., 2020). In COVID-19, recruitability is highly

variable (Beloncle et al., 2020) and seems to be dependent crucially

on the delay from symptoms to intensive care unit admission or to

intubation, in addition to the treatment received in hospital before the

institution of mechanical ventilation.

It is important to stress that an improvement in oxygenation after an

increase in PEEP does not necessarily indicate recruitability. Positive

intrathoracic pressure has a complex relationship with oxygenation.

By decreasing alveolar capillary transmural pressure, it can impair

pulmonary perfusion (Versprille, 1987) and even redistribute it to

non-ventilated areas (Cronin et al., 2020), but by increasing lung

volume it can also increase the flow through extra-alveolar vessels

and, additionally, reduce the shunt fraction by a depressive effect upon

cardiac output (Dantzker et al., 1980). Therefore, many patients can

respond to an increase in PEEP with an improvement in oxygenation

but a deterioration in dead space ventilation, a reduction in respiratory

system compliance and an increase in driving pressure (Grieco et al.,

2020). Only when all these changes are taken into consideration is

it possible to determine whether a higher or lower PEEP setting is

required for individual patients.

6 RESCUE INTERVENTIONS

When deciding on the use of recruitment manoeuvres (RMs),

determining PLR is again crucial. Recruitment manoeuvres and
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high PEEP in patients with low PLR can cause overdistension of areas

of the lung already opened, increasing dynamic strain, volutrauma

and barotrauma owing to the effects of stress risers (areas of the

lung where amplification of mechanical forces takes place), which

can represent 14–23% of the lung parenchyma (Cressoni et al.,

2014). In these patients, the most effective strategy is to use PEEP of

5−8 cmH2O, avoid RMs and adopt the prone position early, ideally

within the first 24 h of intubation (Guerin et al., 2013; Langer et al.,

2021; Mathews et al., 2021; Shelhamer et al., 2021;Weiss et al., 2021;

Zarantonello et al., 2020).

On the contrary, in patients with high PLR, PEEP > 10 cmH2O (but

possibly ≤ 15–18 cmH2O) can lead to opening of new alveolar units,

reducing dynamic strain and increasing the recruited volume. In these

patients, higher PEEPmay improve lung homogeneity.

In both circumstances, themost effectiveway to achieve lung homo-

geneity and protective ventilation and to optimize V̇∕Q̇matching is the

use of prone positioning (Beitler et al., 2014; Gattinoni et al., 2003;

Munshi et al., 2017; Weiss et al., 2021). Prone positioning has been

effective at improving gas exchange in patients with ARDS and in those

withCOVID-19 (Guérin et al., 2020; Scaramuzzoet al., 2021), andother

studies are in progress to determine its capacity to reduce mortality.

During the COVID-19 pandemic, the use of prone positioning has been

extended to patients who were not intubated but were receiving non-

invasive mechanical support or simply high-flow nasal oxygenation.

Awake proning has improved gas exchange, but the ultimate effects on

preventing intubation, improving outcome or altering the course of the

trajectory of thedisease are unclear (Coppoet al., 2020; Ferrandoet al.,

2020).

7 SPONTANEOUS BREATHING AND RISK OF
PATIENT SELF-INFLICTED LUNG INJURY

Severe hypoxaemia is associated with an increase in ventilation (Weil

et al., 1970), but its correlation with the symptom of dyspnoea

is moderate at best, with other factors, such as hypercapnia and

mechanical limitation of ventilation, exhibiting stronger relationships

based on accepted physiological principles (Manning & Schwartzstein,

1995). In severe SARS-CoV-2 infection, a subgroup of patients tolerate

life-threatening degrees of hypoxaemia without obvious distress or

air hunger (Tobin et al., 2020). Several mechanisms are proposed

to account for this phenomenon. The relative lack of changes in

lung parenchyma and respiratory system compliance seen with early

infection might override the dyspnoeic response that would be

expected owing to hypoxaemia from severe V̇∕Q̇ mismatch (Couzin-

Frankel, 2020). Neurological manifestations of SARS-CoV-2 infection

are common, particularly anosmia, and direct impairment of the

respiratory control centremight represent a further effect of thebrain-

stem inflammation caused by the virus (Matschke et al., 2020).

During the COVID-19 pandemic, it has become clear that other

groups of patients with severe hypoxaemic respiratory failure pre-

sented with barotrauma, mediastinal emphysema and subcutaneous

emphysema generated during spontaneous breathing, often in the

absence of any additional positive airway pressure. This barotrauma

caused during spontaneous breathing has been named patient self-

inflicted lung injury (P-SILI) (Cruces et al., 2020; Yoshida et al.,

2017), to reflect the fact that often excessive inspiratory effort

(e.g., > 15 cmH2O) (Esnault et al., 2020; Roesthuis et al., 2021), even

in the absence of high-pressure ventilation, can contribute to severe

lung injury and progression of lung disease. Given the high risk of P-SILI

in these COVID-19 patients, it is important to monitor the inspiratory

efforts during both non-invasive and invasive ventilation.

Monitoring of inspiratory effort during non-invasive ventilation

is more challenging and relies on recording of total volumes, the

diaphragmatic excursions measured with ultrasound, or signs of

activation of inspiratory muscles. However, the most accurate

measurement of inspiratory effort is obtained by the insertion of an

oesophageal balloon catheter that, although carrying some practical

difficulties, can record the swings in oesophageal pressure (Tonelli

et al., 2020). The swings in (or delta) oesophageal pressure reflect

the changes in plural pressure and can therefore give an indication

of whether a given inspiratory effort is excessive and can lead to

P-SILI. This strategy was effective in monitoring respiratory effort and

predicting failure of non-invasive mechanical ventilation (Tonelli et al.,

2020).

In patients who are ventilated invasively, it is possible to measure

the P0.1 (the airway pressure developed during the first 100 ms

of inspiration), which reflects the inspiratory drive, and to calculate

the occlusion pressure (DPocc, which is the difference between

the most negative airway pressure obtained during an expiratory

occlusion manoeuvre and the value of PEEP). The importance of these

measurements has been shown recently in a study where 62.5%

patients with high P0.1 (> 4 cmH2O) and DPocc (< −15 cmH2O) had a

relapse in respiratory failure compared with none of the patients with

low P0.1 andDPocc (Esnault et al., 2020).

Multiplying the DPocc by 0.75 enables estimation of the respiratory

muscle pressure (Pmusc = −0.75 ×DPocc) and the dynamic trans-

pulmonary pressure (DPL = DP – ⅔DPocc). As a general guide, it

has been suggested that if the estimated Pmusc is > 13–15 cmH2O

or DPL ≥ 16 cmH2O, more careful monitoring of transpulmonary

pressure with oesophageal pressure should be used, or alterations in

the sedation and ventilatory strategy should take place to reduce lung

stress and strain (Bertoni et al., 2020).

8 CONCLUSIONS

COVID-19 pneumonia is a pathophysiological entity distinct from

classical ARDS and requires different ventilatory management

(Figure 3). In early, type L disease, the hypoxaemia is predominantly

underpinned by an increased dead space and V̇∕Q̇mismatch and is not

correlated with the healthy lung volume. As such, tidal volumes should

not be limited stringently, but should be more liberal as long as the

driving pressure is limited. Likewise, PEEP levels should not be titrated

in relationship to hypoxaemia but on the potential for recruitability

of the lung, which is not necessarily high if there is minimal air-space
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F IGURE 3 Diagram summarizing
pathophysiological features associated with
severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection and the
proposedmanagement of mechanical
ventilation for patients with severe
coronavirus disease 2019 (COVID-19) in the
intensive care unit. The figure shows themain
known pathophysiological mechanisms that
can lead to hypoxaemia, with paired CT images
(top row) and iodine perfusionmaps (bottom
row) indicative of themain phases. Initially,
hypoxaemia is related to increased shunt
(arrows) and dead space ventilation (asterisks),
with minimal lung parenchymal pathology at
risk of ventilator-induced lung injury. Lung gas
volume can decrease over time because of
oedema and atelectasis, whichmay be
reversible with prone positioning or higher
PEEP. Eventually, dense consolidation and/or
fibrosis canmake the condition less responsive
to both proning and PEEP (low PLR).
Macrothrombosis is also present, with
pulmonary emboli causing large areas of
reduced or absent perfusion. Abbreviations:
CT, computed tomography; DP, driving
pressure (plateau pressureminus PEEP); PEEP,
positive end-expiratory pressure; PLR,
potential for lung recruitment or recruitability
(ability to open previously gasless lung regions
with an increase in transpulmonary pressure);
VT, tidal volume. Left-hand images are from
Santamarina, Boisier Riscal, et al. (2020) and
right-hand images fromRidge et al. (2020),
with permission

disease. Prone positioning in both spontaneously breathing and

ventilated patients is often beneficial and should be considered early.
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