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ABSTRACT

Background. Epicardial adipose tissue (EAT) exerts cardiopathogenic effects, but the independent association between EAT
and cardiovascular (CV) calcification in patients with chronic kidney disease (CKD) remains controversial. We therefore
assessed the association between EAT, CV risk factors and CV calcifications.

Methods. 257 patients with CKD Stage 3 and/or overt proteinuria underwent quantification of EAT, coronary artery
calcification and aortic valve calcification by computed tomography. Framingham and American College of Cardiology and
American Heart Association (ACC-AHA) 10-year CV event risk scores were calculated for each patient.

Results. Using multivariable regression analysis, higher EAT was significantly associated with the majority of investigated
risk factors {higher age: odds ratio [OR] 1.05/year [95% confidence interval (CI) 1.02–1.08]; male sex: OR 4.03 [95% CI 2.22–7.31];
higher BMI: OR 1.28/kg/m2 [95% CI 1.20–1.37]; former smoking: OR 1.84 [95% CI 1.07–3.17]; lower high-density lipoprotein
cholesterol: OR 0.98/mg/dL [95% CI 0.96–1.00] and lower estimated glomerular filtration rate: OR 0.98/mL/min/1.73 m2 [95%
CI 0.97–0.99]; all P< 0.05} and was not associated with diabetes mellitus, hypertensive nephropathy, total cholesterol and
albuminuria. EAT was positively associated with higher ACC-AHA and Framingham risk scores. EAT correlated with
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coronary artery calcification and aortic valve calcification [Spearman q ¼ 0.388 (95% CI 0.287–0.532) and rrb ¼ 0.409 (95% CI
0.310–0.556), respectively], but these correlations were dependent on CV risk factors.

Conclusions. The increase of EAT can be explained by individual CV risk factors and kidney function and correlates with 10-
year risk for CV event scores, suggesting that EAT is a modifiable risk factor in patients with CKD. Although EAT correlates
with CV calcifications, these relations depend on CV risk factors.

Keywords: atherosclerotic cardiovascular disease risk score, chronic kidney disease, epicardial adipose tissue, Framingham
risk score, vascular calcification

INTRODUCTION

Cardiovascular diseases (CVDs) constitute the main causes
of morbidity and mortality in patients with chronic kidney
disease (CKD) [1]. While it is accepted that coronary artery cal-
cification (CAC) and aortic valve calcification (AVC) can be
used as independent predictors of incident CVD and all-cause
mortality in the general population and in patients with
CKD [2–4], epicardial adipose tissue (EAT) attracts increasing
attention as a novel risk predictor for these outcomes. EAT, a
visceral fat depot, covers coronary arteries and myocardium
and is a potential player in the pathogenesis of CVD through
paracrine and vasocrine secretion of pro-inflammatory and
pro-atherogenic cytokines into the myocardial structures [5].
EAT can be easily measured with echocardiography, computed
tomography (CT) or other imaging procedures and is modifi-
able by lifestyle [6] or pharmaceutical interventions (e.g. anti-
diabetic medications or statins) [7, 8].

Several studies have reported a strong correlation between
EAT and CAC [9, 10]. However, a recent systemic review and
meta-analysis comprising >41 000 subjects indicated that EAT
volume remained borderline significant with CAC {odds ratio
[OR] 1.007 [95% confidence interval (CI) 1.000–1.011]} after ad-
justment for established cardiovascular (CV) risk factors in
low- to intermediate-risk patients [11]. Although EAT correlates
with visceral fat accumulation and other CV risk factors, and
despite the weak independent association with CAC [10, 12],
the meta-analysis revealed that EAT volume is independently
associated with CV events [11], provoking further speculation
about whether EAT may be linked with CV events by different
signalling pathways such as non-calcified coronary plaques or
valvular disease. Whether EAT per se is associated with CAC in
a high-risk population such as patients with CKD or whether
this association results from shared CV risk factors remains
controversial [12, 13]. Moreover, data about the correlation of
EAT with established CV event risk scores are lacking. EAT vol-
ume is independently associated with myocardial ischaemia
[11] and atrial fibrillation [14], and AVC or stenosis, in addition
to coronary artery disease, may contribute to this association.
Therefore the aims of this study were (i) to assess in a multi-
centre cohort of patients with CKD Stage 3 and/or overt pro-
teinuria the association of CT measures of EAT, CAC and AVC
with multiple CV risk factors including estimated glomerular
filtration rate (eGFR) and urine albumin:creatinine ratio
(UACR); (ii) to show the prevalence and distribution of EAT,
CAC and AVC across two different risk strata [10-year
Framingham risk score (FRS) and American College of
Cardiology and American Heart Association (ACC-AHA) 10-year
atherosclerotic CVD (ASCVD) risk score] and (iii) to examine the
association of EAT with coronary as well as AVC burden after
adjusting for CV risk factors.

MATERIALS AND METHODS
Study design and population

The Cardiovascular In Depth Assessment (CARVIDA) is a sub-
study of the German Chronic Kidney Disease (GCKD) study.
CARVIDA aims to provide detailed CV profiling in order to un-
derstand the increased CV risk observed in patients with CKD.
The design, methodology and baseline data of the GCKD have
been reported previously in detail [15, 16]. In brief, 5127 patients
with CKD were included on the basis of an eGFR of 30–60 mL/
min/1.73 m2 (CKD Stage 3) and/or overt proteinuria (UACR
>300 mg/g, albuminuria >300 mg/day, urinary protein:
creatinine >500 mg/g or proteinuria >500 mg/day) in the pres-
ence of eGFR>60 mL/min/1.73 m2. Patients after solid organ or
bone marrow transplantation, with active malignancy within
24 months before screening, heart failure in New York Heart
Association functional Class IV, representation by a legal guard-
ian or inability to provide consent were excluded. The GCKD
and CARVIDA studies have been approved by local ethics com-
mittees (EK 271/11), conform to the principles outlined in the
Declaration of Helsinki and GCKD is registered in the national
registry for clinical studies (Deutsches Register Klinischer
Studien 00003971). A written informed consent was obtained
from all participants.

CARVIDA was conducted in three of the nine regional GCKD
centres in Germany (Aachen, Erlangen and Würzburg). A total
of 322 patients were enrolled in CARVIDA across the three sites.
Every participant completed a standardized questionnaire con-
cerning CV risk factors and medical history. All information was
validated by referring to the respective individual’s medical
records. Disease, comorbidity and other parameter definitions
were used according to international standards [17]. Plasma, se-
rum, blood and spot urine samples were collected, processed
and shipped frozen to a central laboratory for routine clinical
chemistry of a core set of parameters (Synlab, Heidelberg,
Germany). GFR values were estimated using the Chronic Kidney
Disease Epidemiology Collaboration formula. From all patients
enrolled in CARVIDA, 65 patients did not undergo the CT meas-
urements, most commonly because of claustrophobia, exceeded
the maximum weight capacity for CT, declined CT or were ex-
cluded from further analysis because of coronary stents or prior
aortic valve surgery, leaving 257 patients for the present study.

The 10-year FRS for CVD events (coronary death, myocardial
infarction, coronary insufficiency, angina, ischaemic stroke,
haemorrhagic stroke, transient ischaemic attack, peripheral
artery disease, heart failure) (https://www.framingham
heartstudy.org/fhs-risk-functions/cardiovascular-disease-10-
year-risk/) (11 March 2019, date last accessed) [18] was calcu-
lated for those providing values within the validated range of
the Framingham risk equation [age 30–74 years, systolic blood
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pressure 90–200 mmHg, high-density lipoprotein (HDL) choles-
terol 10–100 mg/dL, total cholesterol 100–405 mg/dL]. In addition,
the 10-year ASCVD event risk [coronary heart disease (CHD),
death, non-fatal myocardial infarction or fatal or non-fatal
stroke] was calculated based on a publication by Goff et al. [19]
from the ACC-AHA for those values within the validated range
of the ASCVD risk equation (age 40–79 years, total cholesterol
130–320 mg/dL, HDL cholesterol 20–100 mg/dL, systolic blood
pressure 90–200 mmHg) (http://www.cvriskcalculator.com) (11
March 2019, date last accessed).

CT imaging

CT imaging was performed in all three centres on a second-
or third-generation Dual Source CT scanner (SOMATOM
Definition Flash or Force, Siemens, Forchheim, Germany).
Electrocardiography (ECG)-synchronized CT with standard settings
(voltage 120 kV, automatic tube current modulation, collimation 2
� 64 � 0.6 mm or 2 � 96 � 0.6 mm) were used for examining the
scan volume between tracheal bifurcation and diaphragm next to
the heart. Image reconstruction was performed using a 3.0 mm
slice thickness, 1.5 mm increment and 180 mm2 field of view and a
standardized medium sharp convolution kernel was used. No con-
trast agent was injected. CAC was defined as an area of more than
two connected voxels with an attenuation >130 Hounsfield units
(HUs), which corresponds to a minimal lesion area of >1 mm2.
CAC was identified for the coronary arteries by calculating the le-
sion volume in cubic millimetres, the calcium mass in milligrams
and the calcium score according to the method described by
Agatston et al. [20]. In conformity with CAC measurement, AVC
was considered present at an area of more than two connected
voxels with an attenuation >130 HU. Similar to CAC measure-
ment, a modified Agatston score as well as volume and mass
scores were computed for the aortic valve. EAT was defined as
fat located between the heart and pericardium, enclosed by
the visceral pericardium. EAT was measured in cubic centi-
metres by freehand, layer-by-layer region of interest–based
analysis and defined as an area of more than two connected
voxels with an attenuation between �190 and �40 HU.

Statistical analysis

Results are expressed as number (%) for categorical variables, as
mean (SD) for normally distributed continuous variables and
as median [interquartile range (IQR)] for continuous variables
with skewed distribution. Ordinal regression analysis was used
to test for trends in baseline characteristics across quartiles
of EAT and CAC. Ordinal regression analysis was also used to
test for trends of EAT, CAC and AVC across CV risk strata. For
the respective comparison of patients with and without AVC,
logistic regression analysis was employed. For regression mod-
els, we selected two covariates representing kidney function
(eGFR, UACR) and those variables incorporated in the
Framingham or ASCVD risk equation: age, sex, body mass index
(BMI), smoking, diabetes mellitus, hypertensive nephropathy
(instead of systolic blood pressure) and total and HDL choles-
terol. Results from ordinal/logistic regression are presented as
ORs with 95% CIs. Correlation between EAT and CAC as well as
between EAT and CV risk score were explored with Spearman’s
rank correlation coefficient. Correlation between EAT and AVC
was explored with biserial rank correlation. All P-values were
two-tailed and P-values <0.05 were considered significant. The
statistical analysis was performed with SAS 9.4 (SAS Institute,
Cary, NC, USA).

RESULTS
Clinical characteristics and unadjusted association
between CV risk factors and EAT

Detailed sample characteristics are shown in Table 1. A total of
257 patients (mean age 61 6 11 years; 62% male) underwent na-
tive cardiac CT (Table 1). As shown before, clinical characteris-
tics were similar in the patients enrolled in the current
CARVIDA substudy to those of the parent GCKD study [16].

Patients were stratified by quartiles based on EAT volume
(Table 1), with a mean of 127 6 58 cm3. Patients in the highest
quartile compared with those in the lowest were significantly
older [OR 1.06/year (95% CI 1.04–1.08), P< 0.0001] and more fre-
quently male [OR 4.70 (95% CI 2.88–7.65), P< 0.0001], had higher
BMI [OR 1.25/kg/m2 (95% CI 1.18–1.33), P< 0.0001], were more
commonly smokers [OR 1.88 (95% CI 0.94–3.80)] or former smok-
ers [OR 2.23 (95% CI 1.38–3.59), P¼ 0.0036], had lower HDL
cholesterol [OR 0.95/mg/dL (95% CI 0.93–0.96), P< 0.0001] and
eGFR [OR 0.98/mL/min/1.73 m2 (95% CI 0.97–0.99), P¼ 0.0009],
had higher C-reactive protein (CRP) [OR 1.08/mg/L (95% CI 1.02–
1.15), P¼ 0.0135] and had a higher prevalence of hypertension
[OR 2.67 (95% CI 1.04–6.81), P¼ 0.0397], diabetes mellitus [OR 2.27
(95% CI 1.33–3.86), P¼ 0.0025] and CHD [OR 4.31 (95% CI 1.82–
10.19), P¼ 0.0008]. Proteinuria as measured by UACR was not dif-
ferent across quartiles.

Associations of individual CV risk factors with EAT

To adjust associations for potential confounders, we performed
multivariable adjusted ordinal regression analyses for explain-
ing EAT volume (Table 2). The results of multivariable regres-
sion largely confirmed the unadjusted associations presented in
Table 1: higher EAT remained significantly associated with the
majority of investigated risk factors (age, male sex, BMI, smok-
ing, HDL cholesterol and eGFR).

Clinical characteristics according to CAC and AVC
Agatston scores

It is believed that EAT exerts pathogenic effects on cardiac
structures, thus we quantified CAC and AVC. The cohort exhib-
ited a median Agatston CAC score of 45.6 (IQR 0–305.7) and 32%
of the cohort had AVC [median Agatston score 0 (IQR 0–14.4),
range 0–972] (Table 1). EAT volume significantly correlated with
CAC [Spearman q ¼ 0.388 (IQR 0.287–0.532)] and AVC score [rank
biserial r¼ 0.409 (IQR 0.310–0.556)]. In an exploratory analysis,
we examined clinical characteristics according to quartiles of
CAC and the presence of AVC (Supplementary data, Tables S1
and S2). Higher CAC was significantly associated with age, male
sex, smoking, hypertension, diabetes mellitus and CHD.
Patients in the highest compared with those in the lowest CAC
quartile had significantly lower eGFR and HDL cholesterol val-
ues (Supplementary data, Table S1). The presence of AVC was
significantly associated with age, male sex, smoking, diabetes
mellitus and patients with AVC compared with those without
AVC had significantly lower eGFR (Supplementary data, Table
S2).

Associations of CV risk scores with EAT, CAC and AVC

We assessed the prevalence and distribution of EAT, CAC and
AVC across two different risk strata (FRS and ASCVD risk score).
The median estimated 10-year ASCVD risk score was 13.7% (IQR
5.6–26.9) and the median estimated 10-year FRS was 8.5% (IQR
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Table 1. Characteristics of patients with CKD by quartiles of EAT volume (cm3) (n¼257)

Parameters Total Q1 Q2 Q3 Q4 P-value
(n¼ 257) (n¼ 65) (n¼ 64) (n¼ 64) (n¼ 64)

EAT (cm3), mean 6 SD (range) 127 6 58 (28–328) 61 6 13 (28–81) 101 6 12 (81–121) 140 6 12 (122–162) 207 6 36 (163–328) –
Age (years), mean 6 SD 61 6 11 55 6 13 59 6 12 64 6 10 66 6 8 <0.0001
Male sex, n (%) 158 (62) 20 (31) 38 (59) 47 (73) 53 (83) <0.0001
Smoking, n (%)

Non-smoker 105 (41) 37 (54) 25 (42) 23 (36) 20 (31)
Former smoker 124 (48) 20 (31) 33 (52) 28 (44) 43 (67) 0.0036
Current smoker 28 (11) 10 (15) 6 (9) 4 (6) 8 (12)

BMI (kg/m2), mean 6 SD 28.3 6 4.7 25.0 6 4.3 27.7 6 4.2 29.6 6 4.0 31.2 6 4.1 <0.0001
Body surface area (m2), mean 6 SD 2.0 6 0.2 1.8 6 0.2 2.0 6 0.2 2.1 6 0.2 2.2 6 0.2 <0.0001
Hip circumference (cm), mean 6 SD 105 6 11 99 6 9 103 6 9 107 6 10 110 6 11 <0.0001
Waist circumference (cm), mean 6 SD 102 6 14 90 6 11 98 6 10 106 6 9 114 6 13 <0.0001
Hypertension, n (%) 241 (94) 59 (91) 57 (89) 62 (97) 63 (98) 0.0397

SBP (mmHg), mean 6 SD 133 6 16 134 6 16 130 6 14 132 6 16 135 6 18 0.3794
DBP (mmHg), mean 6 SD 82 6 11 85 6 11 81 6 9 82 6 11 78 6 12 <0.0001

Hypertensive nephropathy, n (%) 70 (27) 8 (12) 15 (23) 20 (31) 27 (42) <0.0001
Diabetes mellitus, n (%) 59 (23) 9 (14) 16 (25) 8 (13) 26 (41) 0.0025
CHD, n (%) 21 (8) 2 (3) 1 (2) 7 (11) 11 (17) 0.0008
Family history of heart attack, n (%) 94 (37) 23 (36) 24 (38) 24 (38) 23 (36) 0.779
Coronary artery calcium score (Agatston),

median (IQR)
45.6 (305.7) 0.0 (0.0) 49.1 (312.7) 66.7 (376.7) 129.4 (589) <0.0001

AVC score (Agatson), median (IQR) 0.0 (14.4) 0.0 (0.0) 0.0 (3.3) 0.0 (15.4) 0.15 (40.5) <0.0001
Laboratory findings

eGFR (mL/min/1.73 m2), mean 6 SD 52 6 19 58 6 19 55 6 20 52 6 19 46 6 15 0.0009
UACR (mg/g), median (IQR) 66 (381) 83 (358) 92 (454) 38 (436) 84 (331) 0.8097
Total cholesterol (mg/dL), median (IQR) 202 (56) 206 (60) 207 (57) 205 (52) 191 (52) 0.0319
HDL cholesterol (mg/dL), median (IQR) 49 (24) 65 (23) 49 (22) 46 (13) 42 (19) <0.0001
LDL cholesterol (mg/dL), median (IQR) 115 (51) 115 (49) 122 (55) 122 (55) 104 (39) 0.1166
Triglyceride (mg/dL), median (IQR) 158 (103) 109 (87) 156 (78) 187 (98) 182 (126) <0.0001
Phosphate (mmol/L), median (IQR) 0.99 (0.18) 0.99 (0.15) 0.99 (0.16) 1.01 (0.21) 0.98 (0.24) 0.8157
Calcium (mmol/L), median (IQR) 2.29 (0.13) 2.30 (0.13) 2.27 (0.13) 2.28 (0.13) 2.29 (0.11) 0.6412
Uric acid (mmol/L), mean 6 SD 425 6 98 393 6 89 415 6 88 441 6 105 450 6 101 0.0003
HbA1c (%), median (IQR) 5.90 (0.5) 5.85 (0.45) 6.10 (0.6) 5.95 (0.5) 6.10 (0.8) 0.0043
CRP (mg/L), median (IQR) 1.7 (2.9) 1.1 (1.9) 1.5 (2.5) 2.3 (2.6) 2.7 (4) 0.0135

Medication intake, n (%)
Anti-hypertensive medication 229 (89) 53 (82) 57 (89) 61 (95) 58 (91) 0.0089
Anti-diabetic medication 46 (18) 7 (10) 6 (10) 9 (14) 24 (38) 0.0008
Lipid-lowering medication 121 (47) 19 (29) 33 (52) 31 (48) 38 (59) 0.0009

Missing values were <5% for all parameters presented. P-values refer to ordinal regression analysis across quartiles of EAT.

BMI, body mass index; body surface area by Mosteller formula: [height (cm)�weight (kg)/3600]1=2; DBP, diastolic blood pressure; HbA1c, glycated haemoglobin; LDL, low-

density lipoprotein; SBP, systolic blood pressure.

Table 2. Associations between CV risk factors and epicardial fat volume as obtained from multivariable ordinal regression

Effect OR (95% Wald CI) P-value

Age (years) 1.050 (1.022–1.079) 0.0004
Sex (male versus female) 4.026 (2.217–7.309) <0.0001
BMI (kg/m2) 1.280 (1.200–1.367) <0.0001
Smoking (current smoker versus non-smoker) 2.284 (0.992–5.260) 0.0410
Smoking (former smoker versus non-smoker) 1.840 (1.069–3.166)
Diabetes mellitus (yes versus no) 0.955 (0.511–1.784) 0.8858
Hypertensive nephropathy (yes versus no) 1.199 (0.66–2.177) 0.5506
Total cholesterol (mg/dL) 0.999 (0.994–1.005) 0.8140
HDL cholesterol (mg/dL) 0.979 (0.963–0.995) 0.0103
eGFR (mL/min/1.73 m2) 0.979 (0.965–0.994) 0.0056
UACR (mg/g) 1.000 (1.000–1.001) 0.2446

BMI, body mass index.
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0–16.7). Ordinal regression analysis showed that EAT volume
was positively associated with both higher ASVCD score [OR per
point 1.01 (95% CI 1.01–1.02), P< 0.0001] (Figure 1A;
Supplementary data, Table S3) and higher FRS [OR per point
1.01 (95% CI 1.01–1.02), P< 0.0001] (Figure 1B; Supplementary
data, Table S4). CAC and AVC Agatston scores significantly in-
creased with both increasing 10-year ASCVD score (Figure 1C
and E; Supplementary data, Table S3) and FRS (Figure 1D and F;
Supplementary data, Table S4).

Associations of EAT with CAC and AVC

To determine whether EAT volume can independently explain
CAC and AVC values in our cohort, we studied its relations
through multivariable logistic regression. EAT was not indepen-
dently associated with CAC or AVC after adjusting for multiple
CV risk factors (Tables 3 and 4). Higher age and male sex were
independently associated with increased CAC (Table 3) and

higher age and the presence of diabetes mellitus emerged as in-
dependently associated with AVC (Table 4).

DISCUSSION

In this study we examined the association between EAT, CV risk
factors and CV calcifications in patients with CKD Stage 3 and/
or overt proteinuria. We observed that higher EAT was indepen-
dently associated with higher age and BMI, male sex, smoking,
lower HDL cholesterol and eGFR. We further observed a signifi-
cant correlation between EAT and estimated 10-year CV event
risk using the FRS or ASCVD score. Moreover, EAT significantly
correlated with the severity of CAC and AVC. However, the asso-
ciation between EAT and cardiac alterations was dependent on
CV risk factors.

It has been reported that EAT as a local visceral fat depot
correlates with visceral adipose tissue/obesity [10]. Obesity is

FIGURE 1: Prevalence and distribution of EAT, CAC and AVC across ACC-AHA ASCVD and FRS strata. (A, C and E) EAT volume, CAC and AVC Agatston score by ASCVD

risk score strata (n ¼ 228). (B, D and F) EAT volume, CAC and AVC Agatston score by FRS strata (n ¼ 233). See also Supplementary data, Tables S3 and S4.
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common among patients with CKD and is a strong risk factor
for CVD and diabetes mellitus [21]. As expected, we observed
that obesity, measured by BMI, was associated with EAT after
adjustment for several CV risk factors. A recent meta-analysis
indicated that the amount of EAT is significantly higher in
patients with diabetes mellitus than in patients without diabe-
tes mellitus [22]. Similarly, we observed a higher prevalence of
diabetes mellitus in patients with high EAT volume compared
with those with low EAT volume. However, after adjustment for
BMI and other CV risk factors, EAT was not independently asso-
ciated with diabetes mellitus. This finding is consistent with
observations in patients with Stages 3–5 CKD [13] or on dialysis
[23].

It has been reported that with increasing age, body fat
becomes redistributed from subcutaneous to visceral compart-
ments, which could explain the association between age and
EAT in our study [24]. These observations are consistent with
the previous report in CKD patients [12]. However, in contrast to
our study, they also found eGFR values positively associated
with higher EAT levels. The authors explained this finding as
potentially due to selection bias. Previous reports showed that
EAT volumes are higher in CKD patients compared with healthy
subjects [25]. Moreover, Nakanishi et al. [26] found significantly
increased EAT volumes in patients with moderate CKD
compared with non-CKD patients, which was associated with
high-risk calcification. EAT volume is increased in patients on
dialysis compared with matched control groups [23, 27, 28]. In

line with those reports, we observed that eGFR is independently
and inversely associated with EAT volume, suggesting that EAT
may also be a marker of the uraemia-specific component of CV
risk. Visceral fat distribution is altered in patients with CKD and
it has been shown that eGFR inversely correlates with visceral
fat [29]. Malnutrition and inflammation are common in patients
with CKD, causing reduced muscle mass and insulin resistance,
which in turn increases visceral fat [30]. Moreover, Turkmen
et al. [23] reported a relationship between EAT and malnutrition,
inflammation and atherosclerosis/calcification in end-stage re-
nal disease (ESRD) patients. EAT has been implicated in the
pathophysiology of CVD and left ventricular dysfunction, which
may affect kidney function [31]. In line with those publications,
we found a significant correlation between CRP and EAT in our
univariate analysis. However, it remains unclear whether EAT
accumulation is a cause or consequence of CKD.

There is no consensus in the literature on the impact of
gender on the amount of EAT. We observed in our CKD cohort
higher EAT volumes in males than in females. Some studies
showed larger EAT volumes in males than in females [32, 33].
However, other groups reported no association or the opposite
association (larger EAT volume in females than males) [10, 34,
35]. Abdominal fat distribution is different in males and
females: visceral fat obesity is the dominant form in men, while
subcutaneous fat obesity is the dominant form in women [36].
Therefore an association between sex and EAT might be attrib-
utable to regional differences in fat distribution.

Table 3. Associations between EAT and CAC as obtained from multivariable adjusted ordinal regression

Effect OR (95% Wald CI) P-value

EAT (cm3) 1.002 (0.996–1.008) 0.5422
Age (years) 1.129 (1.095–1.165) <0.0001
Sex (male versus female) 4.649 (2.471–8.747) <0.0001
BMI (kg/m2) 0.971 (0.913–1.032) 0.3448
Smoking (current smoker versus non-smoker) 2.095 (0.903–4.861) 0.1569
Smoking (former smoker versus non-smoker) 1.511 (0.875–2.609)
Diabetes mellitus (yes versus no) 1.336 (0.718–2.485) 0.3604
Hypertensive nephropathy (yes versus no) 1.574 (0.870–2.849) 0.1339
Total cholesterol (mg/dL) 1.001 (0.995–1.007) 0.7626
HDL cholesterol (mg/dL) 1.006 (0.989–1.024) 0.5021
eGFR (mL/min/1.73 m2) 0.997 (0.982–1.012) 0.7029
UACR (mg/g) 1.000 (1.000–1.000) 0.7879

BMI, body mass index.

Table 4. Associations between EAT and AVC as obtained from binary logistic regression

Effect OR (95% Wald CI) P-value

EAT (cm3) 1.005 (0.998–1.012) 0.1959
Age (years) 1.096 (1.053–1.141) <0.0001
Sex (male versus female) 1.049 (0.480–2.293) 0.9048
BMI (kg/m2) 0.934 (0.864–1.010) 0.0872
Smoking (current smoker versus non-smoker) 0.787 (0.233–2.655) 0.1165
Smoking (former smoker versus non-smoker) 1.834 (0.917–3.668)
Diabetes mellitus (yes versus no) 2.754 (1.316–5.765) 0.0072
Hypertensive nephropathy (yes versus no) 1.405 (0.686–2.878) 0.3532
Total cholesterol (mg/dL) 1.002 (0.995–1.009) 0.5082
HDL cholesterol (mg/dL) 0.989 (0.968–1.010) 0.2896
eGFR (mL/min/1.73 m2) 1.000 (0.980–1.020) 0.9836
UACR (mg/g) 1.000 (1.000–1.001) 0.3474

BMI, body mass index.
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Smoking and lower HDL cholesterol were associated with
higher EAT volume in our cohort. These findings are consistent
with previous reports [10, 13, 37, 38]. Smoking increases visceral
fat and thereby EAT [39]. Interestingly, tissue concentrations of
tumour necrosis factor-a and interleukin 6 in EAT collected
from patients undergoing cardiac surgery were significantly
higher in smokers than in non-smokers or former smokers [40].

To the best of our knowledge, we describe for the first time a
significant correlation between EAT and estimated 10-year risk
for CVD using the FRS and ASCVD score in a CKD cohort. Models
using risk factors to predict the likelihood of suffering from CV
events are helpful in identifying those at high risk who may
benefit from more intensive CV risk management [41]. Our ob-
servation adds to the findings in the general population, where
several studies have shown an association between EAT and CV
event, which were at least in part explained by a strong associa-
tion of EAT with CV risk factors [10, 11]. CV calcifications in
patients with CKD are more prevalent and severe compared
with the non-CKD population [42]. In this study, we found a sig-
nificant correlation between EAT and coronary calcifications,
which is consistent with previous reports in patients with CKD
[12, 13]. Although EAT was not independently associated with
CV calcifications in our multivariable regression analysis, it has
been reported that patients with CKD Stages 3–5 have higher
EAT volumes, which is associated with increased CV events in-
dependent of general adiposity [12, 23], provoking further spec-
ulation on whether EAT represents an additional CV risk factor
in CKD patients. We also provide the first evidence that EAT cor-
relates with AVC in patients with CKD Stage 3 and/or overt pro-
teinuria. This finding is in line with the previous observation in
patients with ESRD [25]. However, in contrast to this small study
in patients with ESRD, our multivariate analysis revealed that
EAT is not independently associated with AVC. We also noted
an association of CV risk factors with CAC and AVC, confirming
previous reports from the Chronic Renal Insufficiency Cohort
study [43, 44].

There are strengths and limitations to our study. A strength
is that we measured EAT, CAC and AVC simultaneously via CT
scanning in a sample of patients with CKD. In addition, we used
two different CV risk score algorithms to evaluate the associa-
tion of CV risk with EAT, CAC and AVC. Besides the FRS, we
used a recently developed risk algorithm that has been vali-
dated in a multi-ethnic sample and seems to be calibrated
among patients with CKD [45, 46]. On the other hand, the cross-
sectional design of the present study is a limitation, allowing us
to define associations only with predicted rather than with fac-
tual risk. Furthermore, the association of each above-mentioned
CV risk factor with EAT volume could just be a reflection of the
overall impact of visceral adiposity on EAT volume.
Nevertheless, several studies have shown that larger EAT vol-
ume is associated with CV morbidity and mortality, indepen-
dent of obesity [5, 12, 47]. Although we assessed the association
between EAT and typical CV risk factors, we did not measure
other CV risk factors present in patients with CKD, such as low
vitamin D levels [12], or provide detailed inflammatory status
beside CRP. Further studies are needed to test whether EAT in-
dependently associates with other biomarkers (e.g. vitamin D,
interleukins, tumour necrosis factor-a, etc.), which in turn may
affect vascular calcifications. The CT scan cannot differentiate
between intimal and medial calcification, the latter of which is
particularly common in CKD patients. Therefore it remains
unclear whether EAT correlated with calcification in the intima,
media or both. Finally, we only enrolled CKD patients with CKD
Stage 3 and/or overt proteinuria, so the results may not be

generalizable to subjects with other CKD stages. Previous stud-
ies assessing the role of EAT in CKD were mainly conducted in
the dialysis population [23, 25, 28, 48] and, together with the
limited additional data in non-dialysis CKD patients [12, 13, 26],
our findings suggest that these associations are valid across a
wide range of CKD.

In conclusion, our findings suggest that pathological
increases of EAT are closely associated with traditional CV risk
factors and reduced eGFR. We demonstrate that EAT correlates
with estimated 10-year risk for CVD using the FRS and ASCVD
score. In line with these observations, EAT correlated with coro-
nary as well as AVC burden, although these relations were de-
pendent on CV risk factors. Our data support the concept that
EAT volume is modifiable by therapeutic lifestyle interventions
and tailored strategies aimed at individual CV risk factors may
effectively reduce pathological increases of EAT in patients with
CKD who are at high risk for CV events.
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