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We developed a biomechanics-informed online learning framework to learn the dynamics
with ground truth generated with multiscale modeling simulation. It was built on Summit-
like supercomputers, which were also used to benchmark and validate our framework on
one physiologically significant modeling of deformable biological cells. We generalized the
century-old equation of Jeffery orbits to a new equation of motion with additional
parameters to account for the flow conditions and the cell deformability. Using
simulation data at particle-based resolutions for flowing cells and the learned
parameters from our framework, we validated the new equation by the motions,
mostly rotations, of a human platelet in shear blood flow at various shear stresses and
platelet deformability. Our online framework, which surrogates redundant computations in
the conventional multiscale modeling by solutions of our learned equation, accelerates the
conventional modeling by three orders of magnitude without visible loss of accuracy.
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INTRODUCTION

Molecular dynamics (MD) is a computer simulation method that analyzes how atoms and molecules
move and interact during a fixed period of time (Jia et al., 2020). It is critical for novel knowledge
discovery and solution design but due to their extremely high computational cost these simulations
often run at a limited scale. With the aid of today’s high-performance computing (HPC) systems,
MD simulations are accelerated, however, complex biological processes in computational
biomedicine and bioengineering still require a massive computing time of up to years. One of
the most time-consuming procedures in MD simulation is the calculation of physics governing
equations of motion. The structures of these governing equations are often previously known and
studied with physics first principles, but the determination of these equation parameters is what MD
is truly used for. One such demonstration is the motion of isolated ellipsoids immersed in a steady
viscous shear flow, described by the Jeffery orbits equation (JOE) (Jeffery, 1922) introduced in 1922,
which is widely used as a benchmark to parameterize and validate the numerical models of cells in
biofluids. The JOE demonstrates that flowing objects tumble with many infinite marginally stable
periodic orbits, which vary sensitively by flow conditions or object shapes.

Sparse, incomplete, noisy, or heterogeneous data pose a natural challenge to modeling biological,
biomedical, and behavioral systems. In principle, direct numerical simulations can fill this gap and
generate the missing data. However, simulations themselves can be limited due to poorly calibrated
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parameters. There is, therefore, a pressing need to develop robust
inverse methods that are capable of handling sparse data (Peng
et al., 2020). Machine learning (ML), an increasingly promising
technology for knowledgebase discovery in the biological and
biomedical sciences, among many others (Kissas et al., 2020;
Raissi et al., 2020), tends to mispredict or fail due to lack of
conceptual consideration or mishandling of noisy and sparse data
(Peng et al., 2020). This could be rectified with science-informed
prior augments the ML technology. In essence, physics-based
numerical modeling of complex biological systems is a
fundamental tool for gathering ground truth (Teichert et al.,
2019). Therefore, the design of our ML, tailored for the
applications, determines the physiologically meaningful
parameters. The learning framework, informed by
biomechanics knowledge, is explainable and conveniently
generalizable while it can correct mispredictions of the “black-
box” approaches. In this work, we chose to utilize HPC platforms
to generate the massive data needed for our ML to learn the
parameters for the underlying governing equations.

The integration of HPC and ML poses another challenge in
that it demands massive storage capacity and I/O for
modeling complex biological systems that rely on a high-
dimensional parametric input space. This is particularly acute
when creating personalized models with complex geometries
and multiple spatial and temporal scales (Peng et al., 2020).
Alternatively, a real-time framework that analyzes simulation
streaming data on the fly, alleviating most of the burden,
motivates us to explore online learning (OL) methods
(Agarwal et al., 2008; Wigley et al., 2016) in determining
physics governing equations and modeling biological cells in
MD simulations. Several practical issues must be addressed
before applying OL to learning HPC simulations:

a) Definitions of online optimization objective function to
determine the physics governing equations.

b) Management of the online learning and inferencing data.
c) Optimal time to surrogate the online learning in the ongoing

underlying simulations.

We address these issues in the design of our biomechanics-
informed online learning framework (BIOL). Using multiscale
modeling (MSM) to provide the ground truth, we propose a
learned Jeffery orbits equation (L-JOE) based on the highly
celebrated theory (Jeffery, 1922) and BIOL to study the
motion of the object, the fluid, and their interactions. In this
application, the equation of motion of platelet in the shear blood
flow is fully established by the joint using the L-JOE and BIOL.
Such an accurate description of the platelet motion, combined
with its advantages in speeding up the MSM of moving cells, may
broaden our simulations to other physiological analyses of cells
and even clinical medicine.

The holistic approach of BIOL and L-JOE, that we
developed for the exemplary application with the potential
of generalization to other problems, enabled us to minimize
the redundant time-consuming calculations in conventional
multiscale simulation. More specifically, our major
contributions are as follows.

a) We modeled the motion and metamorphosis of platelets in
biofluids, a primary apparatus for examining the rheology of
these biomedical phenomena, which resulted in high-fidelity
dynamics simulation data for biomedical discoveries.

b) We proposed the first online learning-based framework for
deriving the parameters for governing equations and further
accelerating simulations by correlating with high-fidelity in
silico data.

c) We speed up the processing time from months to hours for
the online analysis of streaming simulation data of terabytes
data files.

d) We reclaimed more detailed physics, omitted in JOE, to
enable adaptive determination of equation parameters
varying with, e.g., fluid conditions, which enables
numerical simulations of complex biomedical problems.

The remainder of our manuscript will address the following:
Related Work introduces the background study and related work.
Methods states the problem along with our proposed L-JOE and
BIOL for the equation’s structure and parameters respectively.
Application to Platelets in Shear Blood applies our methods to
platelets in shear blood. We explain the MSM simulating system
for generating ground truth and present the implementation
details of our integrated systems. Results Analysis analyzes the
performance of our methods for describing the dynamics of
platelets in shear blood flow. Discussion discusses the broader
impact of our methods, summarizes the observations on L-JOE
and BIOL then outlines future work.

RELATED WORK

Modeling of the motion and metamorphosis of cells is becoming
a primary apparatus for examining the rheology of these
biomedical phenomena. Such study has come a long way, for
example, Einstein (1911) calculated an effective viscosity for a
dilute suspension of noncolloidal hard spheres and showed that
the effective viscosity of the suspension increases linearly with the
volume fraction of spheres. Understanding the dynamics of even
a single object in shear is important to determine the rheology of
the suspension of anisotropic objects. The dynamics of irregular
objects such as axisymmetric ellipsoids are significantly more
intricate than that of spheroids under shear (Edwardes, 1892;
Jeffery, 1922; Chwang and Wu, 1974). At Reynolds number zero,
spheroids and long slender bodies in shear flow undergo a
periodic motion. A century ago, Jeffery (1922) studied the
motion of a neutrally buoyant ellipsoid of revolution in a
simple uniform shear flow in the absence of inertial and
Brownian forces, known as JOE which is widely used as a
benchmark to parameterize and validate numerical models of
cells in biofluids. The study found that the ellipsoid’s axis of
revolution rotates on infinitely many degenerate periodic Jeffery
orbits. JOE solution is degenerate in the sense that the late time
orientation of the ellipsoid depends on its initial orientation.
Recently, Einarsson et al. (Byron et al., 2015; Candelier et al.,
2015; Einarsson et al., 2015a; Einarsson et al., 2015b; Rosén et al.,
2015; Einarsson et al., 2016) showed theoretically that, in the limit
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of weak flow and inertia, the degeneracy of Jeffery orbits is indeed
lifted. Much of the work on the motion of objects in complex
fluids has focused on the effects of flow conditions, according to a
recent review (Shaqfeh, 2019) that summarizes the advances in
the rheology of the suspensions of objects in viscoelastic fluids.
However, they seem to be too idealistic to address applications
involving shape-varying objects and their interactions with
the flow.

Efforts have been made (Zhang P. et al., 2014; Zhang et al.,
2017; Gupta et al., 2019) to adapt the JOE for various applications
where the flow conditions or object shapes change dynamically.
Zhang P. et al. (2014) compared the MSM data with the JOE
solution for a flowing oblate-shaped platelet in Couette flows for
rigid and deformable platelet models in which the rotation angle,
its velocities, and its acceleration versus the total strain were
analyzed. The flipping trajectories generated by MSM for a rigid
platelet in Couette flow resemble remarkably well the JOE
solution and, for the motion of deformable platelets in a more
realistic and physiological setting, such favorable potential of JOE
quickly diminishes as expected. A three-way comparison of the
JOE solutions, MSM data, and the in vitromeasurements revealed
that the latter two agree with each other and both differ from the
former because JOE neglected the fluid-platelet interactions and
platelet surface quivering or bigger shape changes. The clear path
forward is to ameliorate JOE for a more accurate representation
of the object and flow while taking advantage of its vast saving in
computing. A straightforward solution by Einarsson et al.
(Einarsson et al., 2015a; Einarsson et al., 2015b; Byron et al.,
2015; Candelier et al., 2015; Rosén et al., 2015; Einarsson et al.,
2016) derived an equation of motion for a neutrally buoyant
ellipsoid in steady shear, but the direct computation of the object
inertia that affects the fluid mutually is a daunting task. In our
manuscript, the dynamics of a neutrally buoyant oblate in the
shear flow of a viscous fluid are studied. The oblate is so sized that
it is too small to experience inertial forces and too big to have
Brownian motion. The learned Jeffery orbits observed in our
study indeed deviate while their degeneracy remains due to the
symmetry of the constitutive equations.

The use of simulated high-fidelity data as ML objects has
received attention, which has advanced detailed deterministic
models and their coupling across scales (Deist et al., 2019; Li
et al., 2020; Raissi et al., 2020). Raissi et al. (Raissi et al., 2020)
developed this approach to quantify fluid flow and extract
velocity together with pressure fields. Their method exploits
knowledge of Navier-Stokes equations, which govern the
dynamics of fluid flow in many scientifically relevant
situations, illustrated by examples such as blood flow in an
aneurysm. Yazdani et al. (2020) developed a new systems-
biology-informed deep learning algorithm that incorporates
the system of ordinary differential equations into the neural
networks. However, problems may arise when dealing with
sparse, biased, or time-dependent data, in which cases the
naive use of machine learning can result in ill-posed problems
and generate non-physical predictions (Peng et al., 2020).
The existing online learning techniques implemented on
HPC (Tuncer et al., 2018; Borghesi et al., 2019; Netti et al.,
2019) fail to integrate underlying physics prior which

constrains the space of admissible solutions. Therefore,
there are still challenges for achieving honest precision
across the entire scales for general physics processes, but
our BIOL opens the door to a new era of real-time analysis for
in silico simulations that could save significant computing
time and disk space while extending the reach of physics
searches and precision measurements at the biological
processes and beyond.

METHODS

Our BIOL, designed to be a general purpose for predicting the
parameters of the empirical equations, is applied to examine our
L-JOE for the motion of oblate-shape cells in biofluids. In BIOL,
the big streaming data gathered through MSM experiments
provide the ground truth and, conversely, the online learning
predictions can feedback with signal and guide the MSM
experiments on the fly.

Learned Jeffery Orbits Equations
We consider an oblate with a given axis of symmetry, and the
major (minor) axis a (b) with an aspect ratio e � a/b> 1. The
oblate is immersed in a laminar flow and is methodically
positioned in the flow to eliminate sliding (Figure 1). In JOE
(Jeffery, 1922), the rotation angle ϕ and angular speed _ϕ are
defined as

ϕ( _γt) � tan−1(1
e
tan

e _γt

e2 + 1
)

_ϕ( _γt) � 1
2
(Λ cos(2ϕ) + 1)

where Λ � (e2 − 1)/(e2 + 1) � (a2 − b2)/(a2 + b2) is a
geometrical constant measuring the ellipsoidal extent, _γ is the

FIGURE 1 | A tumbling oblate with (x1 , y1 , z1) and (x2 , y2 , z2) frames of
reference.
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flow shear stress and _γt is the dimensionless time. Einarsson et al.
(2015a) derived the modified Jeffery orbits equation, M-JOE
(ϕ, _ϕ; β1, β2) with two correction terms to account for the
weak but nonnegligible inertial effects for the motion of a
neutrally buoyant spheroid in a steady shear flow

_ϕ( _γt) � 1
2
(Λ cos(2ϕ) + 1) + β1 sin(2ϕ) + β2 sin(4ϕ)

where β1 and β2 are correction constants. To further improve
M-JOE, we propose a learned Jeffery orbits equation, L-JOE
(ϕ, _ϕ; κ0, λ0, λ1), to incorporate more physics neglected in JOE
and M-JOE by introducing three physically meaningful but
dimensionless parameters {κ0, λ0, λ1},

_ϕ( _γt) � 1
2
(Λ cos(2ϕ) + 1 + κ0)(1 + λ0 + λ1 sin(2ϕ))
� 1
2
(Λ cos(2ϕ) + 1) + 1

2
λ1(1 + κ0) sin(2ϕ)

+1
2
λ0Λ cos(2ϕ) + 1

4
λ1Λ sin(4ϕ) + 1

2
(λ0 + κ0 + λ0κ0)

where κ0 is the fluid-object coupling constant, λ0 accounts for the
coarse grained and λ1 for the fine-grained deviations from a
perfect oblate. When κ0 � λ0 � λ1 � 0, our L-JOE truncates to
JOE, and when κ0 � λ0 � 0, β1 � 1

2λ1, β2 � 1
4λ1Λ, the correction

terms in (Einarsson et al., 2015b) are contained in L-JOE. L-JOE
requires only one correction parameter λ1 to function as well as

FIGURE 2 | The integration of BIOL with MSM (A). Raw data are pre-processed (B) and then sampled for online training (C). The learned parameters (D) allow
predictions for angular speed (E) and comparison of the ground truth (blue), JOE (red), and L-JOE (green) solutions. The L-JOE theory in the right side of panel C
describes the relationship between ϕ and _ϕTH.
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M-JOE that requires two correlated parameters. The two
correction terms in L-JOE, 1

2λ0Λ cos 2 ϕ and 1
2 (λ0 + κ0 + λ0κ0),

describe the oblate deformation and its interaction with
surrounding flow.

Feature Extracting
ML, originating from statistics and computer science, extracts the
relationships of data and develops algorithms to process data with
the full awareness of domain-specific data (Peng et al., 2020). The
BIOL (Figure 2) interprets and selects features guided by
biomechanics prior including the understanding of the system.
In MSM, the cell motion is described by

Ek � Etr + Ero � 1
2
M‖Vcom‖2 + 1

2
ωIωT

where M is the oblate mass, Vcom is the center-of-mass (COM)
velocity, ω � (ωx, ωy, ωz) is the angular velocity, and I is the
moment of inertia of the oblate. Among the many features, we
study the rotation of the oblate in the x-y plane.

Online Sampling
The input sampling policy (Algorithm 1) requires BIOL to capture
the global trends of the time series from the short-term memories
without weighty dependence on the latest changes, i.e., the BIOL can
capture long-term trends via the onlineML that overcomes the pitfalls
of short time series. A trivial sampling is to mix randomly selected
history data (cold) with the recent data (hot) at a pre-fixed ratio which
is highly impractical due to unsatisfiable storage requirements and
highly insensitive to online parameter changes. Our more
sophisticated policy is to use a probability distribution P(t),
governed by the specific flow conditions, to determine the
conformation of cold and hot data reflecting the time such data
last became available. At the current time τ, the training dataset is
sampled from themost recent time series of window sizeW following∫τ

τ−WP(t)dt � 1 with [τ −W, τ − w] for cold and [τ − w, τ] for hot,
where 0≤w≤W. Each sample represents a short time series,
randomly selected based on P(t). This kind of short time series,
containing limited but important short-term information, is used as
the element training sample to feed into our neural network.

Data Processing
The preprocessing and denoising filters (Algorithm 1) capture
the biomechanics of the cell from the raw MSM data. During this
stage, a moving averaging (MA) filter with a fixed size of window

and stride, followed by a noise-reducing wavelet transformation
(WT) filter. The input data are transformed into low- and high-
frequency components as (Zimoń et al., 2016)

s(t) � ∑
k∈Z

AJ,kφJ,k(t) + ∑
j,k∈Z

Dj,kψj,k(t)

where

AJ,k � ∫ s(t)φJ,k(t)dt,φJ,k(t) � 2−
J
2 φ(t − 2Jk

2J
),

Dj,k � ∫ s(t)ψj,k(t)dt,ψj,k(t) � 2−
j
2ψ(t − 2jk

2j
).

The AJ,k and Dj,k are the coefficients for the orthogonal
relationship between wavelet at resolution level j and input
data s(t) where 0< j≤ J, 0≤ k< 2j, and J is the maximum
level. The function φJ,k(t) is the smooth approximation after
translating and dilating a scaling function φ, and the fine-scale
details are generated by an orthonormal basis function ψj,k,
scaling of a mother wavelet ψ. A smoothing estimated signal is
reconstructed as inverting the transform by cleaning coefficients
with resolution-dependent thresholds. The soft threshold
(Donoho and Johnstone, 1994) is employed following

ηs(Dj,k, μj) � [Dj,k − μj · sgn(Dj,k)]I{∣∣∣∣Dj,k

∣∣∣∣> μj} (1)

where I and sgn are indicator and sign functions respectively and
μj is the threshold at resolution level j.

For rotation angle ϕ, we eliminate the undesired effect of its
periodicity by an angular transformation (AT) from ϕf to ϕp with
normalization (Algorithm 1)

ϕp �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − 2ϕf

π
, 0≤ ϕf <

π

2

1 + 2ϕf

π
, −π

2
≤ ϕf < 0

The ground truths may contain numerical errors and the
deformability in our simulations involving deformable bodies
contaminates measuring the angle and angular speeds,
necessitating rectifications of the rotation angle by online
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learning for a parameter, L-JOE (ϕ − ϕ0, _ϕ), to mitigate the
prediction errors of the physics parameters.

Online Training and Inferencing
A customized loss function, measuring the difference between
data from MSM and basic physics, is introduced for predicting
parameters in BIOL (Algorithm 2). The two terms in the loss
function measure the coupled effects from both MSM (the first
term) and basic physics (the second term).

L( _ϕGT, _ϕML, _ϕTH) � L1( _ϕGT, _ϕML) + L2( _ϕML, _ϕTH)
where the first term trains N(W, b) to optimize the weights and
the biases W, b while the second term trains the proposed
equation to optimize its parameters. Naturally, a function
L3( _ϕGT, _ϕTH), the difference between the ground truth and the
theory, evaluates the predictions. L1, L2, L3 are norm functions
where we generally use Mean Squared Error (MSE). The training
and validation use the most recent randomly sampled historical
data and evaluation uses the freshly generated data for accuracy
measurements, to accommodate the fact that dynamics are highly
time sensitive. The last component of BIOL is to correlate ML
with MSM and integrate them with the time series for online
learning, inferencing, and feedback with signal ζ. Coupled ML
and MSM leverage their respective strengths to identify the
system equations and parameters of the ill-posted problems
with sparse and noisy data at multiple spatial and temporal
scales (Peng et al., 2020).

APPLICATION TO PLATELETS IN SHEAR
BLOOD

We use MSM to gather the ground truth for the motion of
deformable platelets in shear blood flows at the nano-to-micron
spatial, with the associated temporal, scales. The MSM of platelet
motion in the blood, while considering inner degrees of freedom
of the platelet as well as the flows at multiple spatial and temporal
scales, is extremely time-consuming, even though MSM is the
method of choice for studying large and complex systems in
biology, material science, and fluid dynamics. The dynamics of
platelets in the blood plays an important role in the formation of
thrombosis, a common pathology underlying cardiovascular
diseases, which accounts for over 30% of all deaths globally
(Casa et al., 2015; Benjamin et al., 2019). It also plays a
potential role in triggering deaths from COVID-19 infection
(Koupenova, 2020).

Multiscale Models for Deformable Platelets
A microchannel is simulated by a rectangular tube of 16 × 16 ×
8 μm3 with periodic boundary conditions in x- and
z-dimensions (Gupta et al., 2019). The blood vessel walls
are modeled as the top and bottom y-boundaries with no-
slip boundary conditions. The entire system consists of
1,091,360 fluid particles and 140,303 platelet particles of
which 40,446 and 32,853 and 67,004 atoms are for the

cytoskeleton, the cytoplasm, and membrane respectively
(Zhang P. et al., 2014; Zhang et al., 2017; Gupta et al.,
2019). The platelet model is depicted in (Zhang et al., 2017)
in which a quiescent platelet is modeled as a discoid-shaped
spheroid with a 2 µm semi-major axis and 0.5 µm semi-minor
axis. The peripheral zone is modeled as a homogeneous elastic
material bilayer constructed by the 2D triangulation method.
A shell of 300 Å thickness represents the phospholipid bilayer
deformable membrane (100 Å) and an exterior coat
(150–200 Å). The organelle zone, represented by the
cytoplasm, is composed of homogenous nonbonded
particles filling the gap between the membrane and the
cytoskeleton. At the fluid-platelet interface, the membrane
prevents fluid particles from penetrating while maintaining
the fluid-platelet interactions (Zhang N. et al., 2014). The
cytoplasm rheology and its resultant deformability are
modeled with a viscosity ranging from 4.1 to 23.9 mPa s
using a Morse potential (Bluestein et al., 2013). The
cytoskeleton consists of two types of actin-based filaments:
a rigid filamentous core and an assembly of radially spanning
elastic actin filaments that mediates the contractility. A
carbon-70 structure is used to generate the oval shaped
core. Each actin filament, individually extensible, is tethered
to the core. An α-helical structure, mimicking the spring-
loaded molecular mechanism, can stretch its spiral
conformation continuously. The shear blood flow is
modeled by a counter Couette flow by sliding two opposing
walls in x-direction to emulate the flow shear stresses of {50,
100, 200, 300} in dyne/cm2 and we use the same force field as
Gupta et al. (2019). The integration timestep size is 416 ps with
states collected every 40ns in our modified LAMMPS
(Plimpton, 1995) on computers with a varying number of
IBM AC-922 nodes.

The platelet and the flow evolve according to their mutual
interactions and our MSM (Zhang N. et al., 2014; Zhang et al.,
2015) captures these motions at molecular details including the
platelet’s speed distributions. The deformability, actuating a
production of noisier streaming data as shown by the rougher
platelet surface (Figure 3) than the rigid body simulations,
demonstrates motions of nuanced differences from that of the
rigid body at high frequencies. When applying speed averaging
using 2,000 timesteps, both deformable and rigid body
simulations gradually reveal consistent patterns, validating our
pre-processing filters and different denoising steps (Data
Processing) for raw sequences.

Time Stepping Algorithms
To integrate the governing equations, time stepping algorithms use
time discretization with a timestep size Δt (Zhang et al., 2015). To
cover 3-4 orders of magnitude temporal disparity, we introduce a
new multiple time stepping scheme to mix the dissipative particle
dynamics and coarse-grained molecular dynamics by utilizing four
different time stepping sizes (Zhang et al., 2015). These sizes are
arranged as follows: the largest for the fluids; the middle one for the
fluid-platelet interface; and the two smallest for the platelet
structures. As in the velocity Verlet algorithm,
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v(t + Δt
2
) � v(t) + Δt

2m
· F[x(t)]

x(t + Δt) � x(t) + v(t + Δt
2
)

v(t + Δt) � v(t + Δt
2
) + Δt

2m
· F[x(t + Δt)]

The standard time stepping algorithm uses the smallest static
time step size Δt to capture the details at the finest scale at a price

of computing time for unnecessarily high temporal resolutions.
Our multiple time stepping algorithms (Zhang et al., 2015)
significantly speed up simulations by selectively modeling
platelet rotation and each of its components at varying Δt.
Our recent AI-enhanced adaptive time stepping algorithm
(Han et al., 2020) intelligently adaptsΔt’s to underlying
biophysical states, resulting in reduced computing time while
bounding the numerical errors. This work was used for
simulating platelet rotations for our ground truth.

FIGURE 3 | Speed distributions for representative rigid and deformable platelets at 100 dyne/cm2.

FIGURE 4 | Dataflow and online learning implementations. Different colors of boxes in the data sequence plots denote online sampling windows with the total
lengthW mixed by distribution P(t), in which solid-line box represents hot data with length w. The green squares inside the sampling window represent sample interval
with a length Ns. All of the sampling windows will move forward with stride Δl.
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Implementation Details of BIOL
We follow the dimensionless time unit in the BIOL
implementation (in Figure 4), i.e., the BIOL hyperparameters
are pure values: the window size W � 8 is chosen to be half the
rotation period T/2, and w � W/8 � 1. A total 40 of time series,
each ofNs time points are sampled as the dataset for each online
training process. We propose a staircase history mixing
probability,

P(t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
8
, τ − w≤ t≤ τ

1
4
, τ − 2w≤ t< τ − w

9
40
, τ − T

2
≤ t< τ − 2w

Streaming data are sampled from the most recent half period
[τ − T/2, τ] with frequencies {12, 10, 9, 9}. To denoise the high-
frequency oscillation in the platelet dynamics (Multiscale Models
for Deformable Platelets), both the raw ϕ(t) and _ϕ(t) are
processed by the MA and WT filters. In MA, we set the
moving window size to 0.08 and the stride to 0.005; in Eq. 1,
we used a threshold (Donoho, 1995) μ � η

�������
2 · lnNs

√
whereNs is

the length of each time series, and η � median(|D1|)/0.6745,
estimated from the finest scale wavelet coefficient D1.

The BIOL’s N(W, b) consists of four hidden layers with 20
nodes per layer, a feed-forward fully connected NN with tanh
as the activation function (Raissi et al., 2019). The online
training is carried out in every Δl simulated time. In each

training process, samples collected from MSM are fed to the
NN and trained for er(ed) epochs with respect to the rigid
(deformable) body. A decaying learning rate is scheduled
starting at 0.002 with a decay rate of 0.95 and a minimum
value of 0.0005. The BIOL loss function is used to train the
N(W, b) and the parameters, with ϕp and ϕf respectively
being the ground truth and minimized by the Adam optimizer
(Kingma and Ba, 2015).

We studied the hyperparameter selection in our online
learning by systematic analysis of the search space of the
hyperparameters. Our model parameters and the
methodologies in determining them serve as a working
example to assess the performance of the approach. The
search space is quite flat with a few subtle spots where the key
hyperparameters affect the speed and accuracy of online learning
predictions as well as HPC workloads. We present the studied
learning stride Δl, sample interval length Ns and training epoch
number er(ed) and will discuss them more in Online Training.

Integration of Learning and the Underlying
Simulation
The holistic MSM and BIOL are implemented on an IBM
Summit-like computer with 268 nodes each having two IBM
POWER 9’s and associated V100 GPUs. Each POWER nine
contains 20 cores at 3.15 GHz, 512 GB RAM, and a 1.6 TB
SSD. All nodes connect with EDR Infiniband and a unified file
system. For each of our experiments, 4–6 nodes each with six
GPUs and 36 POWER nine CPUs were used for MSM and one

FIGURE 5 | Workflow for integrated MSM and BIOL. The MSM simulator is implemented by C++ and extracted data are processed by Python. Specific features
related to platelet rotation, e.g., rotation angle and angular speed, are randomly sampled to feed into BIOL for solving equations of motion in time for simulation. A human,
as an external intelligent side, controls the learning frequency and feedback to MSM with online predictions.
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node with one GPU was used for BIOL (200 epochs taking
5–8 s). We achieved a typical modeling speed of 1 ms
simulated time for 27 h of simulated time. A full
revolution of platelet rotation, requiring 2 ms, takes 54 h to
simulate. In this work, we focus on the ML and HPC
algorithms and the implementation at the expense of
elaborations of the traditional HPC techniques such as
overlapping communication with computation, double
buffering, burst I/O, and scalability. The single platelet
study enables a still-in-progress project of modeling more
than 125-million-particle systems with 250 platelets.

The workflow (B) starts from the MSM simulator, which
scales well to over 200 nodes, then the raw data is prepared
with target features that are fed to BIOL for online training
and inferencing. The training section is co-processed along
with the simulator on the fly thus all the transferring arrows

are streaming. Examining the ground truth and prediction,
the inferencing section assesses the losses and evaluation
metrics to regulate the simulator for acquiring more data,
until the loss is adequate through a time-triggered stopping
criterion. In a long-time simulation, this workflow recycles
with a fixed learning frequency to enable model fine-tuning as
MSM continues.

All involved data and model I/O are by file systems, as shown
by the dataflow (Figure 4). Our MSM generated ground truth on
multi-nodes and output to a single data file. After online sampling
and pre-processing, the selected MSM features ϕ and _ϕ become
ϕf, ϕp and _ϕf that are stored in Python NumPy array format and
they are fed to the NN. The feedback is determined by
{ _ϕGT, _ϕML, _ϕTH}. When the mean and standard deviation of
loss values are smaller than pre-defined thresholds, the BIOL
system will send a termination signal to terminate the simulator.

FIGURE 6 |Hyperparameter selection based on average test accuracy (A–C). Using the optimal hyperparameter combination, different lengths of sequences Γ (D,
E) are fed as online training inputs, then evaluated by three different future tests T 1 , T 2 , T 3. The online predicted dynamical features are temporal sensitive. Deformable
platelet at 100 dyne/cm2 is used as the presenting example.
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In each learning process, I/O data files take up to 6 MB and
model files up to 0.15 MB. There is no extreme I/O load in this
problem and the file system, having a block size of 8 MB, fits well
with our learning needs and costs nearly ignorable ms
processing time.

RESULTS ANALYSIS

Online Training
To parse the prediction accuracy of our online training results, as
well as selecting optimal hyperparameters in BIOL, we designed
systematical experiments to use different sequences as training
inputs, whose trained model will be evaluated by different test
intervals in the future. The metric for prediction accuracy is
defined as, based on L3( _ϕGT, _ϕTH) from Online Training and
Inferencing,

ε � 1 − Er(T )
Rn(T ) (2)

where Er(T ) � ∑
t∈T

| _ϕGT(t)− _ϕTH(t)|
_ϕGT(t) , Rn(T ) � max(T ) −min(T ),

and T denotes the test interval.
For learning stride Δl, sample interval length Ns and training

epoch number er(ed), we searched possible values of these
hyperparameters and evaluated the average accuracy among three
training and testing interval setups. Measured by dimensionless time
unit, the three training intervals are [0, 16], [0,32], [0,44] and
respectively the three future test intervals are [16, 24], [32, 40],
[44, 50]. The experiments follow the single variable principle and
the other hyperparameter values were selected in Implementation
Details of BIOL. Δl controls the number of online learning processes
since for the same length of simulation sequence, smaller Δl means
more learning processes, longer training time, and simulation storage
compacity. Ns controls the length of the training element which
implies the shortest continuous time series in BIOL. Larger Ns

slightly increases training time and I/O load. To avoid both
underfitting and overfitting, we must select the proper training
epoch number in each learning process and the balanced training
time and accuracy for a trade-off. From Figure 6A–C, the optimal
values selected are Δl � T/64 � 0.25, Ns � 10, er � 200, ed � 300

(rigid platelet simulations are more stable thus smaller training epoch
number is selected).

After the optimal hyperparameter ~θ � argmaxθε is
determined, we explore the influence of varying Γ and T on
ε(Γ, T , ~θ) to reveal the sensitivity and reliability of our BIOL
predictions. In Figure 6D, we set the starting point of Γ to be all 0
and change the upper bounds to test the future predictions on
three equally spaced T 1 � [28, 34], T 2 � [36, 42], T 3 � [44, 50].
For each model trained on a specific Γ, the accuracy, described in
Eq. 2, decreases from near future test to late future, showing the
sensitivity of BIOL. Larger max(Γ), meaning longer training,
performs a converged accuracy ε with the critical point near 8,
which equals T/2. In Figure 6E, the ending point of Γ is set to be

FIGURE 7 | Loss function during online learning (A) and prediction accuracy L3( _ϕGT , _ϕTH) between JOE, M-JOE, and L-JOE (B), for the rigid platelet at
50 dyne/cm2.

FIGURE 8 | Equation parameters for different experiments. The three
introduced parameters {κ0 , λ0 , λ1} are sensitive to different shear stresses
and platelet body deformability.
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28, which means hot data are included in the training. The
varying min(Γ) controls how far back the historical data were
used in the training. A similar converged trend is observed with a
critical point near 20, resulting in amax(Γ) −min(Γ) � 8. This
manifests the reliability of BIOL as long as enough hot data are
included in the training, the accuracy is comparable with those
with longer cold data.

Our BIOL enables simultaneous learning for NN and equation
parameters by minimizing the BIOL loss function (Online
Training and Inferencing). The loss term values during the
learning process are monitored and minimized as in

Figure 7A. The NN parameters are initialized by the Xavier
initialization (Glorot and Bengio, 2010) and trained by
L1( _ϕGT, _ϕML). The equation parameters are initialized from
the JOE that κ0 � λ0 � λ1 � 0 and then trained by
L2( _ϕML, _ϕTH). From the loss value trends, there are two stages
in the learning process: the first stage is quickly getting the
rotation patterns and learning the major ranges of parameters,
in which the loss values drop dramatically; the second stage is
dynamically tuning the parameters due to the subtle changing of
platelet-flow interactions during the rotation process, in which
the loss values may show small rises and falls. The first stage
generally finishes within the first rotation period and the second
stage could last as long as the simulation continues.

Learned Parameters
The three learned parameters, following the 2-stage learning
process (Figure 8), behave sensitively with various
experimental conditions. At the second tuning stage, the fluid
interaction term κ0, generally with values around 0.5, has the
most significant changes in scale at this tuning stage because it
reflects the platelet-flow interactions, certifying the BIOL’s
reliability in detecting the sensitive dynamics of the platelet
motion. Deformability manifested by κ0 is also captured that
the deviation from perfect oblate for which λ0 converges around
−0.4. The λ0, being 0 for the perfect oblate, tends to deviate from
this value for deformable objects. Flow shear stress also affects λ0.
For rigid body simulations, the higher shear stresses the closer λ0
is to 0; the correction in cell deformability λ1 converges to 0 as

FIGURE 9 | Comparison of overhead using pure MSM and our
integrated methods.

FIGURE 10 |Quantitative analysis of our integrated methods. Speed is measured by simulated time over simulating time so that a larger slope means faster speed.
Relative errors at different steps are expressed in a standard RGB color bar. Taking example data from rigid platelet at 300 dyne/cm2. MD refers to molecular dynamics,
OL refers to online learning and PRED denotes predictions from BIOL. Part (A) and Part (B) are two amplified regions.
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expected. The deformable body simulations tend to have larger
absolute values of λ1.

Analysis of Speeds
BIOL can significantly speed up the time-consuming MSM for
comparable accuracy when the simulated system is sufficiently
stable (Figure 9). For example, to simulate a human peripheral
artery, with 5–10 mm in length, where platelets induce thrombus
formation (Habib et al., 2020), conventional MSM needs 250 days
to simulate a single cycle of platelet dynamics. For the same
system, we use less than 2 days of MSM and negligible BIOL to
achieve the same dynamics. A detailed quantitative analysis
diagram (Figure 10) shows the speed and accuracy at different
steps in our integrated methods. The learning round of BIOL,
which is before 39.36 h simulating time from Figure 10A, may
contain ∼200 learning processes before switching off MSM
signaled by the online inferencing. Each learning process takes
only 5–8 s as shown in Figure 10B. The prediction round of
BIOL, Figure 10A, reduces unnecessary computations and
replaces them with model prediction, saving ∼99% computing
time. The relative error is calculated by the absolute error between
predicted angular speed and ground truth values, divided by the
ground truth values. Our models are at the learning stage in the
first 5 h, and then maintain less than 5% relative error. To be
consistent with the future prediction results in Figure 6, our

model could successfully predict the angular speed with less than
10% relative error and as time goes on the error of perdition in the
long future is controlled within 20%. Our more detailed accuracy
analysis in the next section shows that under a stable
environment, our methods are comparable to the ground truth
at top scales and far more accurate than JOE solutions.

Analysis of Accuracies
We performed BIOL on the total length of simulation and
evaluated the overall accuracy. Compared with traditional
offline learning, our online learning, while offering
consistent results with offline learning, provides many
advantages including determining FSI effects. For each
training step, the predicted angular speed within the
current moving window was plotted using the parameters
learned by this step (Figure 11). The green points
representing L-JOE solutions begin at JOE but gradually
converge closer to the experimental data, following the 2-
stage learning process observation. As expected, to an extent
the longer we learn, the more accurate our predictions
become. Starting with initial inaccuracies at 50 dyne/cm2

with the deformable case as in Figure 11D1, BIOL with
L-JOE robustly learns the correct features despite
numerical artifacts. For most deformable body simulations,
rotation angle calculation is a difficulty since the rotation axis

FIGURE 11 | Online learning predictions of angular speed _ϕ for each step, taking examples from rigid and deformable platelets at 50 dyne/cm2 (R1, D1) and
300 dyne/cm2 (R2, D2).

TABLE 1 | Overall normalized accuracy comparisons by different physics theories.

L3( _ϕGT, _ϕTH)
_γt

Shear stress (dyne/cm2), rigid (R), deformable (D)

50 100 200 300

R D R D R D R D

JOE 0.305 1.141 0.654 2.226 0.967 3.758 0.742 9.261
M-JOE 0.247 0.610 0.464 1.448 0.671 2.317 0.668 7.067
L-JOE 0.081 0.053 0.085 0.084 0.138 0.285 0.302 0.247
Improved Accuracy 276.5% 2052.8% 669.4% 2,518.8% 600.7% 1,218.6% 145.7% 3,649.4%
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is instantaneous due to body shape changes. Additionally,
when the simulation continues to a long timescale, we observe
spectrum disorders from JOE solutions as in Figure 11D2. In
these cases, JOE introduces large numerical errors, which
increase as the rotation continues, while our results that
are marked bold in Table 1 are far more accurate. The
accuracy in Table 1 is measured by the differences between
predicted angular speed and simulated ground truth,
normalized by shear stress and total simulated time. By
comparisons with JOE and M-JOE, our L-JOE showed
smaller differences and, thus, better performance.

We examined the angular speeds, calculated by the JOE or
predicted via BIOL using different formulas by M-JOE and
L-JOE, and compared them with the MSM data via month-
long HPC calculations. The time series L3( _ϕGT, _ϕTH), during
the online learning, shows the expected outcome that L-JOE
outperforms M-JOE that, in turn, outperforms JOE as in
Figure 7B. The metric for the overall accuracy is
normalized as L3( _ϕGT, _ϕTH)/ _γt. Under all experimental
conditions ( _γt≤ 50) (Table 1), the L-JOE solutions are far
more accurate than those of the JOE and M-JOE. The
normalized accuracy metric between predictions and ground
truths is calculated and the L-JOE improved up to 30 times
accuracy, from JOE.

The M-JOE adds two correction terms with two independent
parameters β1 and β2 to JOE, learnable by BIOL. To use the same
first principal term, we set κ0 � λ0 � 0 in our L-JOE and make λ1
to be a learnable parameter by BIOL. Rigid body platelet at
100 dyne/cm2 was used as an example, the results show that the 2-
parameter M-JOE has comparable accuracy with L-JOE using
only one learnable parameter, reducing one degree of freedom in
the parameter space. As we add parameters, L-JOE unsurprisingly
gains accuracy as shown in Table 2. Two more generalized
conditions were tested with λ0, λ1 as learnable parameters and
κ0 � 0; κ0, λ1 as learnable parameters and λ0 � 0. As expected,
the more learnable parameters we generalized, the more accurate
our predictions become. The complete form of L-JOE with all
three parameters κ0, λ0, λ1 has the best accuracy and most stable
equation parameter trends (Learned Parameters).

DISCUSSION

In the present study, the highly celebrated century-old JOE
(Jeffery, 1922), which describes the motion of a rigid ellipsoid
in a steady viscous shear flow, was generalized and enabled by
MSM on HPC and online ML, to analyze the motion of living
cells such as the oblate-shaped human platelets in the shear
blood flow. JOE demonstrated that oblates tumble with
infinitely many marginally stable periodic orbits, while

small perturbations of the flow conditions or the oblate
characteristics may lead to substantial variations in the
motion of the oblate, as evident for cells in the shear blood
flow, modeled by MSM. A platelet, commonly approximated
as a rigid body due to insufficient modeling resources,
deviates significantly from being rigid and, thus, JOE fails
badly in capturing the essentials of the motion of a true, i.e.,
deformable, platelet. Proven by numerical experiments, our
L-JOE rectifies JOE by three additional parameters, predicted
by BIOL with ground truth from MSM. The reliability of
L-JOE was examined by verifying it against the two-
parameter M-JOE using systematic parameter analysis.
L-JOE is expected to find broad applications in studying a
plethora of deformable objects, including red and white blood
cells, in flows, and more complex platelet dynamics like
activation, adhesion, and aggregation.

Online learning provides time-dependent predictive
models, avoiding burst I/O load and heavy storage
compacity. The online learned models, leveraging on the
use of both hot and cold data, perform better than
traditional offline learning. For time-dependent cell
dynamics, BIOL adaptively trains the predictive models
which are sensitive to system changes. The learned model
parameters may vary along with the states because of the
volatility of the simulated system. Furthermore, we are
exploring with a fixed learning frequency and reversible
MD states, the MSM restarts, and the BIOL fine-tunes the
prediction to avoid the accumulation of prediction error,
until a signal of terminating MSM.

The L-JOE provides insights into the dynamics and BIOL
determines the parameters. Together, they offer a fuller
description. Our study of L-JOE and BIOL epitomizes the
latest trends of the quick and accurate discovery of
knowledgebase from data and basic science. We expect to
expand L-JOE to all three dimensions for additional
corrections that are subtle but our current study, under
most conditions, captures the essential motion including
the covering rotation at a constant rate around its major
(or minor) axis, in the flow direction (Qi and Luo, 2003). For
the NN in BIOL, more advanced architectures, e.g., LSTM and
GRU, may enhance the feed-forward DNN, a simple model
working properly now.

This work conceptualized a novel architecture of coupling
ML and HPC, leading to mainstream approaches for enabling
HPC applications of unprecedented space and time
resolutions and size as well as scientific realness, without
sacrificing accuracy. It also posed new challenges and
inspired new designs of next-generation supercomputer
architectures involving ML. Applying the integrated L-JOE
and BIOL, we analyzed the cell motion in biofluids. The

TABLE 2 | Improvement from M-JOE to L-JOE.

Theory M-JOE L-JOE (λ1) L-JOE (λ0 , λ1) L-JOE (κ0 , λ1) L-JOE (κ0 , λ0 , λ1)

L3( _ϕGT , _ϕTH)/ _γt 0.464 0.385 0.319 0.288 0.085
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platelet-specific equation and their learned parameters
accurately capture the motion of platelets at a wide variety
of flow conditions. This mathematics- and science-informed
intelligent system enables a deeper understanding of complex
biological systems and, as a bonus, may provide insights for
conceptualizing a novel architecture of coupling ML
and HPC.
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