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Abstract
Background. Brain metastasis velocity (BMV) predicts outcomes after initial distant brain failure (DBF) following 
upfront stereotactic radiosurgery (SRS). We developed an integrated model of clinical predictors and pre-SRS 
MRI-derived radiomic scores (R-scores) to identify high-BMV (BMV-H) patients upon initial identification of brain 
metastases (BMs).
Methods. In total, 256 patients with BMs treated with upfront SRS alone were retrospectively included. R-scores 
were built from 1246 radiomic features in 2 target volumes by using the Extreme Gradient Boosting algorithm to 
predict BMV-H groups, as defined by BMV at least 4 or leptomeningeal disease at first DBF. Two R-scores and 3 clin-
ical predictors were integrated into a predictive clinico-radiomic (CR) model.
Results. The related R-scores showed significant differences between BMV-H and low BMV (BMV-L), as defined by 
BMV less than 4 or no DBF (P < .001). Regression analysis identified BMs number, perilesional edema, and extra-
cranial progression as significant predictors. The CR model using these 5 predictors achieved a bootstrapping cor-
rected C-index of 0.842 and 0.832 in the discovery and test sets, respectively. Overall survival (OS) after first DBF 
was significantly different between the CR-predicted BMV-L and BMV-H groups (median OS: 26.7 vs 13.0 months, 
P = .016). Among patients with a diagnosis-specific graded prognostic assessment of 1.5–2 or 2.5–4, the median 
OS after initial SRS was 33.8 and 67.8 months for CR-predicted BMV-L, compared to 13.5 and 31.0 months for 
CR-predicted BMV-H (P < .001 and <.001), respectively.
Conclusion. Our CR model provides a novel approach showing good performance to predict BMV and clinical 
outcomes.

Key Points

 • A model of clinical predictors and MRI-derived radiomic scores was created.

 • The model offers a good prediction of brain metastasis velocity and patient survival.

 • The model may inform brain metastases monitoring and radiation treatment strategies.

Radiomic analysis of magnetic resonance imaging 
predicts brain metastases velocity and clinical outcome 
after upfront radiosurgery
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Approximately 20–40% of patients diagnosed with cancer 
develop brain metastases (BMs), whose incidence has been 
rising due to more efficacious systemic therapies and im-
proved survival.1,2 In the past decades, whole brain radio-
therapy (WBRT) was the treatment of choice for multiple 
BMs. However, recently, evidence from randomized clinical 
trials has supported stereotactic radiosurgery (SRS) alone as 
the preferred treatment modality in patients with 1–4 BMs.3,4 
Thus, SRS provides better cognitive and quality of life out-
comes with no detrimental effect on survival, compared 
with WBRT.5,6 However, designing an SRS plan is more time- 
and effort-consuming than WBRT. Moreover, in patients with 
poor life expectancy or with rapidly developing new distant 
BMs, the use of SRS alone, to avoid WBRT neurocognitive 
sequelae, may be less beneficial.4,7,8 Selecting those BM pa-
tients most likely to achieve better intracranial control and 
survival outcome is essential to maximize the effectiveness 
of SRS alone.

However, distant brain failure (DBF) is a common occur-
rence following SRS alone. Brain metastasis velocity (BMV) 
is a novel prognostic metric that measures the number of 
new BMs appearing between initial SRS and first DBF.9 
BMV has emerged as a reliable predictor of overall survival 
(OS) after the first DBF following initial SRS. As validated 
in several retrospective analyses from multi-institutional 
cohorts, the median OS after first DBF is around 12, 8, and 
4 months for patient groups showing a BMV less than 4, 
between 4–13, and greater than 13 new lesions per year, 
respectively.9–11 Nevertheless, BMV can only be used fol-
lowing the first DBF, which narrows the target population 
for clinical application. Difficulties in obtaining BMV before 
SRS also hinder the integration of BMV with other prog-
nostic indices such as the diagnosis-specific graded prog-
nostic assessment (DS-GPA) and some nomograms12,13 to 
predict DBF and OS outcomes at the time of initial BMs 
identification.

Radiomics, a newly emerging field of image analysis, 
provides radiographic information by extracting high-
throughput imaging phenotypes and selecting features 
via statistical data analysis or machine learning (ML) algo-
rithms. The development of radiomic models has revealed 
promising routes for prognosis prediction in various 
cancer types. Recent works include the development of a 
radiomics-based nomogram to predict lymph node me-
tastasis in colorectal cancer,14 the utilization of a radiomic 

signature (RS) to evaluate the pathological complete re-
sponse to neoadjuvant chemoradiation in locally advanced 
rectal cancer,15 and the application of large-scale radiomic 
features to stratify anti-angiogenic treatment response in 
recurrent glioblastoma.16 As for BMs, MRI radiomic ap-
proaches are used to distinguish true progression from 
radionecrosis after SRS,17,18 to find associations between 
radiographic features and prognosis after treatment with 
immune checkpoint inhibitors,19 and to predict local tumor 
control following SRS.20 However, to the best of our knowl-
edge, there is no study optimally assessing the prognostic 
potential of MRI-based radiomics in capturing the kinetics 
of developing DBF after initial SRS. This study investigated 
whether the integration of large-scale MRI radiomic fea-
tures and clinical profiles could predict high BMV (BMV-H) 
in patients treated with SRS alone. Additionally, we ex-
plored the impact of our clinico-radiomic (CR) model on 
survival outcomes after initial SRS and first DBF.

Materials and Methods

Patients and Database Acquisition

This retrospective study was approved by the National 
Taiwan University Hospital (NTUH) Institutional Review 
Board. The dataset was derived from the NTUH SRS da-
tabase and consisted of all patients with BMs treated be-
tween January 2008 and January 2018 using a CyberKnife 
G4 image-guided robotic SRS system. The exclusion cri-
teria were 5 or more BMs; prior SRS, WBRT, or surgery; and 
no available pre-SRS MRI images. The detailed recruitment 
pathway is presented in Figure 1A.

We reviewed electronic medical records to determine 
the clinical outcome and infer putative clinical factors for 
DBF, including patient age; sex; histology of primary malig-
nancy; number of initial BMs; DS-GPA; lowest SRS margin 
dose; maximum tumor volume (TV), defined as the volume 
of the maximum sized tumor among all metastases; extra-
cranial disease burden; and extracranial progression 
status (EP).

Patients underwent MRI and clinical examination follow-
ups approximately 1  month following SRS and every 
3–4 months thereafter. DBF was identified as the apparition 

Importance of the Study

Brain metastasis velocity (BMV) is a reliable 
measurement of the kinetics of distant brain 
failure (DBF) and predicts outcomes after 
initial DBF following upfront stereotactic 
radiosurgery (SRS). Based on pre-SRS in-
formation and magnetic resonance imaging, 
we developed a machine learning-based 
clinico-radiomic (CR) model to predict BMV 
and, in turn, clinical outcomes. Particularly, 
the CR-predicted BMV risk category not only 

offers good BMV prediction and survival after 
the first DBF, but also represents a good sur-
vival prediction factor among patients with a 
diagnosis-specific graded prognostic assess-
ment of 1.5–2 or 2.5–4 upon initial identifica-
tion of brain metastases. Our proposed CR 
model may help customize optimal radiation 
treatment strategies and DBF monitoring fre-
quencies for brain metastases patients in this 
era of precision medicine.
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of new lesions on follow-up imaging outside of the 95% 
prescribed isodose line. The number of lesions and timing 
of the first DBF were estimated for subsequent calculation 
of BMV. Leptomeningeal disease (LMD) was diagnosed ei-
ther through cerebrospinal fluid cytology or neuroimaging. 
Regarding neuroimaging, LMD was defined as the pres-
ence of multifocal enhancing subarachnoid nodules on 
T1-weighted contrast-enhanced sequences (T1c) brain MRI 
or contrast-enhanced computed tomography (CT). Putative 
prognostic radiographic features, including perilesional 
edema (PE) and tumor peripheral enhancement, were re-
corded according to radiology reports and reconfirmed by 
radiologist K-L.L., with 20 years of radiology experience, 
according to edematous change on FLAIR and enhanced 
tumor signal on T1c imaging sequence.

Risk Group Categorization

We sorted patients into 2 groups according to their es-
timated BMV. The low-BMV (BMV-L) group gathered pa-
tients who underwent no DBF events during a follow-up 
period of at least 6 months or had a BMV of 1–3 BMs per 
year. BMV-H patients had an estimated BMV of 4 BMs 
per year or more or were diagnosed as having LMD at 
first DBF.

Image Preprocessing and Quantitative Image 
Analysis Workflow for RS

For each clinical case, pre-SRS MRI T1c was obtained 
after gadolinium-DTPA injection by using a 1.5-T unit MRI 
system (GE, Signa Excite HDxt 1.5T). Supplementary Table 
S1 displays the imaging parameters used for the MRI 
sequences.

TV segmentation_1 (TVs_1) was obtained by re-
trieving gross TV (GTV) from Digital Imaging and 
Communications in Medicine-RT structure sets of each 
patient. TVs_2 was delineated by an independent radia-
tion oncologist (C-Y.H., with 10 years of brain tumor ra-
diotherapy experience) using a 3D Slicer software (3D 
Slicer, version 4.7.0-1) to assess inter-observer variations. 
To reveal the radiographic features at tumor edges, we 
also created tumor_edge segmentation_1 (TEs_1) and 
TEs_2 through subtraction tumor boundary via an iso-
tropic 2  mm contraction from isotropic 3  mm expan-
sion around the TVs_1 and TVs_2 surface, respectively 
(Supplementary Figure S1).

As for MRI image preprocessing, the N4 bias correction 
algorithm was used to remove unwanted low-frequency 
intensity non-uniformity by implementing the Insight 
Toolkit.21 Next, image intensity normalization was per-
formed to transform arbitrary MR imaging signal intensity 

  
Archive data of patients with brain metastases treated with

SRS between January 2008 and December 2018 at National
Taiwan University Hospital CyberKnife Center

697 patients with 1940 brain metastases

Exclusion criteria:
1.  More than 4 lesions
2.  prior SRS or prior WBRT or Surgery for
    treatment of brain metastases

338 patients with 571 brain metastases

Inclustion criteria (for survival analysis):
1.  Alive patients with follow-up at least
    6 months
2. Available pre-SRS MRI imaging within
    2 weeks

285 patients with 478 brain metastases

Inclustion criteria (for BMV analysis):
1.  Patients underwent DBF
2. Patients Free from DBF with follow-up at
    least 6 months

256 patients with 426 brain metastases

MRI T1c images (n = 256)

Tumours segmentation (TVs_1, TVs_2, TEs_1, TEs2)

Imaging pre-processing (N4 bias correction, image
intensity normalization, spatial resolution normalization)

Radiomic features extraction
1. Volume
2. Shape
3. First order texture
4. High order texture
   (GLSZM, GLRLM, GLCM)
5. LoG filter, Wavelets

 Radiomic features

XGBoost and SHAP 
analysis

Combined with
clinico-radiomics
features

Test cohort (n = 64)Discovery cohort (n =192)
Train set (n = 153) Validation set (n = 39)

Radiomic signature for BMV risk Categoriztion and
clinico-radiomic (CR) model development

BMV analysis (n = 256) Survival analysis (n = 285) 

Figure 1. (A) Recruitment pathway of patients with BMs. (B) Development process of radiomic signatures and clinico-radiomic model for BMV risk 
category.
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values within 5 mm from the TV surface into standardized 
intensity ranges from 0 to 1024 Gy. Finally, linear interpo-
lation was applied in the T1c images to make the voxel size 
isotropic (1 × 1 × 1 mm3; Figure 1B).

Radiomic features were extracted from T1c images en-
compassed within TVs and TEs by using the Pyradiomics 
package (version 2.0.0).22 A  total of 1246 radiomic fea-
tures were extracted from the preprocessed original and 
derived T1c images (5 derived images from Laplacian of 
Gaussian filter of 5 sigma levels and 8 derived images 
from Wavelet decompositions), including (1) first-order 
statistics features; (2) shape-based features; and (3) tex-
ture features derived from gray-level co-occurrence ma-
trix (GLCM), gray-level run-length matrix, and gray-level 
size zone matrix (Supplementary Table S4; Supplementary 
Note S1). We calculated the intraclass correlation co-
efficient (ICC) for the radiomic features extracted from 
the segmentation of TVs_1/TVs_2 and TEs_1/TEs_2. Only 
radiomic features from TVs_1 and TEs_1 and with ICC 
values higher than 0.9 were selected for subsequent anal-
ysis to ensure good reliability.

Extreme Gradient Boosting (XGBoost) algorithm, 
based on a gradient boosting decision tree method,23 
was used to build mathematical models that predict 
BMV-H based on radiomic features. The XGBoost func-
tion was as follows:

ŷi =
∑K

k=1
fk (xi) , fk ∈ F  (Equation 1)

L(φ) =
∑

i
lloss (ŷi , yi) +

∑
k
Ω (fk) (Equation 2)

Ω (fk) = γT +
1
2
λ‖ωi‖2 (Equation 3)

In Equation 1, the predictive value y i  is generated from 
the tree ensemble model fk (k-additive functions) by using 
the independent input variable xi. The goal of the training 
process is to minimize objective function (Equation 2), 
where lloss is a loss function and Ω used for regularization 
via penalizing the complexity of the model. The Ω com-
prised T, which is the number of leaves, and ωi  is the com-
plexity score of the ith leaf.

Hyper-parameters accounting for fitness (including 
learning_rate, scale_pos_weight, and base_score) and 
regularity (consisting of min_child_weight, max depth, 
gamma, subsample, reg_alpha, and colsample_bytree) 
were tuned via a grid search approach to find an optimal 
hyper-parameters set (Supplementary Table S2). For each 
grid search trial, we performed 10-fold cross-validation 
and searched for the optimal hyper-parameters giving 
the best cross-validation results within a total of 1000 
grid search trials on the training set. Then, we fine-tuned 
the chosen hyper-parameters by the early stopping 
of training iterations according to the loss of objective 
function on the validation set to improve regularity. The 
output of the XGBoost model was finally converted into 
a probability score, namely the radiomic score (R-score), 
indicating the probability for the patient to belong to the 
BMV-H group.

Model Interpretation

We used the SHapley Additive exPlanations (SHAP) algo-
rithm,24 which is based on game theory and local explan-
ations,25 to interpret the output of our XGBoost model.26 
SHAP can estimate the contribution of each input feature 
to the model output based on their marginal contribution. 
The mean absolute SHAP values of radiomic features can 
represent their impact on the R-score. For these radiomic 
features with the top 5 SHAP values, we further used stu-
dent t-test and analysis of variance to evaluate their corre-
lation with putative clinical factors, where a P value of less 
than .01 was considered statistically significant.

Development and Performance Evaluation of the 
Predictive Model

Univariate analysis was performed to determine signifi-
cant clinical predictors for BMV-H, and the significant pre-
dictors were further combined to develop the clinical (C) 
model or integrated with R-scores into the CR model via 
logistic regression by using IBM SPSS Statistics 20.

Harrell’s C-index and the corrected C-index, derived 
from the bootstrapping validation with 1000 resamples, 
were calculated by using the “Hmisc” package in the R 
software in order to evaluate the discriminative ability of 
our clinical predictors, C model, R-scores, and CR model 
between BMV-H and BMV-L. We also performed deci-
sion curve analysis (DCA) to evaluate the net benefits 
of the R-score added to the C model. The net benefit of 
the CR model was estimated by using the decision curve 
with the difference between the true-positive and false-
positive rates, weighted by the odds of the selected 
threshold probability of risk.27

Follow-Up and Statistical Analysis of Clinical 
Outcomes

Median follow-up and time-to-event outcomes were as-
sessed from the beginning of SRS to the most recent fol-
low-up or event of interest. Time-to-event outcomes were 
summarized using the Kaplan–Meier and log-rank test. 
A  P value of less than .05 was considered statistically 
significant.

Results

Patient Characteristics

Between January 2008 and February 2018, a total of 256 
patients with 426 newly diagnosed BMs treated with SRS 
as a single modality were included. The entire cohort was 
randomly split into the discovery (training and validation) 
and test cohorts with the ratio of 3:1 to establish and val-
idate the prediction of the R-score for BMV-H. The demo-
graphic characteristics of the discovery and test cohorts 
are listed in Supplementary Table S3. The median follow-up 
time of the entire cohort was 20.2 months (95% CI: 18.6–
22.3). There were no significant differences between the 

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
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2 cohorts in the distribution of elderly patients (P = .885), 
gender (P  =  .640), primary malignancy (P  =  .182), BMs 
number (P = .971), DS-GPA (P = .100), lowest SRS margin 
dose (P = .348), total TV (P = .744), median follow-up time 
(P = .559), and first DBF status (P = .814).

Clinical Predictors

As given in Table 1, only the number of BMs, presence of 
PE, and status of EP were significantly different between 
BMV-H and BMV-L in the discovery cohort. Other clinical 
factors, including age, gender, primary malignancy, sys-
temic disease burden, DS-GPA, tumor peripheral enhance-
ment, lowest SRS margin dose, TV, and epidermal growth 
factor receptor (EGFR) mutant status, were distributed sim-
ilarly across groups. Risk coefficients estimated by univar-
iate analysis are summarized in Table 1.

Radiomic Analysis and Predictive CR Model

Radiomic features extracted from T1c images in the dis-
covery cohort were selected and quantitatively inte-
grated into 2 R-scores, namely Radi_Tumor based on 
TVs_1 and Radi_Edge based on TEs_1, using XGBoost. 
The selected XGBoost model hyper-parameters are listed 
in Supplementary Table S2. The corrected C-indexes of 
Radi_Tumor and Radi_Edge were 0.811 and 0.794 in the dis-
covery cohort and 0.713 and 0.764 in the test cohort, re-
spectively (Table 2).

We further combined 3 significant clinical predictors 
without and with 2 R-scores to develop the C model and CR 
model by using logistic regressions, as described:

Y = − 2.50+ 0.53× BM_numbers+ 0.79× PE

+ 1.08× EP (C model)

Y = −4.8 + 0.02× BM_numbers+ 0.31× PE+ 1.21
×EP+ 8.78× Radi_Tumor+ 4.00
×Radi_Edge (CR model, Figure 2A) .

Compared with the C model only, the resulting CR model 
demonstrated better discriminative ability in estimating 
the probability of BMV-H, with a C-index of 0.858 (95% 
CI: 0.800–0.917) and corrected C-index of 0.842 in the dis-
covery cohort, and a C-index of 0.833 (95% CI: 0.698–0.967) 
and corrected C-index of 0.832 in the test cohort (Table 2 
and Figure 2B). The CR model’s calibration curve demon-
strated good agreement between the predicted and ob-
served BMV groups in both the discovery and test cohorts 
(Figure 2C and D). The Hosmer–Lemeshow test gave a χ2 of 
10.719 (P = .218) and 6.901 (P = .547) for the discovery and 
the test cohorts, respectively, indicating that the CR model 
was appropriate for both datasets. Furthermore, we also 
tested the incremental net benefit of the CR model with re-
spect to the C model for prediction of BMV-H using DCA, as 
described in Supplementary Figure S2. DCA showed that 
adding 2 R-scores resulted in a net benefit compared with 
the use of the C model only.

By using a cutoff value of predictors and models for as-
suring both a specificity greater than 75% and maximizing 

the Youden index of the receiver operating characteristic 
curve analysis from the discovery cohort, we dichotom-
ized patients into binary risk groups. As given in Table 2, 
we further evaluated the predictive power of these binary 
classifiers using metrics of sensitivity, specificity, posi-
tive predictive value, negative predictive value, and ac-
curacy (Table  2). The CR model-predicted BMV-H group 
(CR-predicted BMV-H) and BMV-L group (CR-predicted 
BMV-L), using a cutoff value of 0.215, yielded the pre-
dictive accuracy of 0.781 and 0.797 in the discovery and 
test cohorts, respectively (Table 2). The results also out-
performed the accuracy of the binary classifier based on 
the C model (0.736 and 0.703 in the discovery and test 
cohorts, respectively). As for BMs from various origins, 
the C-index of the CR model was around 0.791–0.886 
(Supplementary Figure S3A; Supplementary Note S2A). 
For BMs of lung origin, administration of tyrosine kinase 
inhibitors or not did not change the prediction perfor-
mance of the CR model (C-indices: 0.837 and 0.859, re-
spectively; Supplementary Figure S3B; Supplementary 
Note S2A).

Survival Predictions

As of December 2018, 285 patients completed the OS 
follow-up since the initial SRS, and 121 patients com-
pleted the OS follow-up since the first DBF. The overall 
DBF rate was 42.5% (121/285), and the overall death rate 
was 47.7% (136/285). The median OS after first DBF for 
the entire cohort was 18.5  months (95% CI: 12.0–24.9), 
more specifically 13.0  months (95% CI: 7.7–18.4) for 
BMV-H and 25.6  months (95% CI: 15.9–35.2) for BMV-L 
patients (log-rank test, P  =  .043; Figure  3A). Moreover, 
the OS after first DBF was 13.0  months (95% CI: 4.8–
21.3) for CR-predicted BMV-H and 26.7 months (95% CI: 
8.1–45.4) for CR-predicted BMV-L patients (log-rank test, 
P  =  .016; Figure  3B). As for patients receiving salvage 
systemic treatment only, both BMV-L and CR-predicted 
BMV-L patients would have longer OS after the first DBF, 
which is less prominent in the subgroup treated with 
added salvage WBRT or SRS (Supplementary Figure S4; 
Supplementary Note S2B). In the BMV-L subgroup and 
the CR-predicted BMV-L patients, salvage SRS was as-
sociated with better OS after DBF compared to that of 
WBRT (P = .001 and P < .001, respectively; Supplementary 
Figure S5; Supplementary Note S2B).

The median OS after initial SRS was 32.4 months (95% 
CI: 26.4–38.5); more specifically 16.9 months (95% CI: 12.5–
21.3) for CR-predicted BMV-H and 52.7  months (95% CI: 
30.3–75.0) for CR-predicted BMV-L (log-rank test, P < .001; 
Figure 3C). Among patients with a DS-GPA of 1.5–2 or 2.5–4, 
the median OS after initial SRS was 13.5 and 31.0 months 
for CR-predicted BMV-H patients, respectively. The OS was 
significantly worse than for CR-predicted BMV-L, with a 
survival of 30.8 and 67.8 months (log-rank test, P < .001, and 
<.001), respectively (Figure 3D and E). Nevertheless, for pa-
tients with a DS-GPA of 0–1, no survival difference was ob-
served between the CR-predicted BMV-H and CR-predicted 
BMV-L groups (13.3 and 11.2 months, respectively, P = .531; 
Figure 3F).

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
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https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa100#supplementary-data
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Table 1. Distribution of Clinical Factors Between BMV-H and BMV-L in Discovery Set

BMV-L BMV-H Odds Ratio P

Age, mean±SD, years

 ≤60 69 (47.9) 25 (52.1) 1 .617

 >60 75 (52.1) 23 (47.9) 0.846 (0.440–1.628)  

Gender, n (%) 

 Male 61 (42.4) 18 (37.5) 1 .554

 Female 83 (57.6) 30 (62.5) 1.225 (0.626–2.397)  

Primary malignancy, n (%) 

 Lung 111 (77.1) 38 (79.2) 1  

 Breast 16 (11.1) 4 (8.3) 0.730 (0.230–2.320) .594

 GI 11 (7.6) 1 (2.1) 0.266 (0.33–2.126) .212

 Others 6 (4.2) 5 (10.4) 2.434 (0.703–8.434) .161

Number of brain metastases, n (%)

 1 92 (63.9) 16 (33.3) 1  

 2 33 (22.9) 20 (41.7) 3.485 (1.616–7.514) .001

 3–4 19 (13.2) 12 (25.0) 3.632 (1.481–8.903) .005

Systemic disease burden, n (%)

 None 72 (50.0) 22 (45.8) 1  

 Oligometastatic (1–5 extracranial metastases) 49 (34.0) 16 (33.3) 1.069 (0.510–2.238) .860

 Widespread (>5 extracranial metastases) 23 (16.0) 10 (20.8) 1.423 (0.589–3.440) .434

Extracranial progression

 No 122 (84.7) 30 (62.5) 1  

 Yes 22 (15.3) 18 (37.5) 3.327 (1.588–6.974) .001

DS-GPA (%)

 0–1 18 (12.5) 10 (20.8) 1  

 1.5–2 43 (29.9) 20 (41.7) 0.837 (0.328–2.138) .710

 2.5–3 55 (38.2) 13 (27.1) 0.425 (0.159–1.135) .088

 3.5–4 28 (19.4) 5 (10.4) 0.321 (0.094–1.095) .070

Central necrosis

 No 75 (52.1) 24 (50) 1 .803

 Yes 69 (47.9) 24 (50) 1.087 (0.565–2.089)  

Perilesional edema

 No 119 (61.0) 22 (36.1) 1 .011

 Yes 76 (39.0) 93 (63.9) 2.401 (1.226–4.702)  

Peripheral enhancement

 No 68 (47.2) 16 (33.3) 1 .095

 Yes 76 (52.8) 32 (66.7) 1.789 (0.903–3.545)  

EGFR mutant status (lung primary)

 Mutant 59 (41) 18 (37.5) 1  

 Wild type 29 (38.9) 9 (18.7) 1.017 (0.407–2.541) .971

 Not available or non-lung primary 56 (20.1) 21 (43.8) 1.229 (0.594–2.546) .579

Maximum tumor volume, mean±SD, mm3 3.289±4.270 3.309±3.319  .977

 ≤2500 83 (57.6) 24 (50.0) 1 .357

 >2500 61 (42.4) 24 (50.0) 1.361 (0.707–2.620)  

Lowest SRS margin dose, mean±SD, cGy 21.00 (20.00–22.00) 20.00 (20.00–22.00)  .798

Redi_Tumor, mean±SD 0.239±0.091 0.364±0.119  <.001

Redi_Edge, mean±SD 0.154±0.150 0.333±0.192  <.001

GI, gastrointestinal system; DS-GPA, diagnosis-specific grade prognostic assessment; BMV, brain metastases velocity; SD, standard deviation.
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Feature Analysis

There were 16 and 9 radiomic features with non-zero 
SHAP values based on the prediction of BMV-H using 
Radi_Tumor and Radi_Edge, respectively. Out of the 
top 5 ranked features of Radi_Tumor, log-sigma-2-5-
mm-3D_firstorder_Maximum had the highest SHAP 
value of 0.153, followed by 2 shape-based features 
(shape_MajorAxisLength and shape_Elongation) and 2 
high-order textural features (wavelet-LHH_glcm_Idn and 
log-sigma-3-0-mm-3D_glcm_Correlation; Figure  4A). As 
for Radi_Edge, the top 4 ranked features were all high-
order textural features, namely, log-sigma-1-5-mm-3D_
glcm_Idn, log-sigma-2-0-mm-3D_glcm_ClusterShade, 
log-sigma-3-0-mm-3D_glcm_MCC, and wavelet-HLL_
glcm_JointEntropy, followed by the shape-based feature 
shape_MajorAxisLength (Figure 4B).

Further correlation analysis between the top 5 fea-
tures of Radi_Tumor and Radi_Edge with clinical pre-
dictors indicated that shape-based features, including 
MajorAxisLength and Elongation, were significantly as-
sociated with the BMs number (P < .001). The distribution 
of the Radi_Tumor first-order statistics features and Radi_
Tumor and Radi_Edge high-order textural features varied 
across groups with different BMs numbers (Figure 4B and 
C). On the other hand, 1 Radi_Tumor first-order statistics 
feature (log-sigma-2-5-mm-3D_firstorder_Maximum) and 
2 Radi_Tumor (wavelet-LHH_glcm_Idn and log-sigma-3-0-
mm-3D_glcm_Correlation) and 3 Radi_Edge high-order tex-
tural features (log-sigma-2-0-mm-3D_glcm_ClusterShade, 
log-sigma-3-0-mm-3D_glcm_MCC, and wavelet-HLL_
glcm_JointEntropy) also correlated with PE. Additionally, 
for the subgroup of tumors with a lung origin, Radi_Tumor 
wavelet-LHH_glcm_Idn was related to the EGFR mutant 
status (P = .024).

Discussion

This study investigated the prognostic potential of an 
ML-assisted radiomic model derived from pre-SRS MR 
imaging in predicting DBF kinetics and outcomes in a co-
hort of BMs patients treated with upfront SRS. MRI-based 
radiomic features, converted into the quantitative R-scores 
Radi_Tumor and Radi_Edge, emerged as independent 
BMV-H predictors. Our risk model integrating clinical fac-
tors and R-scores displayed good discriminative power for 
BMV-H and BMV-L, with a corrected C-index of 0.842 and 
0.832 in the discovery and test cohorts, respectively. Using 
the cutoff value of 0.215 allowed us to identify 85.4% of 
BMV-H cases from the discovery cohort with a specificity of 
75.7% and 92.3% of BMV-H cases from the test cohort with 
a specificity of 76.5%.

Additionally, the CR model predicted that the 2 BMV 
subgroups independently correlated with survival after 
both initial SRS and first DBF. Especially for patients with 
an initial DS-GPA of 1.5–2 or 2.5–4, our dichotomy category 
could help select CR-predicted BMV-L patients, who have a 
better median OS of 30.8–67.8 months after initial SRS. Our 
findings may help assist future clinical decisions for newly 
diagnosed BMs patients.
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Radiomics has been emerging as an important novel im-
aging methodology in oncology and the source of quanti-
tative biomarkers for cancer treatment. However, technical 
challenges including feature reliability and overfitting prob-
lems with high-dimensional data need to be overcome. 
All MRI images in our study were obtained from unique 
scan equipment to increase reproducibility by minim-
izing imaging variations related to scanner characteristics. 
Furthermore, in addition to using the N4 bias correction 
algorithm to remove unwanted low-frequency intensity 
non-uniformity, we performed regional voxel intensity nor-
malization within 5 mm from the lesion surface to enhance 
the relationship between voxel intensities instead of that 
between raw numerical intensity values, which is unstable 
due to the lack of fixed tissue-specific numeric values from 
MRI scans. Next, we adopted XGBoost to train the predic-
tion model as it allows the implementation of gradient-
boosted decision trees and applies a higher regularized 
approach to control overfitting. Due to its scalability and 
speed,23 XGBoost has also emerged as a widely used ML 
method for high-dimensional biomedical problems.28,29 
Another important step for improving regularity is to adopt 
an ML ensemble method approach. In addition to radiomic 
features extracted from entire tumors such as Radi_Tumor, 
which reflect intratumoral heterogeneities, we used a set 

of radiomic features obtained from the tumor edge zone 
to build up Radi_Edge. The corrected C-indexes of Radi_
Tumor and Radi_Edge for the test cohort were initially 
0.709 and 0.770, respectively. After making an ensemble of 
the 2 R-scores and clinical predictors, the CR model pro-
vided a corrected C-index value of 0.832, indicating better 
regularity.

One weakness of ML-derived predictive models is that 
they function as “a black box,” offering little information 
on how exactly the model makes predictions. For model 
interpretation, we took advantage of the SHAP algorithm, 
which provided insightful measures on the importance of 
features in an ML model. Thus, the SHAP value of radiomic 
features determined their impact on the XGBoost model.

For Radi_Tumor and Radi_Edge, shape-based features 
accounted for two-fifths and one-fifth of the top 5 impor-
tant radiomic features, respectively. Upon correlation anal-
ysis, both MajorAxisLength and shape_Elongation were 
associated with multiple BMs status. Compared with single 
BM cases, the tumor-enclosing ellipsoid of multiple BMs 
will likely have a greater largest axis length. Intracranial 
BMs number is widely regarded as an important prog-
nostic factor for either DBF or survival,12,30,31 with a sim-
ilar role found for DBF in our study. MajorAxisLength not 
only quantifies the number of BMs but also their spatial 
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distribution; thus, the more widely BMs spread, the larger 
the MajorAxisLength value. In addition, shape_Elongation 
is regarded as an invasive phenotype giving rise to varia-
tions at the border between the tumor and brain tissue and 
associated with local control of BMs treated with SRS.32 
Altogether, the properties of shape features and their 

correlations with BMs number may provide one possible 
explanation of why Radi_Tumor and Radi_Edge perform 
well in predicting BMV-H.

As for textural features, first-order statistics features rep-
resented one-fifth of the top 5 important radiomic features 
of Radi_Tumor, and high-order textural features comprised 
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Figure 4. (A and B) Top 5 important radiomic features of (A) Radi_Tumor and (B) Radi_Edge according to SHAP value. (C and D) Box plot illustra-
tions of the correlation between metastases number and top 5 important radiomic features of (C) Radi_Tumor or (D) Radi_Edge. (E and F) Box plot 
illustrations of the correlation between perilesional edema and top 5 important radiomic features of (E) Radi_Tumor and (F) Radi_Edge.
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two-fifth and four-fifth of the top 5 important radiomic fea-
tures of Radi_Tumor and Radi_Edge, respectively. These 
important textural features, especially 4 leading radiomic 
features derived from the tumor edge region, correl-
ated with PE. In the past, glioblastoma PE was regarded 
as a poor prognosis factor,33 due to its association with 
cancer cell infiltration as a result of the destruction of the 
blood–brain barrier.34 Similar prognostic observations for 
PE were also found in BMs treated with SRS.35,36 Tini et al. 
demonstrated that PE greater than 10 mm correlates with 
higher out-of-field recurrence (P = .029), and Nardone et al. 
found that PE extent is associated with poor OS (hazard 
ratio [HR]: 1.044, P = .009). In our study, PE also correlated 
with BMV-H risk (HR: 2.401, P =  .011). The association be-
tween important textural features and PE may also explain 
how the model performs predictions. Additionally, Radi_
Tumor wavelet-LHH_glcm_Idn was associated with EGFR 
mutation status in the lung cancer subgroup. In previous 
studies, intracranial response and survival after BMs radi-
otherapy were significantly favorable in EGFR-mutant co-
horts.37,38 Radiomics features have also been found to be 
associated with EGFR mutation status based on CT images 
of lung cancer39 or MRI images of brain tumors.40 Although, 
in our study, EGFR mutation status was not associated with 
BMV-H, the connection between radiographic phenotypes 
and molecular genotypes is worth further investigation.

Our study is not without limitations, however. First, it is 
a single-institution study. One benefit is that all patients 
underwent a similar protocol for SRS and the same MRI 
scan sequence. Nevertheless, validation of our results by 
other medical centers will face the reproducibility chal-
lenge due to variations in treatment modality and imaging 
construction. We suggest combining image preprocessing 
and analysis workflow with the standardized radiomic fea-
tures provided by the Imaging Biomarker Standardization 
Initiative for future prospective multicenter validation.41 
In addition, all lesion segmentations in our study were 
retrieved from GTV contoured by expert radiation on-
cologists or a neurosurgeon and were independently 
reevaluated manually for inter-reader variability. Even 
when using similar delineation principles from single 
training systems for tumor segmentations, the manual 
tumor boundary delineation for radiomics analysis in other 
validation datasets may still challenge reproducibility. 
Deep neural network-based auto- or semi-auto segmenta-
tion for BMs will be required in future multi-institutional 
evaluation. Furthermore, the few cases other than lung-
origin BMs, and the lack of patients with 5 or more BMs, 
limit generalization of the CR model to other populations 
with BMs, which emphasizes the importance for external 
validation with a larger study.

Conclusions

We systematically investigated the BMV of patients receiving 
SRS by analyzing clinical data and MRI-derived radiomic 
features. The integrated CR model of clinical predictors and 
R-scores performed well to predict BMV-H based on pre-SRS 
information. CR-predicted BMV risk was significantly associ-
ated with survival after initial SRS and first DBF and may help 

select optimal radiation treatments for BMs patients. The use 
of an explainable algorithm for the ML-based model allows 
investigating the prognostic relevance of features. Further re-
search is warranted on the crosstalk between genotypes, ra-
diographic phenotypes, and other clinical predictors.

Supplementary Data

Supplementary data are available at Neuro-Oncology 
Advances online.
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