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MOGONET integrates multi-omics data using
graph convolutional networks allowing patient
classification and biomarker identification
Tongxin Wang 1,8, Wei Shao 2,8, Zhi Huang2,3, Haixu Tang1, Jie Zhang 4, Zhengming Ding 5✉ &

Kun Huang 2,6,7✉

To fully utilize the advances in omics technologies and achieve a more comprehensive

understanding of human diseases, novel computational methods are required for integrative

analysis of multiple types of omics data. Here, we present a novel multi-omics integrative

method named Multi-Omics Graph cOnvolutional NETworks (MOGONET) for biomedical

classification. MOGONET jointly explores omics-specific learning and cross-omics correlation

learning for effective multi-omics data classification. We demonstrate that MOGONET

outperforms other state-of-the-art supervised multi-omics integrative analysis approaches

from different biomedical classification applications using mRNA expression data, DNA

methylation data, and microRNA expression data. Furthermore, MOGONET can identify

important biomarkers from different omics data types related to the investigated biomedical

problems.
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The rapid advancement in high-throughput biomedical
technologies has enabled the collection of various types of
“omics” data with unprecedented details. Genome-wide

data for different molecular processes, such as mRNA expression,
DNA methylation, and microRNA (miRNA) expression, can be
acquired for the same set of samples, resulting in multiple omics
(multi-omics) data for various studies of diseases. While each
omics technology can only capture part of the biological com-
plexity, integrating multiple types of omics data can provide a
more holistic view of the underlying biological processes. Speci-
fically, for human diseases, existing studies have demonstrated
that integrating data from multiple omics technologies can
improve the accuracy of patient clinical outcome prediction
comparing with only using a single type of omics data1–7.
Therefore, there is a need for novel integrative analysis methods
to effectively take advantage of the interactions and com-
plementary information in multi-omics data.

A great number of methods have been proposed over the years to
perform multi-omics data integration for various problems. How-
ever, most existing efforts focus on unsupervised multi-omics data
integration without the additional information of sample labels8–10.
With the rapid development of personalized medicine, curated
datasets with detailed annotations that characterize the phenotypes
or traits of the samples are becoming more widely available.
Therefore, there is an increasing interest in supervised multi-omics
integration methods that can identify disease-related biomarkers
and perform predictions on new samples. Early attempts of
supervised data integration methods for biomedical classification
tasks include feature concatenation-based strategies and ensemble-
based strategies. On the one hand, concatenation-based methods
integrated different omics data types by directly concatenating the
input data features to learn the classification model5. On the other
hand, ensemble-based methods integrated the predictions from
different classifiers, each trained on one type of omics data
individually1. However, these methods failed to consider the cor-
relations among different omics data types and could be biased
toward certain omics data types. Recently, more supervised multi-
omics data integration methods focused on exploiting the interac-
tions across different omics data types have been proposed. For
example, van de Wiel et al.6 introduced an adaptive group-
regularized ridge regression method that incorporated methylation
microarray data and curated annotations of methylation probes for
cervical cancer diagnostic classification. Singh et al.4 proposed Data
Integration Analysis for Biomarker discovery using Latent cOm-
ponents (DIABLO) by extending the sparse generalized canonical
correlation analysis to a supervised setting, which could seek
common information across multiple omics types while dis-
criminating between different phenotypic groups.

With the continuous advancement of deep learning in various
tasks, more and more multi-omics integration methods begin to
take advantage of the high learning capability and flexibility of
deep neural networks (NN)2,11–13. For example, Huang et al.2

integrated the features of mRNA expression and miRNA
expression data with additional clinical information at hidden
layers for better prognosis prediction in breast cancer. However,
these existing methods are based on fully connected networks,
which did not exploit the correlations between samples effectively
through similarity networks. Moreover, while current deep
learning-based methods often integrate different omics data at the
input space11,13 or the learned feature space2,12, different types of
omics data can also present unique characteristics at the high-
level label space. Therefore, it is crucial to utilize the correlations
across different classes and different omics data types to further
boost the learning performance.

To this end, we introduce MOGONET, a multi-omics data
analysis framework for classification tasks in biomedical

applications. MOGONET unifies omics-specific learning with
multi-omics integrative classification at the label space. Specifi-
cally, MOGONET utilizes graph convolutional networks (GCN)
for omics-specific learning. Comparing with the fully connected
NN, GCN takes advantage of both the omics features and the
correlations among samples described by the similarity networks
for better classification performance. Besides directly con-
catenating the label distribution from each omics data type,
MOGONET also utilizes View Correlation Discovery Network
(VCDN) to explore the cross-omics correlations at the label space
for effective multi-omics integration. To the best of our knowl-
edge, MOGONET is the first supervised multi-omics integrative
method that utilizes GCNs for omics data learning to perform
effective class prediction on new samples. We demonstrated the
capabilities and versatility of MOGONET through a wide range of
biomedical classification applications, including Alzheimer’s dis-
ease patient classification, tumor grade classification in low-grade
glioma (LGG), kidney cancer type classification, and breast
invasive carcinoma subtype classification. We also showed the
necessity of integrating multiple omics data types as well as the
importance of combining both GCN and VCDN for multi-omics
data classification through comprehensive ablation studies.
Moreover, we demonstrated that MOGONET can identify
important omics signatures and biomarkers related to the
investigated biomedical problems.

Results
Framework of MOGONET. We introduce MOGONET, a
supervised multi-omics integration framework for biomedical
classification tasks (Fig. 1). After preprocessing and feature pre-
selection to remove noise and redundant features, we first use
GCNs to learn the classification task with each omics data type
individually. Specifically, we construct a weighted sample simi-
larity network for each type of omics data using cosine similarity.
Taking the input of both the omics features and the corre-
sponding similarity network, a GCN is trained for each omics
data type to generate initial predictions of class labels. A major
advantage of GCNs is that they can exploit the information from
both the omics data and the correlations between samples for
better prediction. Then, initial predictions generated by each
omics-specific GCN are further utilized to construct the cross-
omics discovery tensor, which reflects the cross-omics label cor-
relations. Finally, the cross-omics discovery tensor is reshaped
into a vector and forwarded to VCDN for final label prediction.
VCDN can effectively integrate initial predictions from each
omics-specific network by exploring the latent correlations across
different omics data types in the higher-level label space. MOG-
ONET is an end-to-end model, and omics-specific GCNs and
VCDN are trained alternatively until convergence. To this end,
the final prediction from MOGONET is based on both effective
omics-specific predictions generated by GCNs and the learned
cross-omics label correlation knowledge generated by VCDN. To
the best of our knowledge, MOGONET is the first method to
explore both GCNs and cross-omics relationships in the label
space for effective multi-omics integration in biomedical data
classification tasks.

Datasets. To demonstrate the effectiveness of MOGONET, we
applied the proposed method on four different biomedical clas-
sification tasks using four different datasets: ROSMAP for Alz-
heimer’s Disease (AD) patients vs. normal control (NC)
classification, LGG for grade classification in low-grade glioma
(LGG), KIPAN for kidney cancer type classification, and BRCA
for breast invasive carcinoma (BRCA) PAM50 subtype classifi-
cation. Three types of omics data (i.e., mRNA expression data
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(mRNA), DNA methylation data (meth), and miRNA expression
data (miRNA)) were used for classification to provide compre-
hensive and complementary information on the diseases. Only
samples with matched mRNA expression, DNA methylation, and
miRNA expression data were included in our study. The details of
the datasets are listed in Table 1. Since noise redundant features
may affect the performance of classification tasks, preprocessing
and feature preselection were performed on each omics data type
individually, and the number of features used for training was
also listed in Table 1.

Omics data of LGG, KIPAN, and BRCA, as well as the grade
information of LGG patients, were acquired from The Cancer
Genome Atlas Program (TCGA) through Broad GDAC Firehose.
PAM50 is a 50-gene signature that classifies breast cancer into
five molecular subtypes: normal-like, basal-like, human epidermal
growth factor receptor 2 (HER2)-enriched, Luminal A, and
Luminal B14,15. The PAM50 breast cancer subtype information of
TCGA BRCA patients was acquired through TCGAbiolinks16.
Different omics data in the ROSMAP dataset were acquired from
AMP-AD Knowledge Portal17. ROSMAP is composed of ROS
and MAP, which both are longitudinal clinical-pathologic cohort
studies of AD from Rush University18,19.

For kidney cancer type classification, the differences among
chromophobe renal cell carcinoma (KICH), clear renal cell

carcinoma (KIRC), and papillary renal cell carcinoma (KIRP) can
be clearly observed in the omics data. Therefore, kidney cancer
type classification is the simplest task among these classification
tasks and serves more as a proof-of-concept experiment for
multi-class applications. On the other hand, while multi-omics
integration methods have been well studied for cancers2,4,11–13,
analysis of AD with multiple omics data types is an emerging
field. For example, Jiang et al.20 analyzed mRNA and miRNA
expression data to identify active transcription factors and
miRNA regulatory pathways in AD to better understand the
pathology of AD. Humphries et al.21 combined RNA sequencing
and DNA methylation data to identify gene networks specific to
late-onset AD. However, methods that directly address the
accurate identification of AD patients from normal age-matched
people with machine learning algorithms are still limited. Here, to
demonstrate the generalization ability of MOGONET to different
diseases and medical applications, we also applied MOGONET
on AD patient classification using the ROSMAP dataset, where
AD patients and NC subjects were selected for the classification
task in our experiment.

Multi-omics classification performance evaluation. We com-
pared the classification performance of MOGONET with existing
supervised multi-omics integration algorithms. We also

Fig. 1 Illustration of MOGONET.MOGONET combines GCN for multi-omics-specific learning and VCDN for multi-omics integration. For clear and concise
illustration, an example of one sample is chosen to demonstrate the VCDN component for multi-omics integration. Preprocessing is first performed on
each omics data type to remove noise and redundant features. Each omics-specific GCN is trained to perform class prediction using omics features and the
corresponding sample similarity network generated from the omics data. The cross-omics discovery tensor is calculated from the initial predictions of
omics-specific GCNs and forwarded to VCDN for final prediction. MOGONET is an end-to-end model and all networks are trained jointly.

Table 1 Summary of datasets.

Dataset Categories Number of features mRNA,
meth, miRNA

Number of features for training mRNA,
meth, miRNA

ROSMAP NC: 169, AD: 182 55,889, 23,788, 309 200, 200, 200
LGG Grade 2: 246, Grade 3: 264 20,531, 20,114, 548 2000, 2000, 548
KIPAN KICH: 66, KIRC: 318, KIRP: 274 20,531, 20,111, 445 2000, 2000, 445
BRCA Normal-like: 115, Basal-like: 131, HER2-enriched: 46,

Luminal A: 436, Luminal B: 147
20,531, 20,106, 503 1000, 1000, 503

mRNA refers to mRNA expression data. meth refers to DNA methylation data. miRNA refers to miRNA expression data. The ROSMAP dataset is for the classification of Alzheimer’s disease (AD) patients
vs. normal control (NC). The LGG dataset is for grade classification in low-grade glioma (LGG). The KIPAN dataset is for kidney cancer type classification with chromophobe renal cell carcinoma (KICH),
clear renal cell carcinoma (KIRC), and papillary renal cell carcinoma (KIRP). The BRCA dataset is for breast invasive carcinoma (BRCA) PAM50 subtype classification with normal-like, basal-like, human
epidermal growth factor receptor 2 (HER2)-enriched, Luminal A, and Luminal B subtypes.
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performed comprehensive ablation studies to demonstrate the
necessity of different components in MOGONET. To compare
the effectiveness of different multi-omics integration methods, we
randomly selected 30% of the samples in a dataset as the test set
and the remaining 70% of the samples as the training set. The test
set was constructed by preserving the class distribution in the
original dataset. To evaluate the performance of the compared
methods, we used accuracy (ACC), F1 score (F1), and area under
the receiver operating characteristic curve (AUC) for binary
classification tasks, and we used accuracy (ACC), average F1 score
weighted by support (F1_weighted), and macro-averaged F1 score
(F1_macro) for multi-class classification tasks. We evaluated all
the methods on five different randomly generated training and
testing splits, and the mean and standard deviation of the eva-
luation metrics across these five experiments were reported.

MOGONET outperformed existing supervised multi-omics
integration methods in various classification tasks. We com-
pared the classification performance of MOGONET with the
following nine existing classification algorithms for omics data:
(1) K-nearest neighbor classifier (KNN). Label predictions were
made by voting of KNN in the training data. (2) Support vector
machine classifier (SVM). (3) Linear regression trained with L1
regularization (Lasso). In Lasso, an individual model was trained
to predict the probability of each class, and the class predicted
with the highest probability was selected as the final prediction of
the class label for the entire model. (4) Random forest classifier
(RF). (5) Gradient tree boosting-based classifier implemented in
the XGBoost package (XGBoost). (6) Fully connected NN

classifier. Deep fully connected NN were trained with cross-
entropy loss. (7) Adaptive group-regularized ridge regression
(GRridge)6. The implementation in the GRridge R package was
used. (8) Block PLSDA. Block PLSDA is a multi-omics integra-
tion method that projects data to latent structures with dis-
criminant analysis. Block PLSDA integrates multiple types of
omics data measured on the same set of samples to classify a
discrete outcome. Block PLSDA is one of the supervised analysis
methods included in DIABLO4. (9) Block sPLSDA. Block
sPLSDA is block PLSDA with additional sparse regularization,
which can select relevant features from the dataset. It is also a
supervised analysis method within DIABLO. Implementations in
the mixOmics R package22 were used for block PLSDA and block
sPLSDA. Block PLSDA and block sPLSDA represent the state-of-
the-art approaches for supervised multi-omics integration and
classification. Among the tested methods, KNN, SVM, Lasso, RF,
XGBoost, and NN were trained with the direct concatenation of
the preprocessed multi-omics data as input. All methods were
trained with the same preprocessed data. The classification results
for ROSMAP, LGG, BRCA, and KIPAN are shown in Tables 2–4
and Supplementary Table 1, respectively.

From Tables 2–4 and Supplementary Table 1, we observed that
MOGONET outperformed the compared multi-omics integration
methods in most classification tasks. The only exception was in
LGG grade classification, where XGBoost and MOGONET
yielded the same average AUC. However, MOGONET still
achieved better performance in LGG grade classification than
XGBoost when evaluated with ACC and F1. Additionally, we
evaluated the performance of multi-class classification tasks using
average AUC score weighted by support (AUC_weighted) and

Table 2 Classification results on ROSMAP dataset.

Method ACC F1 AUC

KNN 0.657 ± 0.036 0.671 ± 0.044 0.709 ± 0.045
SVM 0.770 ± 0.024 0.778 ± 0.016 0.770 ± 0.026
Lasso 0.694 ± 0.037 0.730 ± 0.033 0.770 ± 0.035
RF 0.726 ± 0.029 0.734 ± 0.021 0.811 ± 0.019
XGBoost 0.760 ± 0.046 0.772 ± 0.045 0.837 ± 0.030
NN 0.755 ± 0.021 0.764 ± 0.021 0.827 ± 0.025
GRridge 0.760 ± 0.034 0.769 ± 0.029 0.841 ± 0.023
block PLSDA 0.742 ± 0.024 0.755 ± 0.023 0.830 ± 0.025
block sPLSDA 0.753 ± 0.033 0.764 ± 0.035 0.838 ± 0.021
NN_NN 0.766 ± 0.023 0.777 ± 0.019 0.819 ± 0.017
NN_VCDN 0.775 ± 0.026 0.790 ± 0.018 0.843 ± 0.021
MOGONET_NN (Ours) 0.804 ± 0.016 0.808 ± 0.010 0.858 ± 0.024
MOGONET (Ours) 0.815 ± 0.023 0.821 ± 0.022 0.874 ± 0.012

Table 3 Classification results on LGG dataset.

Method ACC F1 AUC

KNN 0.729 ± 0.034 0.738 ± 0.033 0.799 ± 0.038
SVM 0.754 ± 0.046 0.757 ± 0.050 0.754 ± 0.046
Lasso 0.761 ± 0.018 0.767 ± 0.022 0.823 ± 0.027
RF 0.748 ± 0.012 0.742 ± 0.010 0.823 ± 0.010
XGBoost 0.756 ± 0.040 0.767 ± 0.032 0.840 ± 0.023
NN 0.737 ± 0.023 0.748 ± 0.024 0.810 ± 0.037
GRridge 0.746 ± 0.038 0.756 ± 0.036 0.826 ± 0.044
block PLSDA 0.759 ± 0.025 0.738 ± 0.031 0.825 ± 0.023
block sPLSDA 0.685 ± 0.027 0.662 ± 0.030 0.730 ± 0.026
NN_NN 0.740 ± 0.039 0.756 ± 0.036 0.824 ± 0.036
NN_VCDN 0.740 ± 0.030 0.771 ± 0.021 0.826 ± 0.031
MOGONET_NN (Ours) 0.804 ± 0.025 0.811 ± 0.023 0.832 ± 0.029
MOGONET (Ours) 0.816 ± 0.016 0.814 ± 0.014 0.840 ± 0.027
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macro-averaged AUC score (AUC_macro), with the results for
BRCA and KIPAN shown in Supplementary Tables 6 and 7.
MOGONET achieved the best performance on the BRCA dataset
when evaluated using the AUC metrics while achieved the same
average AUC scores as GRridge on the KIPAN dataset. Note that
the classification of kidney cancer type using the KIPAN dataset
was a relatively simpler task served as a proof-of-concept
experiment for multi-class applications, where all the compared
methods achieved quite high performance in different metrics.
However, MOGONET still outperformed GRridge when evalu-
ated using ACC, F1_weighted, and F1_macro on the KIPAN
dataset. Moreover, MOGONET consistently outperformed the
state-of-the-art supervised multi-omics integration methods (i.e.,
block PLSDA and block sPLSDA) in different classification tasks,
demonstrating the superiority of multi-omics data classification
capability by combining GCNs for omics-specific learning and
VCDN for multi-omics integration. Comparing with existing
methods, the advantages of MOGONET were further demon-
strated in difficult applications such as AD patient classification
and BRCA subtype classification, indicating the superior learning
capability of MOGONET. Interestingly, although deep learning-
based methods have shown great promises in classification
applications, the deep learning-based method NN did not show
clear improvements over other approaches. This observation
suggested that proper design of deep learning algorithms specific
to supervised multi-omics integration applications was required
to achieve superior classification performance.

Different subtypes of BRCA using PAM50 classification may
indicate different tumorigenesis mechanisms, and some subtypes
may be closer in terms of molecular features than the others.
Therefore, we further evaluated the performance of different
methods on BRCA PAM50 subtype classification with the
following two additional definitions of labels while trained with
the labels of five subtypes. One was the binary classification of
normal-like vs. non-normal-like subtypes, where the non-
normal-like category included the rest four different subtypes
(Supplementary Table 2). The other one included four categories,
where the Luminal A and Luminal B subtypes were merged into
one category as they are more associated with each other than the
rest of the subtypes (Supplementary Table 3)14,15. Note that for
the same method, results in Table 4 and Supplementary Tables 2
and 3 were from the evaluation on the same set of models that
performs prediction of five BRCA subtypes, while only different
definitions of the labels were used for evaluation. When
considered jointly, Table 4 and Supplementary Tables 2 and 3
can comprehensively reflect the classification performance while
considering the hierarchical relationship among BRCA subtypes.
From Supplementary Table 2, we observed that block PLSDA,

block sPLSDA, and MOGONET achieved similar performance on
the classification of normal-like vs. non-normal-like subtypes,
where MOGONET yielded better ACC and block PLSDA and
block sPLSDA yielded better F1 and AUC. However, both block
PLSDA and block sPLSDA obtained significantly worse perfor-
mance than MOGONET when differentiating the different
subtypes within the non-normal-like category (Table 4 and
Supplementary Table 3). On the other hand, MOGONET
consistently outperformed other methods under these three
different subtype definitions (Table 4 and Supplementary Tables 2
and 3), which demonstrated that MOGONET could effectively
differentiate different BRCA subtypes while considering the
intrinsic relationships between different subtypes.

To further demonstrate the generalizability of MOGONET, we
also evaluated its performance by training and testing on different
patient cohorts from different institutions in the BRCA dataset
(Supplementary Table 4). From Supplementary Table 4, we
observed that MOGONET achieved similar performance as
experiments with randomly partitioned training and test samples,
which indicated that MOGONET models could be generalized to
different datasets on the same classification task.

MOGONET outperformed its variations in various classifica-
tion tasks. MOGONET combines omics-specific learning via
GCNs with cross-omics correlation learning via VCDN for
effective multi-omics classification. To examine the necessity of
GCN and VCDN for effective multi-omics data classification, we
performed extensive ablation studies of our proposed method
where three additional variations of MOGONET were compared.
(1) NN_NN: fully connected NN with the same number of layers
and the same dimensions of hidden layers as the GCN part in
MOGONET were used for omics-specific classification. A fully
connected NN with the same number of layers as VCDN was
used for multi-omics integration. However, instead of con-
structing the cross-omics discovery tensor, label distribution from
each omics data type was directly concatenated to a vector as the
input of the multi-omics integration network. (2) NN_VCDN:
the omics-specific classification component was the same as
NN_NN without utilizing GCNs. The multi-omics integration
component utilized VCDN, which was the same as MOGONET.
(3) MOGONET_NN: the omics-specific classification component
utilized GCN, which was the same as MOGONET. The multi-
omics integration part was the same as NN_NN without utilizing
VCDN. Note that MOGONET_NN itself is also a novel
approach. To the best of our knowledge, there is no existing
method that applies GCNs to supervised multi-omics data clas-
sification problems.

Table 4 Classification results on BRCA dataset.

Method ACC F1_weighted F1_macro

KNN 0.742 ± 0.024 0.730 ± 0.023 0.682 ± 0.025
SVM 0.729 ± 0.018 0.702 ± 0.015 0.640 ± 0.017
Lasso 0.732 ± 0.012 0.698 ± 0.015 0.642 ± 0.026
RF 0.754 ± 0.009 0.733 ± 0.010 0.649 ± 0.013
XGBoost 0.781 ± 0.008 0.764 ± 0.010 0.701 ± 0.017
NN 0.754 ± 0.028 0.740 ± 0.034 0.668 ± 0.047
GRridge 0.745 ± 0.016 0.726 ± 0.019 0.656 ± 0.025
block PLSDA 0.642 ± 0.009 0.534 ± 0.014 0.369 ± 0.017
block sPLSDA 0.639 ± 0.008 0.522 ± 0.016 0.351 ± 0.022
NN_NN 0.796 ± 0.012 0.784 ± 0.014 0.723 ± 0.018
NN_VCDN 0.792 ± 0.010 0.781 ± 0.006 0.721 ± 0.018
MOGONET_NN (Ours) 0.805 ± 0.017 0.782 ± 0.030 0.737 ± 0.038
MOGONET (Ours) 0.829 ± 0.018 0.825 ± 0.016 0.774 ± 0.017
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As shown in Tables 2–4 and Supplementary Table 1, we
observed that MOGONET outperformed NN_NN and
NN_VCDN in all classification tasks. While MOGONET_NN
achieved similar performance as MOGONET in tasks like LGG
grade classification, MOGONET still consistently produced better
mean metrics than MOGONET_NN in all classification tasks.
The similar performance between MOGONET_NN and MOG-
ONET and the better performance of MOGONET_NN than
NN_VCDN indicates that our use of GCNs for multi-omics
classification tasks makes significant contributions to the
performance boost of MOGONET comparing with existing
methods. Compared with traditional NN that only learn from
omics features, GCNs further exploits the graph structural
information within the data. This can be essential to the more
comprehensive understanding of the omics data as it captures the
connections and correlations among samples. Another possible
reason for the similar performance between MOGONET_NN
and MOGONET could be related to that the contribution of
cross-view correlation in the label space might be limited when
the number of distinct categories is small. For example, in the
LGG grade classification problem, the number of distinct labels
was limited to two. In this case, MOGONET_NN and MOGONET
shared the same number of layers for the multi-omics integration
component except that the input dimensions were different. In the
LGG grade classification problem, the input dimension for the
multi-omics integration component was 2 × 3= 6 in MOGO-
NET_NN, while the input dimension for the same component was
23= 8 in MOGONET. While VCDN can effectively utilize the
cross-view correlation in the label space, such advantage could be
limited when the number of distinct labels was small. Moreover, in
the application of VCDN to human action recognition, its
advantage compared with NN became more obvious when dealing
with complex datasets with over ten classes23. Nevertheless,
exploring cross-view correlations was still essential to multi-omics
classification as we observed that MOGONET produced better
results than MOGONET_NN in all classification tasks under
different evaluation metrics. Another interesting observation was
that while MOGONET consistently outperformed MOGO-
NET_NN, NN_VCDN failed to consistently outperform NN_NN
in all the classification tasks. One possible explanation of this is
related to the construction of the cross-omics discovery tensor.
Since the input of VCDN was constructed by multiplying the class
probabilities predicted by each omics-specific classifier, the
prediction noise or error might be amplified if the omics-specific
classifiers were not effective. Therefore, GCNs were needed for
effective omics-specific learning to fully exploit the advantages of
VCDN, and these two components could be trained jointly to
achieve superior results for multi-omics classification tasks.

Performance of MOGONET under different omics data types.
While we used three omics data types in our classification tasks,
MOGONET can also be extended to accommodate different
numbers of omics data types. To demonstrate the effectiveness of
MOGONET with different choices of data modalities, we com-
pared its performance with other methods on the BRCA dataset
using only two types of omics data: mRNA expression data and
DNA methylation data (Supplementary Table 5). We observed
that similar to the case with three different omics data types,
MOGONET still consistently outperformed existing methods on
the BRCA dataset when trained with mRNA expression and DNA
methylation data. This demonstrates that MOGONET could be
extendable to different numbers of omics data types.

Moreover, to further demonstrate the necessity of integrating
multiple types of omics data to boost the classification
performance in biomedical applications, we compared the

classification performance of MOGONET with three types of
omics data (mRNA+meth+miRNA for combining mRNA
expression, DNA methylation, and miRNA expression data),
MOGONET with two types of omics data (mRNA+meth for
combining mRNA expression and DNA methylation data,
mRNA+miRNA for combining mRNA expression and miRNA
expression data, and meth+miRNA for combining DNA
methylation and miRNA expression data), and the omics-
specific GCNs trained with single-omics data type before
integration (mRNA for mRNA expression data, meth for DNA
methylation data, and miRNA for miRNA expression data). The
results are shown in Fig. 2 and Supplementary Fig. 1. From Fig. 2
and Supplementary Fig. 1, we observed that by exploring the
cross-omics label correlations through VCDN, the classification
performance was consistently improved by integrating classifica-
tion results from multiple omics data types. Specifically, in all of
the classification tasks, MOGONET models trained with three
omics data types achieved the best performance comparing with
MOGONET models trained with two omics data types. More-
over, all the MOGONET models trained with two omics data
types outperformed the single-omics GCN models using the
corresponding omics data types. Another interesting observation
was that some MOGONET models with two omics data types
(e.g., mRNA+miRNA in the ROSMAP dataset, mRNA+meth,
and mRNA+miRNA in the BRCA dataset) and omics-specific
GCNs (e.g., mRNA GCN in the BRCA dataset) could produce
superior results even comparing with some existing multi-omics
integration methods trained with three omics data types. This
further demonstrates the effectiveness of GCNs in omics data
classification problems and the effectiveness of cross-omics
learning with VCDN for omics data.

Performance of MOGONET under different hyper-parameter
k. One important hyper-parameter in MOGONET is k, which
determines the threshold of affinity values adaptively when con-
structing the weighted sample similarity networks for omics-
specific GCNs (Eq. (4)). In our applications, k represents the
average number of edges per sample retained in the similarity
networks. Similarity networks that faithfully capture the inter-
actions between samples can boost the performance of GCNs by
providing additional information on sample correlations. How-
ever, if k is too small, the similarity network becomes too sparse,
and some important interactions between samples may be mis-
sed. In contrast, if k is too large, the similarity network becomes
too dense, and noise or artifacts of correlations between samples
may be included. Therefore, choosing a proper k value is
important for the performance of MOGONET. However, a
proper choice of k depends on the topological structure of data,
which may vary from dataset to dataset. In our experiments, k
was determined through cross-validation on the training data. To
further demonstrate the effects of the hyper-parameter k on the
performance of MOGONET in both binary and multi-class
classification tasks, we trained MOGONET under a wide range of
k values using the ROSMAP dataset and the BRCA dataset.
Figure 3 shows the performance of MOGONET when k varies
from 2 to 10, where the dashed lines represent the results from
the best performed existing multi-omics integration methods
(GRridge for ROSMAP and XGBoost for BRCA). From Fig. 3, we
observed that the hyper-parameter k did influence the classifi-
cation performance of MOGONET as the performance fluctuated
with the change of k. However, MOGONET was still robust to the
change of k as it consistently outperformed existing methods
under different k values. The only exception was when k= 7 in
the ROSMAP dataset. In this case, while GRridge yielded higher
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AUC than MOGONET, MOGONET still produced higher ACC
and F1 than GRridge.

Important biomarkers identified by MOGONET. Following the
approach introduced in the “Methods” section, we obtained the
rankings of important biomarkers identified by MOGONET. The
top 30 important biomarkers for the ROSMAP, BRCA, and LGG
dataset were reported in Tables 5 and 6 and Supplementary

Table 8, respectively, with the corresponding rankings in Sup-
plementary Tables 9–11. As mentioned in previous sections, the
KIPAN dataset served as a proof-of-concept experiment for
multi-class applications, and therefore was excluded from further
detailed biomarker identification analysis. Overall, the identified
biomarkers by MOGONET were quite diverse within each disease
in terms of their function and enriched biological processes.
Detailed discussions on the results of the ROSMAP and BRCA
datasets are in the following sections, while the discussions on the

Fig. 2 Performance comparison of multi-omics data classification via MOGONET and single-omics data classification via GCN (n= 5 experiments for
each model). a Results of the ROSMAP dataset. b Results of the LGG dataset. c Results of the BRCA dataset. Means of evaluation metrics with standard
deviations from different experiments are shown in the figure, where the error bar represents plus/minus one standard deviation. mRNA, meth, and miRNA
refer to single-omics data classification via GCN with mRNA expression data, DNA methylation data, and miRNA expression data, respectively. mRNA+
meth, mRNA+miRNA, and meth+miRNA refer to classification with two types of omics data. mRNA+meth+miRNA refers to classification with three
types of omics data. Source data are provided as a Source Data file.
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results of the LGG dataset are in the Supplementary Discussion.
For comparison purposes, we also used sPLSDA24 in the mixO-
mics R package22 to identify important features in the ROSMAP,
BRCA, and LGG datasets (Supplementary Tables 12–14). Unlike
block sPLSDA, sPLSDA does not require users to specify the
number of identified biomarkers for each omics data type sepa-
rately, which allows a more direct comparison with MOGONET.

For genes of the top-ranked mRNA expression features and
genes inferred from the top-ranked DNA methylation features,
we applied the ToppGene Suite25 for gene set functional
enrichment analysis. The enrichment analysis helps us determine
if genes identified by MOGONET were biologically meaningful.
ToppGene Suite can find biological annotations such as Gene
Ontology (GO) terms that are significantly enriched in a set of
genes. To account for multiple testings and control the false
discovery rate (FDR), the Benjamini–Hochberg procedure was
applied, and the adjusted p values were reported.

MOGONET identified biomarkers related to Alzheimer’s dis-
ease. For AD patient classification, eight mRNA features, five
DNA methylation features, and 17 miRNA features were identi-
fied by MOGONET as the top 30 important biomarkers
(Table 5). For genes identified by mRNA expression features,
several GO terms related to APLN and KIF5A were significantly
enriched, including apelin receptor binding (GO:0031704, p=
4.90E−2) and central region of growth cone (GO:0090724, p=
4.82E−2). Moreover, the apelin domain was also significantly
enriched by the genes identified from mRNA expression (p=
1.15E−2). Apelin has been proposed as a promising target for
AD26,27. Apelin are expressed in various parts of the central
nervous system in humans28 and plays an important role in the
pathogenesis of AD27. For example, it has been shown that apelin
may involve in the regulation of Tau phosphorylation and amy-
loid-β accumulation, thus affects the pathophysiology of
AD26,27,29. Moreover, as a key isoform of kinesin-1, KIF5A is
critical in facilitating anterograde mitochondrial transport in
neurons30. Wang et al.31 also reported a potential role of KIF5A
deficiency in AD-relevant axonal mitochondrial traffic abnorm-
alities and suggested therapeutic value in AD treatment through
restoring KIF5A function. For genes related to the identified DNA
methylation features by MOGONET, several GO terms related to
the inflammatory process were significantly enriched, including
myeloid leukocyte activation (GO:0002274, p= 3.30E−2), posi-
tive regulation of cytokine secretion (GO:0050715, p= 3.30E−2),
and positive regulation of inflammatory response (GO:0050729,
p= 3.30E−2). Several studies have suggested the involvement of
inflammation in AD pathogenesis by showing the increased levels
of inflammatory cytokines in AD26,32,33. It has also been shown
that the secretion of cytokines and chemokines could regulate the
activity of microglia and astrocytes in AD, which plays a critical
role in inflammation and neurodegeneration34. On the other
hand, for biomarkers identified by sPLSDA, some GO terms
related to the solute carrier family were significantly enriched,
such as amino acid sodium symporter activity (GO:0005283, p=
1.56E−2). Moreover, APLN and another kinesin-1-related gene
KIF5B were also identified.

Moreover, highly-ranked genes and miRNAs identified by
MOGONET have also been shown to be associated with AD.
Cogswell et al.35 found that the expression level of hsa-miR-423
was significantly altered in the hippocampus and medial frontal
gyrus for early and late-stage AD patients comparing to control
samples, where both hippocampus and medial frontal gyrus were
regions primarily affected by AD pathology. In addition, Nagaraj
et al.36 reported that hsa-miR-33a was deferentially expressed in
blood plasma between AD patients and age-matched controls.
For identified mRNA expression and DNA methylation

Fig. 3 Performance of MOGONET under different values of hyper-parameter k. a Results of the ROSMAP dataset. b Results of the BRCA dataset. The
dashed lines represent the results from the best performed existing multi-omics integration methods (GRridge for ROSMAP and XGBoost for BRCA).
MOGONET outperformed the best existing methods under different k values. Source data are provided as a Source Data file.

Table 5 Important omics biomarkers identified by
MOGONET in the ROSMAP dataset.

Omics data type Biomarkers

mRNA
expression (8)

NPNT, CDK18, KIF5A, SPACA6, TCEA3, SYTL1, ARRDC2,
APLN

DNA
methylation (5)

TMC4, AGA, HYAL2, CCL3, TTC15

miRNA
expression (17)

hsa-miR-423-3p, hsa-miR-33a, hsa-miR-640, hsa-miR-
362-3p, hsa-miR-491-5p, hsa-miR-206, hsa-miR-548b-
3p, hsa-miR-127-3p, hsa-miR-106a_hsa-miR-17, hsa-
miR-424, hsa-miR-577, hsa-miR-873, hsa-miR-651, hsa-
miR-199b-5p, hsa-miR-192, hsa-miR-199a-5p, hsv1-miR-
H1

Table 6 Important omics biomarkers identified by
MOGONET in the BRCA dataset.

Omics
data type

Biomarkers

mRNA
expression (15)

SOX11, AMY1A, SLC6A15, FABP7, SLC6A14, SLC6A2,
FGFBP1, DSG1, UGT8, ANKRD45, PI3, SERPINB5,
COL11A2, ARHGEF4, SOX10

DNA
methylation (9)

GPR37L1, MIR563, OR1J4, ATP10B, KRTAP3-3, FLJ41941,
TMEM207, CDH26, MT1DP

miRNA
expression (6)

hsa-mir-205, hsa-mir-187, hsa-mir-452, hsa-mir-20b,
hsa-mir-224, hsa-mir-204
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biomarkers, Hohman et al.37 identified the lower expression of
TMC4 was associated with the amyloid deposition-related decline
in executive function. Besides, the overexpression of CDK18 could
regulate the phosphorylation of Tau protein in human brain
while hyper-phosphorylated Tau is known to be associated with
the pathology of AD38.

MOGONET identified biomarkers related to breast cancer. For
BRCA PAM50 subtype classification, 15 mRNA features, nine
DNA methylation features, and six miRNA features were identi-
fied by MOGONET as the top 30 important biomarkers (Table 6).
For genes identified by mRNA expression features, several GO
terms related to breast cancer were significantly enriched,
including epithelial cell proliferation (GO:0050673, p= 3.51E−2)
and response to progesterone (GO:0032570, p= 3.51E−2). For
example, the progesterone receptor is often used as a positive
prognostic marker in estrogen receptor-α (ERα)+ breast
cancers39. Mohammed et al.40 further demonstrated that
an activated progesterone receptor could function as a pro-
liferative brake in ERα+ breast tumors via modulation of ERα
chromatin binding and transcriptional activity. Several GO
terms related to the solute carrier family were also significantly
enriched, such as neurotransmitter transmembrane transporter
activity (GO:0005326, p= 5.35E−4) and symporter activity
(GO:0015293, p= 4.35E−3). Among the identified solute carrier
family genes, SLC6A14 has been shown to be one of the glucose
metabolism-related genes that were downregulated by metformin
in triple-negative breast cancer (TNBC)41. Additionally, prosa-
posin receptor activity (GO:0036505, p= 2.69E−2) was sig-
nificantly enriched for genes related to the identified DNA
methylation features by MOGONET. Wu et al.42 demonstrated
that prosaposin could upregulate estrogen receptor alpha expres-
sion through the mitogen-activated protein kinase (MAPK)-sig-
naling pathway and suggested that prosaposin may be involved in
breast cancer development and progression. On the other hand,
for genes identified from mRNA expression data by sPLSDA, no
significantly enriched GO term was found. For DNA methylation
features identified by sPLSDA, several biological process terms
were significantly enriched, including positive regulation of
MAPK cascade (GO:0043410, p= 4.26E−2) and regulation of
glucose metabolic process (GO:0010906, p= 4.26E−2). Studies
have shown that hormone-bound steroid receptors activate dif-
ferent complex MAPK-related pathways in breast cancer cells43,44.
It has also been shown that glucose and factors related to glucose
metabolism could contribute to breast cancer development45.

Moreover, highly-ranked genes and miRNAs identified by
MOGONET have also been shown to be associated with breast
cancer. For example, Shepherd et al.46 demonstrated that SOX11
was critical for regulating the expression of many genes that
define the basal-like subtype. They also demonstrated that SOX11
was related to the invasion and migration of basal-like breast
tumors. FABP7 has also been shown to be related to different
breast cancer subtypes. Cordero et al.47 uncovered the critical role
of FABP7 in metabolic reprogramming of HER2+ breast cancer
cells as well as HER2+ breast cancer brain metastasis. Zhang
et al.48 identified a novel subgroup within the basal-like breast
tumors with higher expression of FABP7 that showed signifi-
cantly better clinical outcomes. For identified miRNA biomar-
kers, there have been several studies investigating the association
between miRNA-205 and breast cancer. Specifically, miRNA-205
is generally downregulated and exhibits a tumor-suppressive
function in breast cancer49. While miRNA-205 expression is
decreased in breast cancer, the relative levels of downregulation
vary across different subtypes. For example, miRNA-205 is
upregulated in estrogen/progesterone+ breast cancer compared

with HER2+ breast cancer50, while TNBCs usually express the
least miRNA-205 among different subtypes51,52. Moreover,
different studies also showed that metastatic breast cancers had
lower expression levels of miRNA-205 than non-metastatic breast
cancers51,53. In addition, miRNA-187 was identified as an
independent prognostic factor in breast cancer, where its
overexpression was associated with a more aggressive
phenotype54.

Discussion
The rapid advancement of omics technologies has enabled per-
sonalized medicine using molecular-level data with unprece-
dented details. Previously, labeled biomedical data have been
scarce due to the high expense for collecting and annotating data
and the lack of knowledge about subtypes of diseases. Conse-
quently, most existing multi-omics integration methods focus on
unsupervised methods without additional phenotypic informa-
tion and try to extract biological insights from the identified
clusters of samples. However, thanks to the rapid development of
omics technologies and personalized medicine, as well as large
consortium studies such as TCGA and ROSMAP, labeled omics
datasets with detailed annotations are becoming available at an
unprecedented volume and speed. Therefore, it has become more
and more important to take advantage of these labeled omics data
to better predict essential phenotypes or traits (e.g., disease
diagnosis, grading of tumors, and cancer subtypes) on new
samples. To this end, we propose MOGONET, a supervised
multi-omics integration method for biomedical classification
tasks based on deep multi-view learning, where we consider each
omics data type as a view of the samples. We utilized GCNs for
omics-specific learning and VCDN for multi-omics integration at
the high-level label space. MOGONET also effectively identified
meaningful potential biomarkers in each omics data type that
showed a strong association with the diseases. To summarize,
MOGONET is an innovative deep learning-based multi-omics
classification algorithm with both superior performance and good
interpretability.

Comparing to fully connected networks, GCNs can utilize both
the features and the geometrical structures of the data. While
commonly used fully connected networks can only be trained on
structured data, GCNs can also generalize NN for arbitrarily
structured graphs. This suggests that our GCN-based method is
flexible and can be potentially generalized to include more data
types to boost the classification performance in the future. We
also demonstrated that VCDN can effectively classify multi-omics
data by integrating the omics-specific classification produced by
GCNs at the label space. As each element in the input of VCDN is
constructed by multiplying class probabilities from different
classifiers, VCDN might be more sensitive to the noise or error
produced in omics-specific learning. Therefore, effective omics-
specific classification through GCNs is needed to fully utilize the
superiority of VCDN. Through ablation studies, we demonstrated
that both GCNs and VCDN were essential to effective multi-
omics data classification, while GCNs might play a more essential
role in the biomedical classification tasks in this paper.

While we only utilized mRNA expression, DNA methylation,
and miRNA expression data for the multi-omics classification
tasks in this paper, both the omics-specific GCNs and the multi-
omics integration component can be extended to accommodate
different or more types of data. Specifically, for a classification
task with c classes and m different data types, an individual GCN
can be trained for each data type. For multi-omics classification,
the label distribution generated by each omic-specific GCN can
be integrated by either direct concatenation as in MOGO-
NET_NN or constructing a cm-dimensional cross-omics
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discovery vector with the similar fashion as in MOGONET.
Therefore, MOGONET is a supervised multi-omics classification
framework that can be generalized to accommodate many dif-
ferent omics data types.

Methods
Overview of MOGONET. MOGONET is a framework for classification tasks with
multi-omics data. The workflow of MOGONET can be summarized into three
components: (1) preprocessing. Preprocessing and feature preselection were per-
formed on each omics data type individually to remove noise, artifacts, and
redundant features that may deteriorate the performance of the classification tasks.
(2) Omics-specific learning via GCNs. For each omics data type, a weighted sample
similarity network was constructed from the omics features. Then, a GCN was
trained using both the omics features and the corresponding similarity network for
omics-specific learning. (3) Multi-omics integration via VCDN. A cross-omics
discovery tensor was calculated using the initial class probability predictions from
all the omics-specific networks. A VCDN was then trained with the cross-omics
discovery tensor to produce the final predictions. VCDN can effectively learn the
intra-omics and cross-omics label correlations in the higher-level label space for
better classification with multi-omics data. MOGONET is an end-to-end model,
where both omics-specific GCNs and VCDN are trained jointly. We describe each
component in detail in the following sections.

Preprocessing. To remove noise and experimental artifacts in the data and better
interpret the results, proper preprocessing for omics data is essential. First, for
DNA methylation data, only probes corresponding to the probes in the Illumina
Infinium HumanMethylation27 BeadChip were retained for better interpretability
of the results. The number of features for each dataset and each omics data type is
listed in Table 1. Then, we further filtered out features with no signal (zero mean
values) or low variances. Specifically, we applied different variance filtering
thresholds for different types of omics data (0.1 for mRNA expression data and
0.001 for DNA methylation data) as different omics data types came with different
ranges. For miRNA expression data, we only filtered out features with no variation
(variance equals zero) as the available features were limited due to the small
number of miRNAs. The same variance thresholds were used across all
experiments.

Since omics data could contain redundant features that might have negative
effects on the classification performance, we further preselected the omics features
through statistical tests. For each classification task, ANOVA F-value was
calculated sequentially using the training data to evaluate whether a feature was
significantly different across different classes, where FDR controlling procedures
were applied for multiple-testing compensation. However, selecting too few
features might also result in only selecting highly correlated features, which could
potentially restrain the models from taking advantage of complementary
information from diverse features. To avoid this situation, we determined the
number of preselected features for each omics data type with an additional rule, i.e.,
the first principal component of the data after feature preselection should explain
<50% of the variance. We also demonstrated that MOGONET could produce
consistent results under a wide range of different numbers of preselected features
(Supplementary Fig. 2). The number of preselected features for each dataset is
shown in Table 1. Finally, we individually scaled each type of omics data to [0, 1]
through linear transformations for training MOGONET.

GCNs for omic-specific learning. We utilized GCNs for omic-specific learning in
MOGONET, where a GCN was trained for each omics data type to perform
classification tasks. While existing GCN models mainly focus on semi-supervised
learning by propagating the labels from labeled data to unlabeled ones55–58, the
value of these methods in clinical applications could be limited as the learned GCN
model cannot be directly applied to predicting new samples whose data might not
be available during the training process. Therefore, in this work, we explored the
application of GCN in supervised learning. Our goal is to capture the intrinsic
structure of the data through the graphs during network training. This is similar to
previous manifold learning approaches to preserve the local information of the data
by using a graph regularizer. The benefit of graph NN in a supervised setting is that
it not only captures the local intra-class information due to the multi-modal
phenomena with each class but also seeks more discriminative features by con-
sidering the inter-class information.

By viewing each sample as a node in the sample similarity network, the goal of
each GCN in MOGONET is to learn a function of features on a graph G ¼ ðV; EÞ
to perform classification tasks by utilizing both the features of each node and the
relationships between nodes characterized by the graph G. Therefore, a GCN model
takes the following two inputs. One input is a feature matrix X 2 Rn ´ d , where n is
the number of nodes and d is the number of input features. The other input is a
description of the graph structure, which can be represented in the form of an
adjacency matrix A 2 Rn ´ n . A GCN can be built by stacking multiple

convolutional layers. Specifically, each layer is defined as:

Hðlþ1Þ ¼ f ðHðlÞ;AÞ
¼ σðAHðlÞWðlÞÞ;

ð1Þ

where H(l) is the input of the lth layer and W(l) is the weight matrix of the lth layer.
σ(⋅) denotes a non-linear activation function. For effective training of GCNs, Kipf
and Welling55 further modified the adjacency matrix A as:

eA ¼ D̂
�1

2ÂD̂
�1

2 ¼ D̂
�1

2ðAþ IÞD̂�1
2; ð2Þ

where D̂ is the diagonal node degree matrix of Â and I is the identity matrix.
In MOGONET, the original adjacency matrix A is constructed by calculating

the cosine similarity between pairs of nodes and edges with cosine similarity larger
than a threshold ϵ are retained. Specifically, Aij, which is the adjacency between
node i and node j in the graph, is calculated as:

Aij ¼
sðxi; xjÞ; if i≠ j and sðxi; xjÞ≥ ϵ

0; otherwise

�
ð3Þ

where xi and xj are the feature vectors of node i and node j, respectively. sðxi; xjÞ ¼
xi �xj

kxik2kxjk2
is the cosine similarity between node i and j. The threshold ϵ is determined

given a parameter k, which represents the average number of edges per node that
are retained including self-connections:

k ¼ ∑
i;j
Iðsðxi; xjÞ≥ ϵÞ=n; ð4Þ

where I(⋅) is the indicator function and n is the number of nodes. The parameter k
for generating the adjacency matrix in Eq. (4) is tuned over {2, 5, 10} with the
training data, and the same k value is adopted across all experiments on the same
dataset. Note that for k= 1, A will contain no edge, while the final adjacency
matrix eA will only include self-connections. In this case, a GCN will degenerate to a
normal fully connected network, while MOGONET will degenerate to NN_VCDN.

Although GCNs have been widely utilized in unsupervised59–62 and semi-
supervised55–58 learning, in this paper, we further extend the use of GCNs to
supervised classification tasks. For training data Xtr 2 Rntr ´ d , the corresponding
adjacency matrix eAtr 2 Rntr ´ ntr can be calculated from Eq. (2). Then, a graph
convolutional network GCN(⋅) can be trained with Xtr and eAtr and the predictions
on the training data can be written as:

Ŷtr ¼ GCNðXtr ; eAtrÞ; ð5Þ

where Ŷtr 2 Rntr ´ c . The ith row in Ŷtr represents the predicted label probability of
the ith training sample and c denotes the number of classes in the classification
task. Therefore, both the features and the geometrical structure of the training data
are utilized in learning the classification task.

For a new test sample xte 2 Rd , we extend the data matrix to Xtrte ¼
Xtr
xte

� �
2

Rðntrþ1Þ ´ d and generate the extended adjacency matrix eAtrte 2 Rðntrþ1Þ ´ ðntrþ1Þ

according to Eq. (2). Specifically, the entries in the last row and the last column of
eAtrte are the only entries calculated during testing to reflect the affinity between the
test sample xte and the training samples Xtr. Therefore, given Xtrte, eAtrte and the
trained GCN model GCN(⋅), we have Ŷtrte ¼ GCNðXtrte; eAtrteÞ 2 Rðntrþ1Þ ´ c. The
predicted label probability distribution for the test sample is 1111chetak, which is
the last row of Ŷtrte. To this end, both the features of the test sample and the
correlations between the test sample and the training samples are utilized in
predicting the label of the new test sample xte.

In MOGONET, to perform omic-specific classification, we construct a multi-
layer GCN for each omics data type. Specifically, for the ith omics data type, a
omic-specific GCN, GCNi(⋅), is trained with training data XðiÞ

tr 2 Rntr ´ di and the

corresponding adjacency matrix eAðiÞ
tr 2 Rntr ´ ntr . The predictions on the training

data can be written as:

Ŷ
ðiÞ
tr ¼ GCNiðXðiÞ

tr ; eAðiÞ
tr Þ; ð6Þ

where Ŷ
ðiÞ
tr 2 Rntr ´ c. We use ŷðiÞj 2 Rc to denote the jth row in Ŷ

ðiÞ
tr , which is the

predicted label distribution of the jth training sample from the ith omics data type.
Therefore, the loss function for GCNi(⋅) can be written as:

LðiÞGCN ¼ ∑
ntr

j¼1
LCEðŷðiÞj ; yjÞ ¼ ∑

ntr

j¼1
�log

eŷ
ðiÞ
j �yj

∑ke
ŷðiÞj;k

 !
; ð7Þ

where LCE(⋅) represents the cross-entropy loss function. yj 2 Rc is the one-hot

encoded label of the jth training sample and ŷðiÞj;k is the kth element in the vector ŷðiÞj .
Moreover, to account for the label imbalance in the training data, we further apply
different weights on the losses of different classes in Eq. (7), where the weight of a
class is set to the inverse of its frequency in the training data.
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VCDN for multi-omics integration. Existing methods utilizing multi-view data for
biomedical classification tasks either directly concatenate features from different
views or learn to fuse data by learning the weight of each view or fusing features
from different views in a low-level feature space4,63–65. However, it is always
challenging to align various views properly without causing negative influence. On
the other hand, VCDN23 can exploit the higher-level cross-omics correlations in
the label space, as different types of omics data can provide unique class-level
distinctiveness. VCDN is designed to learn the higher-level intra-view and cross-
view correlations in the label space and has shown significant improvements in
human action recognition tasks. In MOGONET, we utilize VCDN to integrate
different omics data types for classification. Moreover, while the original form of
VCDN was designed for samples with two views23, we further generalize it to
accommodate an arbitrary number of data types and demonstrated with three
types of omics data: mRNA expression, DNA methylation, and miRNA expression.

Since mRNA expression data, DNA methylation data, and miRNA expression
data are used in our experiments, for simplicity, we first demonstrate how to extend
VCDN to accommodate three views. For the predicted label distribution of the jth
sample from different omics data types ŷðiÞj ; i ¼ 1; 2; 3, we construct a cross-omics
discovery tensor Cj 2 Rc ´ c ´ c, where each entry of Cj is calculated as:

Cj;a1a2a3
¼ ŷð1Þj;a1

ŷð2Þj;a2
ŷð3Þj;a3

; ð8Þ

where ŷðiÞj;a denotes the ath entry of ŷðiÞj .
Then, the obtained tensor Cj is reshaped to a c3 dimensional vector cj and is

forwarded to VCDN(⋅) for the final prediction. VCDN(⋅) is designed as a fully
connected network with the output dimension of c. The loss function of VCDN(⋅)
can be written as:

LVCDN ¼ ∑
ntr

j¼1
LCEðVCDNðcjÞ; yjÞ: ð9Þ

To this end, VCDN(⋅) could reveal the latent cross-view label correlations and
help to improve the learning performance. By utilizing VCDN(⋅) to integrate initial
predictions from different types of omics data, the final prediction made by
MOGONET is based on both the omics-specific predictions and the learned cross-
omics label correlation knowledge.

Extension of MOGONET to a different number of views can be performed in a
similar fashion. For data with m omics data types, each element in Cj can be
calculated as:

Cj;a1a2 :::am
¼
Ym
i¼1

ŷðiÞj;ai ; ai ¼ 1; 2; :::;m: ð10Þ

Then, the obtained tensor Cj is reshaped to a cm dimensional vector, and
VCDN(⋅) can be trained in the same way as Eq. (9).

For MOGONET_NN in the ablation study, the label distribution from each
omics data type is directly concatenated to a longer vector as the input of the multi-
omics integration network NN(⋅). The loss function for NN(⋅) can be written as:

LNN ¼ ∑
ntr

j¼1
LCEðNNðc0jÞ; yjÞ ¼ ∑

ntr

j¼1
LCEðNNð½ŷð1Þj ; ŷð2Þj ; ŷð3Þj �Þ; yjÞ ð11Þ

where c0j 2 R3c is the concatenated vector of the output of the omic-specific GCNs.
In our experiments, NN(⋅) shares the same number of layers as VCDN(⋅), while the
dimensionality of the input data is different.

In summary, in our experiments where three omics data types are used, the total
loss function of MOGONET can be written as:

L ¼ ∑
3

i¼1
LðiÞGCN þ γLVCDN ; ð12Þ

where γ is a trade-off parameter between the omics-specific classification loss and
the final classification loss from VCDN(⋅). We set γ= 1 in all our experiments.
MOGONET is an end-to-end model, and all networks are trained jointly. For
training MOGONET, we first pretrain each of the omics-specific GCN individually
to get a good initialization of the GCN. Then, during one epoch of the training
process, we first fix VCDN(⋅) and update GCNi(⋅), i= 1, 2, 3 for each omics data
type to minimize the loss function L. Then we fix the omics-specific GCNs and
update VCDN(⋅) to minimize L. Omics-specific GCNs and VCDN are updated
alternatively until convergence.

Identifying important biomarkers with MOGONET. Identifying biomarkers is
essential for interpreting the results and understanding the underlying biology in
biomedical applications. Over the years, there have been extensive studies on
determining the importance of features for NN. Since the input of MOGONET is
scaled to [0, 1] during preprocessing, we can remove the signal from a feature by
setting it to zero. Therefore, the importance of a feature to the classification task
can be measured by the performance decrease after the feature is removed. Such
ablation approach has been widely adopted for feature importance ranking and
feature selection in NN2,66,67. Using this approach, we analyzed the contribution of
each feature in different types of omics data by assigning the feature to zero and
calculating the classification performance decrease on the test set comparing to
using all the features. Features with the largest performance drop were considered

to be the most important ones. We used the F1 score to measure the performance
drop for binary classification tasks and F1_macro for multi-class classification
tasks. To account for the randomness in the training process, we performed five
repeated experiments in a dataset and summarized the results by summing up the
performance decrease in the repeated experiments. Since each omics data type
carried the same importance in MOGONET during the construction of the cross-
omics discovery tensor, while different numbers of features were preselected for
training in different omics data types, we further scaled the feature importance of
each omics data type by the number of preselected features. Finally, we ranked the
importance of each feature.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The ROSMAP dataset was obtained from AMP-AD Knowledge Portal (https://
adknowledgeportal.synapse.org/). Omics data of LGG, KIPAN, and BRCA, as well as the
grade information of LGG patients, were obtained from The Cancer Genome Atlas
Program (TCGA) through Broad GDAC Firehose (https://gdac.broadinstitute.org/).
PAM50 breast cancer subtypes of TCGA BRCA patients were obtained through the
TCGAbiolinks R package (v2.12.6, http://bioconductor.org/packages/release/bioc/html/
TCGAbiolinks.html). Source data are provided with this paper.

Code availability
The source code of this work can be downloaded from GitHub68 (https://github.com/
txWang/MOGONET).
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