
	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 22, No. 7, July 2016	 1193

Outbreak data have been used to estimate the proportion of 
illnesses attributable to different foods. Applying outbreak-
based attribution estimates to nonoutbreak foodborne ill-
nesses requires an assumption of similar exposure path-
ways for outbreak and sporadic illnesses. This assumption 
cannot be tested, but other comparisons can assess its ve-
racity. Our study compares demographic, clinical, temporal, 
and geographic characteristics of outbreak and sporadic 
illnesses from Campylobacter, Escherichia coli O157, Liste-
ria, and Salmonella bacteria ascertained by the Foodborne 
Diseases Active Surveillance Network (FoodNet). Differ-
ences among FoodNet sites in outbreak and sporadic ill-
nesses might reflect differences in surveillance practices. 
For Campylobacter, Listeria, and Escherichia coli O157, 
outbreak and sporadic illnesses are similar for severity, sex, 
and age. For Salmonella, outbreak and sporadic illnesses 
are similar for severity and sex. Nevertheless, the percent-
age of outbreak illnesses in the youngest age category was 
lower. Therefore, we do not reject the assumption that out-
break and sporadic illnesses are similar.

A previous study used outbreak data to determine the 
relative contributions of 17 different food commodi-

ties to the annual prevalence of foodborne illness in the 
United States (1). That work assumed that the exposure 
pathways of foodborne outbreak illnesses were representa-
tive of those pathways for all foodborne illnesses, including 
outbreak-associated and sporadic (nonoutbreak) illnesses. 
However, this assumption cannot be tested directly because 
the food sources of sporadic illnesses typically are unknow-
able. In fact, despite the availability of multiple cases and 
controls that might enable examination of the likelihood of 

illness for different foods consumed, the food sources of 
outbreaks are identified in only about one half of all food-
borne disease outbreaks investigated (2).

In lieu of a direct comparison of exposure pathways 
between outbreak and sporadic foodborne illnesses, we 
compare selected demographic, clinical, temporal, and geo-
graphic characteristics of outbreak and sporadic cases of 
illness caused by Campylobacter, Escherichia coli O157, 
Listeria, and Salmonella bacteria by using data from the 
Foodborne Diseases Active Surveillance Network (Food-
Net) for 2004–2011. Such an analysis is limited but still 
useful. Although similarities between outbreak and spo-
radic cases in terms of disease characteristics would not 
imply that these cases have identical food exposures, no-
table differences in disease characteristics might indicate 
differences in food exposures.

Methods
Data submitted to the Centers for Disease Control and 
Prevention (CDC) by public health personnel from each 
FoodNet site indicate whether a case of foodborne illness 
is an outbreak or nonoutbreak (sporadic) case. We aimed to 
determine whether differences exist in terms of 6 selected 
characteristics of outbreak cases of laboratory-confirmed 
Campylobacter, E. coli O157, Listeria, and Salmonella in-
fection reported in FoodNet (3) during 2004–2011. The 6 
characteristics examined were as follows: 1) the FoodNet 
site reporting the case; 2) the year in which a case occurred; 
3) the season in which a case occurred; 4) the age of patient 
(generally, the difference between submission date and re-
ported date of birth); 5) the sex of the patient; and 6) the 
hospitalization status of the patient (i.e., whether the patient 
was hospitalized within 7 days of specimen collection).

Since 2004, the FoodNet surveillance catchment area 
has been stable. The FoodNet sites were Connecticut, Geor-
gia, Maryland, Minnesota, New Mexico, Oregon, Tennes-
see, and selected counties in California, Colorado, and New 
York. To ensure sufficient data, we determined quintiles 
for season and age groups. Because the data distributions 
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differed between the pathogens, these quintiles were deter-
mined for each pathogen separately. Sex and hospitaliza-
tion status were binary variables.

Other variables of potential interest, such as source 
of specimen (e.g., stool, blood, or urine), race, ethnicity, 
and international travel, were not included in the analysis 
because there were relatively high percentages of missing 
observations for some pathogens and because percentages 
were highly variable over time and across other variables 
in the analysis, possibly introducing an unknown amount 
of surveillance bias and limiting interpretation of results. 
For example, the fraction of cases for which information on 
international travel by the patient was missing ranged from 
6% for E. coli O157 to 44% for Campylobacter. Similarly, 
the fraction of cases for which information on race was 
missing ranged from 7% for E. coli O157 to 26% for Cam-
pylobacter. Our summary descriptions and final models are 
based on the set of FoodNet case reports for which all 6 
variables are complete. Missing values for certain variables 
are described in the online Technical Appendix (http://ww-
wnc.cdc.gov/EID/article/22/7/15-0833-Techapp1.pdf).

To complete the analysis of these characteristics, we 
used a 2-step approach for each of the 4 pathogens exam-
ined. First, we conducted random forest and boosted tree 
analyses (4,5) to gauge the relative importance of the 6 
characteristics in distinguishing between outbreak and spo-
radic cases. Random forest analysis is a data classification 
algorithm that seeks the best combination of factors to ex-
plain an outcome variable (i.e., outbreak or sporadic case). 
Boosted tree analysis pertains to the use of regression tech-
niques (e.g., mean square errors) for measuring the fit of 
the trees to the data. We created random collections of clas-
sification trees and averaged those trees by a measure of 
how well each tree fit the data.

For each pathogen, we trained random forest models 
on ≈85% of the data; we used the remaining ≈15% of the 
data to validate the model’s classifications of outbreak and 
sporadic cases. We used the G2 statistic (a modified Wilk’s 
statistic) to identify more and less important factors (6). In 
a stepwise fashion, we removed the least important factors 
to determine if model misclassification of outbreak status 
improved for the training dataset or the validation dataset. 
We stopped the model simplification whenever removal 
of a factor caused misclassification to worsen. Factors that 
were not eliminated were carried on to the next step.

The second step of the analysis was logistic regression 
modeling. We used stepwise model building routines (7) to 
examine all main effects and interactions among the factor 
levels (i.e., model parameters) explaining the fraction of 
cases that are outbreak-associated cases (i.e., 

 

where p is the probability of a case being an outbreak case 
and X is a matrix of the data with the number of rows equal 
to the number of cases and the number of columns equal to 
the total levels of explanatory variables considered). As a 
model identification guide, we used forward selection pro-
cedures and minimum Bayesian information criterion scor-
ing (BIC) (8). BIC is a preferred selection criterion because 
it penalizes the inclusion of additional parameters more 
strongly than alternative statistics (e.g., Akaike information 
criteria) (8,9).

We selected the logistic regression models with the 
lowest BIC scores as the best models. We used visual as-
sessments of the residuals and interactions to assess the ad-
equacy of the methods and models.

Results
During the study period (2004–2011), <1% of Campylo-
bacter infections reported in FoodNet were outbreak cases, 
but ≈20% of E. coli O157 infections were outbreak cases. 
Outbreak cases represented ≈5% of Listeria and Salmonel-
la infections (Table 1).

Seasonal quintiles were similar across pathogens ex-
cept for E. coli O157; the first season was longer compared 
with the other pathogens, extending from January through 
the end of May (Figure 1). Age quintiles, however, dif-
fered substantially across pathogens. For example, to cap-
ture 20% of the data for Listeria, the first quintile was de-
fined as cases in patients who were 0–38 years of age. In 
contrast, the first quintile for Salmonella only extended to 
patients 3 years of age. For Listeria, the relatively narrow 
quintile range for persons 60–80 years of age reflects the 
larger number of older persons among these cases. For the 
binary variables (sex and hospitalization), the frequency of 
male patients was ≈50% among all FoodNet cases for the 
4 pathogens, and the percentages hospitalized for Campy-
lobacter, E. coli O157, Listeria, and Salmonella infections 
were 16%, 44%, 93%, and 29%, respectively.

A descriptive treatment of the data shows that the fre-
quency of outbreak cases among all FoodNet cases varied 
more for FoodNet site, year, patient age, and season than 
for sex and hospitalization status for each pathogen (Table 
2). Compared with the other pathogens, Listeria exhibited 
substantial frequency ranges for some characteristics. For 
example, the percentage of Listeria cases that were out-
break versus sporadic cases per year varied from 0% versus 
100% during 2007–2009 to 30.6% versus 69.4% in 2011. 
Variability was difficult to determine for Campylobacter 
because of the low frequency of outbreak-associated cases.

In general, FoodNet sites in Georgia and California 
had smaller percentages of outbreak cases, whereas Or-
egon and Colorado had larger percentages. California had 
small outbreak case percentages for Campylobacter (0.1%) 
and E. coli O157 (1.5%), whereas Georgia had the smallest 
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percentage among all sites for Listeria (0.0%) and Salmo-
nella (2.6%). Colorado had the largest outbreak case per-
centage among all sites for Campylobacter (1.0%) and E. 
coli O157 (38.9%), whereas Oregon and New Mexico had 
the largest percentages for Salmonella (20.5%) and Liste-
ria (34.9%), respectively.

For each pathogen’s random forest analysis, the G2 
statistic was smallest for the binary variables (sex and 
hospitalization). Furthermore, misclassification errors for 
the training and validation datasets were not substantively 
changed whether the analysis included all 6 factors or ex-
cluded sex and hospitalization status. Consequently, sex 
and hospitalization status were not important for classify-
ing outbreak and sporadic cases for any of the pathogens, 
and these factors were excluded from the logistic model-
ing step.

Plots of the BIC statistic for increasingly complex 
models illustrate that its value decreases to a minimum and 
then increases for more complicated models (Figure 2).  

For Campylobacter, the minimum BIC corresponds to a 
model containing just the FoodNet site parameters. For E. 
coli O157 and Listeria, the minimum BIC corresponds to 
a model with 16 parameters (9 for FoodNet site and 7 for 
year, with 1 reference value for each factor included in the 
intercept term). For Salmonella, the minimum BIC corre-
sponds to a model with 152 parameters that includes all 
4 factors (24 parameters plus the reference intercept), the 
FoodNet site by year interactions (63 parameters), the year 
by season interactions (28 parameters), and the FoodNet 
site by season interactions (36 parameters). Residual plots 
of the best-fitting models demonstrate reasonable fit to the 
data (Figure 3). These plots illustrate that the studentized 
residuals ([observed frequency – predicted frequency of 
outbreak-associated cases]/SE of predicted frequency) gen-
erally cluster within 3 SD of the mean.

Interaction plots from the best-fitting Salmonella 
model (Figure 4) illustrate the complex relationships be-
tween some model factors. For example, interaction plots 
demonstrated that, for some FoodNet sites (e.g., Oregon, 
California, and Minnesota), the estimated proportion of 
outbreak-associated cases can change substantially across 
years. Moreover, the directions of changes are inconsistent 
across the sites. For example, the peaks and troughs of Or-
egon’s proportions across years are nearly the opposite of 
Minnesota’s pattern. Likewise, the Salmonella interaction 
plots demonstrated interactions between the seasonal quin-
tile and both the surveillance year and the FoodNet site. 
In contrast, the patterns for the age quintiles are consistent 
across surveillance years. Nevertheless, the first age quin-
tile (0–3 years of age) has a markedly lower proportion of 
outbreak-associated cases relative to the other age quintil-
es. This underrepresentation of outbreak-associated cases 
among the youngest age quintile drives the significance of 
the age parameter in the logistic regression model.

Discussion
If foodborne illness source attribution estimates are to 
be effectively used for food safety decision making and 
monitoring success of interventions, the data used to 
generate them must be collected in a systematic fashion 
over time. Foodborne outbreak surveillance data have 
been systematically collected since 1973 and provide 
direct links between human illnesses and food sourc-
es. Although other methods of source attribution (e.g., 

 
Table 1. Number	of	outbreak	cases	versus	sporadic	cases	and	outbreak	fraction,	FoodNet data, United	States,	2004–2011* 
Pathogen Outbreak	cases Sporadic	cases Outbreak	fraction,	% 
Campylobacter 195 42,744 0.5 
Escherichia coli O157 730 3,117 19.0 
Listeria 56 1,024 5.2 
Salmonella 3,161 50,690 5.9 
*Representing 101,717	reports	with	complete	data	for	all	study	variables	out	of	110,157	total	reports. FoodNet,	Foodborne	Diseases	Active	Surveillance	
Network. 

 

Figure 1. Quintile categorization of season and age for persons 
with foodborne illness included in the analysis of Foodborne 
Diseases Active Surveillance Network (FoodNet) data, United 
States, 2004–2011.
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case–control studies) can provide relevant estimates for  
different target populations, these estimates are potentially 
expensive, logistically complex, and not routinely con-
ducted in the United States. Moreover, estimated attribut-
able fractions are based on associations between illnesses 
and exposures, not proof of causality. The possibility that 
attribution estimates from outbreaks might not be reliably 
generalized to the bulk of estimated foodborne illnesses 
is recognized (1). Nevertheless, we cannot assess directly 
the validity of outbreak-based attribution estimates for ap-
plication to the broader population of foodborne illnesses. 
Consequently, this study assessed similarities and differ-
ences between outbreak and sporadic cases across various 
case characteristics. If the examined characteristics of out-
break and sporadic cases are different for these data, then 
the assumption of similar exposure pathways is less plau-
sible. FoodNet is particularly well-suited for this analysis, 
because it is the only US foodborne disease surveillance  

system that actively ascertains laboratory-confirmed hu-
man infections and distinguishes those cases that are as-
sociated with detected outbreaks.

In our analysis, the probability of a case being out-
break-associated varied significantly across the FoodNet 
surveillance sites for all 4 pathogens studied. Uncertainty 
exists for the causes of variability in the number of ascer-
tained cases across FoodNet sites (10) and the number of 
outbreaks detected and reported across states (2,11,12). 
Previous research has demonstrated that differences in 
specimen collection and testing and outbreak surveillance 
and reporting practices, contribute to differences among 
states, and differences in funding or resource allocation 
have been hypothesized to be influential factors (2,10–12). 
We assume these sources of variability among sites are 
most influenced by differences in surveillance and do not 
suggest underlying differences in the sources of sporadic 
and outbreak illnesses.

 

 

 
Table 2. Percentage	of	cases	and	total	number	of	cases identified	as	outbreak-associated,	by	target	pathogen	and	selected	
characteristics,	FoodNet data,	United	States,	2004–2011* 

Characteristic 
%	Outbreak	cases	(no.	total	observations) 

Campylobacter Escherichia coli O157 Listeria Salmonella 
FoodNet	site 
 California 0.1	(5,552) 1.5	(264) 1.7	(115) 3.0	(3,764) 
 Colorado 1.0	(3,391) 38.9	(319) 33.3	(72) 8.6	(2,491) 
 Connecticut 0.0	(3,689) 17.0	(277) 0.0	(148) 6.5	(3,335) 
 Georgia 0.2	(4,815) 8.4	(261) 0.0	(176) 2.6	(17,215) 
 Maryland 0.6	(2,920) 13.0	(200) 0.7	(140) 4.3	(6,020) 
 Minnesota 0.5	(7,308) 20.1	(1,078) 3.4	(58) 10.3	(5,379) 
 New	Mexico 0.8	(2,640) 10.9	(92) 34.9	(43) 9.3	(2,497) 
 New	York 0.4	(4,277) 22.9	(393) 3.7	(136) 8.2	(3,772) 
 Oregon 0.9	(5,147) 25.5	(545) 8.1	(86) 20.5	(3,067) 
 Tennessee 0.4	(3,200) 12.2	(418) 0.0	(106) 3.0	(6,311) 
Year 
 2004 0.2	(4,770) 9.0	(387) 0.8	(119) 6.0	(5,676) 
 2005 0.7	(5,009) 22.7	(467) 1.5	(136) 4.3	(5,982) 
 2006 0.7	(4,903) 15.9	(567) 4.4	(137) 7.6	(5,901) 
 2007 0.1	(5,377) 17.8	(546) 0.0	(122) 6.2	(6,540) 
 2008 0.6	(5,291) 25.8	(516) 0.0	(134) 7.9	(7,214) 
 2009 0.3	(5,546) 26.4	(458) 0.0	(157) 5.5	(6,844) 
 2010 0.4	(5,852) 21.1	(445) 2.3	(131) 5.2	(8,073) 
 2011 0.6	(6,191) 11.7	(461) 30.6	(144) 4.6	(7,621) 
Age	quintile 
 1 0.7	(8,563) 20.6	(766) 2.3	(214) 2.2	(10,838) 
 2 0.7	(8,614) 18.1	(768) 4.6	(216) 4.4	(10,666) 
 3 0.3	(8,428) 19.3	(774) 5.1	(216) 9.2	(10,686) 
 4 0.3	(8,634) 19.6	(765) 5.5	(218) 7.7	(10,758) 
 5 0.3	(8,700) 17.3	(774) 8.3	(216) 6.0	(10,903) 
Season	quintile 
 1 0.4	(8,552) 18.6	(774) 2.3	(218) 6.9	(10,962) 
 2 0.4	(8,761) 19.8	(773) 0.9	(215) 7.6	(10,804) 
 3 0.6	(8,545) 18.8	(775) 4.1	(218) 5.8	(10,773) 
 4 0.6	(8,666) 20.1	(770) 16.1	(217) 4.3	(10,671) 
 5 0.2	(8,415) 17.5	(755) 2.4	(212) 4.7	(10,641) 
Sex 
 F 0.4	(19,317) 19.4	(2,030) 6.4	(577) 6.1	(28,102) 
 M 0.4	(23,622) 18.4	(1,817) 3.8	(503) 5.4	(25,749) 
Hospitalized 
 No 0.5	(35,962) 20.1	(2,145) 4.1	(74) 6.3	(38,321) 
 Yes 0.3	(6,977) 17.5	(1,702) 5.3	(1,006) 4.8	(15,530) 
*Age of	persons	with	cases	and	season	of	specimen	submission	are	classified	by	quintile	of	reported	age	and	quintile	of	the	day	of	year	of	the	specimen	
submission	date. FoodNet,	Foodborne	Diseases	Active	Surveillance	Network. 
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The probability of a case being outbreak-associated 
also varied significantly with the surveillance year for E. 
coli O157, Listeria, and Salmonella. In addition, the sea-
son of specimen submission was a significant factor in the 
Salmonella model. In a study by Painter et al. (1), source 
attribution was estimated by aggregating multiple years of 
outbreak data and applying those to national annual burden 
of illness estimates (13). Gould et al. (2) similarly aggre-
gated outbreak data for estimating source attribution. One 
justification for aggregating outbreak evidence across years 
(and seasons) is the need to capture more information than 
is available from a single year (or season). The significant 
association between the probability of an outbreak case 
and year (and state and season) suggests that aggregation 
of outbreak data across time and space might be appropri-
ate to avoid biases introduced by significant local effects. 
Outbreak and sporadic cases might be dissimilar across 
periods of ≈1 year but more similar when multiple years 
are compared. For example, the fraction of outbreak-asso-
ciated cases in the FoodNet Salmonella data are 5.7% for 
2004–2007 and 5.8% for 2008–2011, despite year-to-year 
fluctuations ranging from 4.3% to 7.9% (Table 2).

Our analysis found no evidence that laboratory-con-
firmed outbreak and sporadic cases are dissimilar with 
respect to the sex or hospitalization status of patients. In 

particular, the data for Salmonella and E. coli O157 in-
clude substantial numbers of cases for comparisons of 
these factors. Therefore, the conclusion from the random 
forest analysis regarding these pathogens lends support to 
the same conclusion for the other 2 pathogens. Otherwise, 
the small number of outbreak-associated cases for Campy-
lobacter and the generally small number of Listeria cases 
provides limited statistical power to detect real differences.

In the case of Salmonella, this analysis found that 
the percentage of outbreak-associated cases varied  
significantly by age cohort. In fact, the youngest age 
quintile (0–3 years of age) had the smallest proportion 
of outbreak-associated cases. Given this result, applying 
source attribution estimates derived from foodborne out-
break data to the youngest age strata of Salmonella spo-
radic cases might not be prudent. Because FoodNet epi-
demiologists cannot confirm the exposure pathway that 
resulted in FoodNet-captured illnesses, we cannot deter-
mine whether the lower frequency of outbreak-associated 
cases among the youngest cohorts of Salmonella patients 
reflects some fundamental difference in the distribution 
of exposure pathways, a difference in outbreak-associated 
case detection methods, or both.

The analytical methods we used rely on some assump-
tions. The initial random forest analysis was completed 

Figure 2. Patterns of the 
Bayesian information criterion 
(BIC) statistic as a function 
of the number of model 
parameters are shown for the 
four pathogens included in the 
analysis of Foodborne Diseases 
Active Surveillance Network 
(FoodNet) data, United States, 
2004–2011. A) Campylobacter; 
B) Escherichia coli O157; C) 
Listeria; D) Salmonella. The BIC 
decreases to a minimum value 
and then increases as model 
complexity (as measured by the 
number of model parameters) 
increases.
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because this technique demands few assumptions with re-
spect to missing observations and factor interactions (14).  
Nevertheless, this technique was only used to eliminate 
those factors that had no evident association with out-
break status.

The logistic regression modeling we performed re-
lies on a binomial process assumption for the frequency 
of outbreak cases among all FoodNet cases. Although this 
analysis assumes that all outbreak cases are unrelated to 
each other, detailed data about the specific outbreak for 
each outbreak case is not readily available and some out-
break cases might have stemmed from the same outbreak. 
Related outbreak cases might co-vary with respect to the 
factors we studied in violation of the binomial process as-
sumption of independent trials. To address this possibility, 
we considered censoring outbreak cases in this analysis, 
but an unknown number of sporadic cases probably were 
also related to detected and undetected outbreaks.

This study also assumes that the probability of speci-
men collection and laboratory submission among ill per-
sons is the same for outbreak and sporadic cases. Never-
theless, public awareness of an outbreak might increase 
healthcare-seeking behavior and submission of diagnostic 
samples by healthcare providers. In addition, during some 
outbreak investigations, investigators conduct active case-
finding and collect additional laboratory specimens from 
persons reporting foodborne illness (11,15), resulting in 

laboratory-confirmed infections being identified in persons 
who had not sought healthcare. As a result, outbreak cases 
might be oversampled compared with sporadic infections.

Inherent dependencies among outbreak cases, com-
bined with oversampling, might contribute to an increased 
strength of association between the proportion of outbreak-
associated cases and the factors studied here. In addition to 
performing better than alternative criteria when the objec-
tive of modeling is to find the actual model, BIC penalizes 
the addition of parameters in models more harshly (16). We 
believe that this harsher assessment of factors reduces the 
likelihood of spurious associations.

Some of the persons with foodborne infections that 
were captured by FoodNet traveled internationally before 
their reported specimen collection date, and some of these 
persons probably became infected because of exposures 
that occurred outside the United States. The likelihood of 
their illness being associated with a disease outbreak might 
in turn be different from that of non-travelers. We were not 
able to exclude international travelers or adjust for this case 
characteristic because, except for cases of E. coli O157 in-
fection, travel history information was missing for >20% 
of cases. Thus, our study population is not restricted to per-
sons with infection caused by domestic exposures. Never-
theless, international travel was reported for <10% of cases 
for all pathogens except Campylobacter. Among Campy-
lobacter infection cases in persons who reported a travel 

Figure 3. Residual plots relative 
to fitted estimates of outbreak-
associated case frequency for 
the best-fitting models used 
in the analysis of Foodborne 
Diseases Active Surveillance 
Network (FoodNet) data, 
United States, 2004–2011. A) 
Campylobacter; B) Escherichia 
coli O157; C) Listeria; D) 
Salmonella. Generally, all 4 
pathogen models demonstrate 
reasonable fit because the 
studentized residuals ([observed 
frequency – predicted frequency 
of outbreak-associated cases]/
SE of predicted frequency) 
are mostly within 3 SD of the 
predicted mean frequency of 
outbreak-associated cases. The 
state variable is the only factor 
in the Campylobacter model, 
whereas year is included in 
the E. coli O157 and Listeria 
models. The Salmonella model 
includes state, year, season, 
age, and interaction terms.
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history, 18% involved international travel before illness 
onset; however, the small number of outbreak-associated 
cases is probably the primary limitation of the Campylo-
bacter analyses.

We conclude that the characteristics of outbreak and 
sporadic cases captured by FoodNet vary for all 4 pathogens 
examined. Nevertheless, with the exception of season and 
age of patient for Salmonella cases, the differences between 
outbreak and sporadic cases pertain to factors that are prob-
ably associated with the inherent variability among complex 
surveillance systems. Our finding with respect to age differ-
ences for Salmonella outbreak and sporadic case-patients 
suggests that applying outbreak-based source attribution es-
timates to the youngest case-patients might be inappropriate. 
Otherwise, because our analysis generally finds that outbreak 
and sporadic illnesses have similar case characteristics, our 
impression is that this study does not refute the plausibility 
of outbreak-based source attribution methods demonstrated 
in Painter et al. (1).

Our study was limited to cases that were laboratory-
confirmed. Consequently, our conclusions are based on 
the assumption that persons with foodborne illness who 
did not seek healthcare or did not have a specimen sub-
mitted for laboratory testing, are similar to those whose 
cases were included in our study. Nonetheless, source 
attribution methods will continue to evolve and will 
probably include data from multiple study populations. 
Recently, blending of outbreak-based and case-control 
source attribution estimates was evaluated (15). In the 
future, the type of analysis reported here could be used 
to examine more detailed case characteristics of illnesses 
transmitted commonly by food for similarities and dif-
ferences between outbreak and sporadic cases. Currently, 
these types of data are not captured routinely in the US 
surveillance systems.

Dr. Ebel is a senior veterinary medical officer in the Risk  
Assessment and Analytics Division, Office of Public Health 

Figure 4. Interaction plots from 
the best-fitting Salmonella 
logistic regression model used 
in the analysis of Foodborne 
Diseases Active Surveillance 
Network (FoodNet) data, United 
States, 2004–2011. A) Year 
versus state; B) season versus 
state; C) year versus season; 
D) year versus age. The y-axis 
is the proportion of outbreak-
associated cases. Crossing lines 
indicate interactions between 
2 factors for the proportion of 
outbreak-associated case.
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Rabies is a deadly disease 
that can kill anyone who gets 
it. Every year, an estimated 
40,000 people in the United 
States receive a series of 
shots due to potential  
exposure to rabies. Each year 
around the world, rabies 
results in more than 59,000 
deaths—approximately 1 
death every 9 minutes. Rabies


