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Two-Dimensional-NGC-SENSE-GRAPPA for Fast,
Ghosting-Robust Reconstruction of In-Plane and
Slice-Accelerated Blipped-CAIPI Echo Planar Imaging

Peter J. Koopmans*

Purpose: Ghosting-robust reconstruction of blipped-CAIPI
echo planar imaging simultaneous multislice data with low

computational load.
Methods: To date, Slice-GRAPPA, with “odd–even” kernels that
improve ghosting performance, has been the framework of

choice for such reconstructions due to its predecessor SENSE-
GRAPPA being deemed unsuitable for blipped-CAIPI data.

Modifications to SENSE-GRAPPA are used to restore CAIPI
compatibility and to make it robust against ghosting. Two imple-
mentations are tested, one where slices and in-plane unaliasing

are dealt in the same serial manner as in Slice-GRAPPA [referred
to as one-dimensional (1D)-NGC-SENSE-GRAPPA, where NGC

stands for Nyquist Ghost Corrected] and one where both are
unaliased in a single step (2D-NGC-SENSE-GRAPPA), which is
analytically and experimentally shown to be computationally

cheaper.
Results: The 1D-NGC-SENSE-GRAPPA and odd-even Slice-
GRAPPA perform identically, whereas 2D-NGC-SENSE-

GRAPPA shows reduced error propagation, less residual
ghosting when reliable reference data were available. When

the latter was not the case, error propagation was
increased.
Conclusion: Unlike Slice-GRAPPA, SENSE-GRAPPA operates

fully within the GRAPPA framework, for which improved recon-
structions (e.g., iterative, nonlinear) have been developed over

the past decade. It could, therefore, bring benefit to the
reconstruction of SMS data as an attractive alternative to
Slice-GRAPPA. Magn Reson Med 77:998–1009, 2017.
VC 2016 The Authors Magnetic Resonance in Medicine pub-
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INTRODUCTION

Simultaneous multislice (SMS) echo planar imaging
(EPI) reconstruction algorithms suffer from interactions
with EPI ghosting. These challenges and their interaction
are introduced below, followed by a proposed solution.

SMS Reconstruction

In SMS imaging, multiple slices are excited resulting in
superimposed images that are unaliased using parallel
imaging (1–3). Initial studies used SENSE-GRAPPA (4)
for reconstruction. Here, individual reference slices are
concatenated along the phase encoding direction in
image-space. After transformation to k-space, a conven-
tional GRAPPA kernel (5) is estimated, effectively treat-
ing the N-fold slice-accelerated data as an N-fold phase-
undersampled dataset of a concatenated image with an
N-fold larger field of view (FOV). In-plane phase encode
undersampling can be incorporated, i.e., both accelera-
tions can be reconstructed with one kernel.

SMS image encoding can be enhanced with the CAI-
PIRINHA/CAIPI technique (6,7), which alleviates the
unaliasing problem and reduces g-factor noise amplifica-
tion by shifting the FOVs of individual slices with
respect to one another in the phase encoding direction.
However, the sharp phase and magnitude discontinuities
that arise at the concatenation points of the shifted slices
result in SENSE-GRAPPA reconstruction artifacts. To
avoid this, Slice-GRAPPA (7) assigns a unique k-space to
each slice and, as opposed to SENSE-GRAPPA, trains N
slice-specific kernels that project the SMS data onto each
of these k-spaces, while actively blocking signals from
other slices: “Split-Slice-GRAPPA” (8). The downside is
that Slice-GRAPPA uses a separate reconstruction step to
deal with any in-plane acceleration after slice unaliasing
because the projection kernels differ slightly from those
used in the GRAPPA framework.

In SENSE-GRAPPA slice-interface artifacts can be
avoided by extending the concatenated FOV in the phase
encoding dimension with a FOV of zeros, resulting in a
virtual acceleration factor of the SMS-factor þ 1 (not tak-
ing in-plane acceleration into account) (9–11). Alterna-
tively, one can concatenate along the readout dimension
to avoid interaction with the CAIPI phase dimension
(12). Reconstruction can then be performed serially (slice
unaliasing in the readout direction followed by in-plane
unaliasing in the phase encoding dimension). Through-
out this study this method will be referred to as 1D-
SENSE-GRAPPA. A second variant is assessed that uses
a single kernel to simultaneously reconstruct both
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dimensions, referred to as 2D-SENSE-GRAPPA. This
study reports on Slice-GRAPPA and 1D- and 2D SENSE-
GRAPPA methods in the context of EPI sequences that
suffer from Nyquist ghosting, which can significantly
hinder CAIPI-SMS reconstruction.

EPI/Nyquist Ghosting

Ghosting results from misalignment of positive and nega-

tive readout gradient lines due to, e.g., gradient/ADC

delays, and eddy currents. Although ghosting can show

significant nonlinear behavior (13), systematic differences

between positive and negative lines are often approxi-

mated using linear corrections, shifting the lines based on

reference scans (14), navigator lines (15) or by using

reference-free data-driven methods (16). In SMS, these

methods are not always applicable: different slices will

typically exhibit different ghosting due to spatial depend-

ence of the eddy currents. But, as these slices are aliased,

they cannot be corrected differentially.
In initial SMS EPI work, only the average ghost was

corrected before slice unaliasing, and afterward a slice-

specific correction was performed based on single-slice

reference scans (3). This was shown to be sub-optimal as

ghosting interferes with the slice reconstruction itself,

particularly when used in combination with blipped-

CAIPI (17), especially when using a FOV/2 CAIPI shift.

Ghosts are then prone to be assigned to a neighboring

slice and subsequently slice-specific ghost correction is

no longer possible. This is illustrated in Figure 1.
This issue was solved by training two Slice-GRAPPA

kernels (odd and even), where these labels reflect the

readout polarity of the first line of source points (17).

This allows source lines to be shifted with respect to one

another and the two kernels each reconstruct their own

subset of k-space lines separately, although not inde-

pendently (as that would constitute doubling the under-

sampling factor). Because, in Slice-GRAPPA, each slice

has its own projection kernel, and odd–even kernels

allow training on ghosted images, each kernel can be

trained with the correct level of ghosting for that particu-

lar slice. These ghosts are removed after slice unaliasing

resulting in clean EPI-SMS reconstructions (17).

This report presents a method to perform odd–even

reconstruction within the SENSE-GRAPPA framework.
Whenever the use of odd–even kernels is suggested, as

opposed to SENSE-GRAPPA in general, the prefix “NGC”

(Nyquist Ghost Corrected) will be used. SENSE-GRAPPA

is attractive as it only uses GRAPPA operations and,
therefore, is readily compatible with advanced recon-

struction methods developed for GRAPPA [e.g., iterative

(18), nonlinear (19), or sliding-window (20) GRAPPA].

This includes the use of single-step reconstructions with
a 2D kernel (21), which is computationally favorable (see

Appendix 1).
In 3D imaging, serial 1D and 2D reconstructions dif-

fered in terms of error propagation (21). Here, this is

investigated in the context of SMS imaging. For 2D
implementations of NGC-SENSE-GRAPPA, first an addi-

tional step is needed to make unaliasing of the in-plane

dimension robust to ghosting which is explained in the

methods section.

METHODS

The interaction of in-plane GRAPPA and ghosting is

explained in Figure 2. In Figure 2a, the kernel is

depicted that is needed to fill in the missing zero lines
in the in-plane accelerated data. The measured source

points to be convolved with this kernel are shown in red

and blue (indicating readout polarity), which are shifted

with respect to the one another due to eddy currents etc.
The target point (that is filled in) is indicated in orange

and lies in the middle of the red and blue points, i.e.,

not shifted due to ghosting effects. Because the reference

data (ACS lines; Figure 2b) were obtained without zero
lines, the frequency of the red–blue shifting pattern has

doubled (indicated by the grey zigzag line); thus, the ker-

nel’s source points do not line up with the measured

points in the training data. This is a problem as one of
the fundamental underpinnings of GRAPPA is that one

has the ability to predict a missing point in k-space

based on a known multicoil relationship with its neigh-

boring points. Ghosting or other physiological effects
change this relationship and a mismatch of reference

lines and accelerated data, therefore, is a general

FIG. 1. Nyquist ghosting interaction with CAIPI. a: Reference data for two slices, the second one being shifted by a CAIPI FOV/2 shift.
b: Simultaneous acquisition of the slices depicted in panel a ideally results in the superimposed image on the left. Nyquist ghosting due

to the EPI readout causes ghosts of each slice to “perfectly overlap” with the other slice’s true location, effectively cancelling the con-
trolled aliasing benefit for the ghosted signal. c: Reconstructing the ghosted data in panel b with the reference data of panel a will cause
(part of) each ghost signal to be reconstructed as belonging to the other slice, and slice unaliasing will effectively have failed. The extent

to which this occurs depends on how crucial CAIPI is w.r.t. the coil sensitivity profiles: the closer together the slices, the less resolving
power is provided by the coils, hence the stronger this artifact becomes.
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problem in parallel imaging, not specific to SMS recon-
struction (22).

However, in non-SMS or serial 1D SMS, reconstruc-
tion ghosting in particular is not a severe issue as one
simply corrects both the ACS and the imaging data
before in-plane unaliasing. In single-step 2D reconstruc-
tion, this is not possible as the SMS data cannot be
made ghost-free due to the variability of the ghosts of the
underlying slices.

The proposed solution is to alter the reference data to
have the same pattern as the accelerated data. This
requires the ghosting parameters of the individual slices
underlying the SMS data to be known (as is the case in
Slice-GRAPPA and 1D-SENSE-GRAPPA). By appropri-
ately shifting the lines of the reference scan the correct
pattern can be created (Fig. 2c). Once each reference
slice is “corrupted” with its individual line-shifting pat-
tern, the slices are concatenated in the readout direction
and a 2D-GRAPPA kernel can be estimated. As these ker-
nels are now trained on ghosted data, the odd-even strat-
egy must be used.

Figure 2c also shows that the introduced shift pattern
does reduce the number of positions that the kernels can
assume in the estimation process, decreasing the number
of equations in the kernel inversion: The points indi-
cated in purple are neither on the correct location to
serve as source points for the odd-labeled kernel, nor for
the even one, but in fact line up with the target point in
orange, such that after unaliasing the pattern can easily
be removed. This loss can be avoided by repeating the
process with a different zigzag pattern with as shown in
Figure 2d. The number of such phase cycles needed is

equal to the in-plane acceleration factor and the same

number of equations is obtained as would have been

with conventional methods.
Please note that, in this example, single-shot EPI refer-

ence data are assumed. Had segmented data been used

(to match distortions), the reference data would have

been two red lines being followed by two blue lines etc.,

whereas using a GRE scan would have resulted in non-

shifted lines. In general, any discrepancy between the

ghosting pattern of the reference and the imaging data

can be addressed in a similar manner as long as (i) the

reference data can be made ghost free, and (ii) the ghost-

ing parameters (zigzags) of each of the slices underlying

the SMS imaging data are known.
After 2D unaliasing, the introduced shifting patterns

are removed from the slices to form ghost-free images

without enhanced residual aliasing that would otherwise

be present due to the interaction of the Nyquist ghosting,

in-plane acceleration, and the blipped-CAIPI FOV shifts.

The entire reconstruction pipeline is shown in Figure 3.

Experiments

Reconstructions were performed with SENSE-GRAPPA

(1D and 2D) and Slice-GRAPPA, including the leakage

blocking modification (8). For 2D-NGC-SENSE-GRAPPA

the pipeline in Figure 3 was followed. For Slice-

GRAPPA and 1D-NGC-SENSE-GRAPPA, the SMS data

were first average-ghost corrected. After slice unaliasing,

residual ghosting in the individual slices was addressed

before in-plane GRAPPA reconstruction.

FIG. 2. In-plane kernel estimation in the presence of Nyquist ghosting. This figure shows how to preprocess reference data to obtain a
kernel compatible with the ghosted, accelerated data. The procedure is depicted for a single slice but needs to be repeated for all sli-
ces before readout-concatenation. Red and blue show k-space samples that are shifted resulting in ghosting. Please note that any form

of reference data could be used (here single shot EPI) as long as it can be made ghost-free and the individual slice ghosting of the
SMS data is known. A: The accelerated data together with an overlay of a 5x4 kernel. The lines indicate the source points that are

needed to fill in the missing value at the location of the orange dot (please note that the coil dimension is omitted here for clarity). The
gray line visualizes the frequency of the ghosting pattern. B: The reference data with the same kernel. Blue source points display a mis-
match with the actual data. The cause is the higher frequency of the shifting pattern (grey zigzag line). The gray kernel outline indicates

the next ky-location for a kernel of this polarity (i.e., within the odd–even framework), shown translated in the read dimension for better
visualization. C: The proposed fix to the reference data. The ghosting pattern in panel B is corrected and a new pattern is introduced

that matches that of panel A. The changed periodicity causes the ky-location of the next kernel (gray) to shift as well. This would reduce
the number of equations in the inversion because, the purple samples are never used as source points. This can be avoided by intro-
ducing multiple shifting patterns, where the phase of the pattern is modified, and combining the sets of equations obtained before

matrix inversion. D: A phase cycled variant of the zigzag pattern to increase the number of equations. The number of cycles required is
equal to the in-plane acceleration factor.
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The three reconstruction methods were tested on gold-
standard simulated SMS data where known ghosting was
introduced in multiple scenarios: (i) odd-even kernels
versus their normal variants, and the influence of kernel
sizes on quality and computation time; (ii) local phase
modulation simulating breathing after kernel estimation;
and (iii) rigid body motion after kernel estimation. Real
SMS EPI datasets were subsequently reconstructed and
the fidelity was assessed visually due to the lack of a
gold standard.

All methods were coded in MATLAB’s standard m-file
format without use of precompiled MEX modules and
executed on the same computer (2.6 GHz Intel Core i7
quadcore, 16 GB RAM), which is particularly relevant
for the computation time comparisons.

Gold Standard Simulation Experiments

Simulated SMS data were generated from an MP-RAGE
scan (24-year-old male after informed consent, 3 Tesla
(T) (Siemens Verio, Erlangen, Germany), 32-channel
headcoil), to serve as a gold standard without ghosting.
No acceleration was used to avoid interaction with the
assessed methods. Relevant sequence parameters were:
field of view (FOV) 256 � 256 � 216 mm3, matrix 192 �
192 � 144, echo time/inversion time/repetition time (TE/
TI/TR): 5.7/900/2000 ms, right–left phase encoding. Post-
hoc, to closer resemble typical EPI brain acquisitions,
the FOV was cropped to 228 mm and data were down-
sampled to a 120 � 120 matrix, resulting in 1.9 mm in-
plane resolution.

Three slices were taken with a spacing of 15 slices
(22.5 mm), the odd phase encode lines of the slices were
shifted by -0.75, -0.5, and þ0.5 k-space units, respec-
tively, well within range of typical EPI observations and
chosen such that, after subtraction of the average, none
would be zero.

The ghosted data served as single-slice reference data.
SMS data were created by summing two-fold in-plane

undersampled copies of these slices after applying a

CAIPI shift to the middle slice of half an acceleration-

reduced FOV.

Assessment of Reconstruction Fidelity

The difference between the original and reconstructed

slices was expressed relative to the average signal inten-

sity of the brain as opposed to voxelwise division of the

two images to avoid inflating error measures in areas of

low intensity. The difference images were spatially

smoothed (Gaussian, full width half maximum ¼ 15

mm) to suppress high-frequency g-noise, which is not

ghosting-related and not of interest here. Also, only vox-

els inside the brain were taken into account: even if a

reconstructed ghost is masked out, its signal is still miss-

ing from the original image, thereby adding to the error

while this mask effectively excludes the contribution of

rectified noise in out-of-brain voxels, which would cause

a reconstruction-independent “offset” in the error meas-

ures. To aid interpretation, the figures are accompanied

by histograms over all brain pixels. Narrower histograms

indicate better reconstructions. The mask was created

with FSL-BET (23).

Kernel Geometries

The methods were all implemented using kernels in

which the source points were symmetrically distributed

around the target points. Whenever a sampling pattern has

a missing value due to acceleration in a particular dimen-

sion, a kernel will have an even number of points in that

dimension. In fully sampled dimensions, the kernel will

have an odd number of points. Please note that this is

unrelated to the odd–even kernel distinction mentioned

earlier. Graphical depictions are shown in Figure 4.

FIG. 3. Reconstruction pipeline
for 2D-NGC-SENSE-GRAPPA.
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Computation Times

One-step reconstructions are more computationally effi-

cient than two serial steps. This is shown analytically in

Appendix 1 and predicted calculation times for the odd–

even kernel estimation are plotted on top of the meas-

ured values. To reduce the influence of practical code

implementations when measuring the computation time,

only the durations of the two most important computa-

tion steps were taken into account: (i) The matrix inver-

sion that estimates the kernel from the large set of

equations in the kernel estimation phase. (ii) The loop

that applies the kernel to each accelerated data volume.

In all methods the loop structures were very similar (k-

space convolution), as were the variable initializations

that happened inside the measured timing window,

hence coding efficiencies were approximately equal.

Simulation of Breathing Artifacts

One-step and two-step reconstructions are expected to

behave differently in terms of error propagation (21). On

the one hand, two-step approaches allow corrections to

be applied at the intermediate stage (like ghost correc-

tions of unaliased slices as performed in this study), on

the other hand, if the slice unaliasing step underper-

forms for any reason, these errors can introduce addi-

tional problems during the in-plane reconstruction stage

(e.g., ghost correction applied to signal originating from

a different slice). Scenario 2 simulates propagation of

breathing errors: the kernel is estimated in a fully

exhaled state and subsequently applied to data in a fully

inhaled condition.
Not only does breathing cause bulk motion (assessed

in scenario 3), but it also changes the resonance fre-

quency, spatially varying across the brain. The frequency

difference between inhale and exhale is 2–8 Hz at 7T

(24,25). Assuming TE ¼ 30 ms for a functional MRI
(fMRI) EPI scan, 8 Hz would lead to a phase change of
86�. To mimic spatial variation of the field, the phase
modulation was implemented as a 2D Gaussian with 86�

as its maximum amplitude and a FWHM of half the
simulated FOV (24,25). The frequency modulation
strongly depends on the distance to the lung and the rate
of decay of this frequency when moving away from the
lungs is 0.1 cm-1 (25). With the simulated slice spacing
of 2.25 cm, this means that if the bottom slice has an off-
set of 8 Hz, the next simulated slice will have an offset
of 6.2 Hz. The modulations were applied to the SMS
data before the CAIPI manipulation.

Simulation of Motion Artifacts

Similar to the breathing scenario, motion error propaga-
tion was assessed. After kernel estimation, image data
were rotated (before SMS summation) by 0.25� around
the z-axis followed by 0.25� around the y-axis. Subse-
quently, the brain was translated by 0.5 mm in all three
cardinal directions. These values are well within the
range of motion typically observed in fMRI of healthy
persons.

Reconstruction of Real SMS Data

Ghost Correction of Real EPI Data

The algorithms all require knowledge of slice-specific
ghosting parameters, which were unknown for the nonsi-
mulated data. A data-driven approach was used similar
to (16): for each slice, MATLAB’s “fminsearch.m” deter-
mined two coefficients defining a linear phase gradient
that, when applied to the Fourier transform of the nega-
tive readout gradient lines in k-space, maximizes the
sum-of-squares of the image intensity values. Local min-
ima were avoided by using 210 initializations.

FIG. 4. Slice unaliasing kernel geometries. Due to implementation-specific differences, the kernels used in this study vary in geometry.
As a rule, whenever data are fully sampled in a dimension, that dimension’s kernel size is odd, otherwise it is even. The examples

shown all use three-fold slice-acceleration, the black dots indicate source points, the orange ones targets, and white circles are missing
values. As 2D-SENSE-GRAPPA deals with in-plane acceleration at the same time, its figure shows two-fold undersampling as well. The
other two methods consider the phase encode dimension to be fully sampled as in-plane acceleration is dealt with at a later stage. In

the Appendix, kernel sizes are indicated with K1 and K2, and the different accelerations with AF1 and AF2. For the 2D-SENSE-GRAPPA
case these would have the following values: K1 ¼ 4 (four source points in the read-direction), K2 ¼ 4 (four source points in the phase-

direction), AF1 ¼ 3 (two missing lines in the read-direction, which doubles as the slice-direction in this algorithm), and AF2 ¼2 (1 miss-
ing line in the phase-direction).
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Scenario 1: Conventional SMS-EPI Diffusion Imaging

Odd-even Slice-GRAPPA and 2D-NGC-SENSE-GRAPPA
were used to reconstruct data from an SMS diffusion
sequence distributed by the HCP consortium (26–28).
Some modifications were made to the HCP protocol to
make the data compatible with 2D-SENSE-GRAPPA due
to different requirements on the reference data (see the
Discussion section); therefore, no comparisons to the
HCP data should be made. Four sequence variations
were assessed.

Parameters were: SMS factor 2 or 3, in-plane accelera-
tion factor 2, CAIPI FOV/3 shifting, FOV 192 mm, matrix
160, 104(52) or 120(40) slices, slice thickness ¼ 1.2 mm,
TE ¼ 70 ms, EPI echo spacing 0.76 ms, 6/8 partial Fou-
rier. Next to nonaccelerated reference data (ACS lines),
single-slice, in-plane accelerated images (indicated here
with “REF2”) were acquired for use in Slice-GRAPPA.
Two variants of ACS data were acquired: single-shot
with 38 phase-encoding lines, and segmented acquisition
with 76 lines. The latter had identical geometric distor-
tion as the imaging data but this comes at the cost of
increased phase instabilities (unfortunately, a FLEET-
like solution (22) was unavailable). To minimize phase
inconsistencies, each shot of the segmented ACS data
was first EPI-ghost corrected using the method described
above. The two segments were subsequently merged and
the same correction algorithm was run again, this time
estimating shot-to-shot phase fluctuations. This markedly
reduced segmentation ghosting although results were not

perfect due to the nonlinear nature of the physiologically
induced phase differences.

The Slice-GRAPPA reconstruction pipeline was as fol-
lows: average ghost removal, slice-unaliasing using REF2
data, single-slice ghost correction, in-plane unaliasing
using ACS. The 2D-NGC-SENSE-GRAPPA algorithm only
used the ACS data.

Scenario 2: Read-Out Segmented Diffusion Imaging

In the scenarios above, the ACS data were either not dis-
tortion matched or suffered from intersegment phase
instabilities, which disadvantaged 2D-SENSE-GRAPPA
(see the Discussion section). In Scenario 2, a readout-
segmented sequence was used: this sequence is designed
to minimize distortions (29) and, therefore, the distortion
mismatch was expected to have less impact.

Spin-echo EPI data were acquired at 7T (Siemens,
Erlangen, Germany) using an SMS version of readout-
segmented EPI with sinusoidal readouts (30). Parameters
were: SMS factor 3, in-plane acceleration factor 2, FOV
210 mm, matrix 140, 81 (27) slices of 1.5 mm, TE ¼ 60
ms, echo spacing 0.36 ms, 32 channels, CAIPI FOV/2.

Initial reconstructions with non–odd–even Split-Slice-
GRAPPA proved troublesome with ghosting clearly inter-
acting with CAIPI, particularly for the bright cerebrospi-
nal fluid (CSF) signal. To demonstrate the improvement
offered by odd–even kernels, the results section also con-
tains this flawed reconstruction. Odd–even kernels did
not resolve all artifacts, however, which motivated the

FIG. 5. Reconstruction example of the gold standard dataset. The top row shows the data after introducing the ghosting parameters as

described in the methods on the left, and the unaltered data on the right. The bottom panel on the left shows reconstructions without
the use of odd–even kernels (and in the case of 2D-SENSE-GRAPPA without the in-plane ghost correction described in Figure 2). On
the right, the reconstructions with ghost-correcting kernels are shown. In these examples, kernel sizes were: 7 � 7 for Slice-GRAPPA, 7

� 6 for 1D-SENSE-GRAPPA, and 6 � 6 for 2D-SENSE-GRAPPA.
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development of the alternative NGC-SENSE-GRAPPA

methods described in this study.
All methods were applied with different kernel sizes in

the range of 4 to 8, and for each method, its best reconstruc-

tion was determined visually and used in the comparison.

RESULTS

Simulated Scenarios

Scenario 1: The Effect of Kernel Size and the Use of
Odd–Even versus Normal Kernels

Simulation data were reconstructed with different kernel

sizes (example reconstruction in Figure 5), the recon-

struction error versus kernel size is shown in Figure 6A.

Errors behaved very linearly provided the kernels were

large enough (not poorly determined). Computation

times are shown in Figure 6B along with their predicted

values (see Appendix 1).

Scenario 2: Simulated Breathing Artifacts

Figure 7 shows that both serial 1D methods show larger

reconstruction errors than the 2D variant. Other values

for the width of the Gaussian and the amplitude were

tested too, but this affected the results to a limited extent

without changing the overall picture. Leaving out the z-

dependence of the frequency modulation also made little

difference, suggesting that it is mainly the within-slice,

nonlinear mismatch of the ACS data that drives the

error, not the variation of this mismatch between slices.

Scenario 3: Simulated Motion Artifacts

Results of scenario 3 are shown in Figure 8 with no differ-

ence between the methods over a range of kernel sizes.

Real SMS Data, Single-Shot EPI

The results for the four scenarios are shown in Figure 9

where 2D-NGC-SENSE-GRAPPA performs similar to Slice-

GRAPPA. The biggest difference can be seen in the multi-

shot ACS scenarios where Slice-GRAPPA performs slightly

better than 2D-NGC-SENSE-GRAPPA (blue arrows). This is

likely due to phase-corruption in the segmented ACS data.

The 2D method uses these for both slice and in-plane

unaliasing, whereas the Slice-GRAPPA algorithm could

take advantage of the other reference data, REF2 which was

not segmented. In the single-shot ACS scenarios, 2D-NGC-

SENSE-GRAPPA may perform slightly better (red arrows)

but some residual ghosting is still present.

Real SMS Data, Readout-Segmented EPI

Sagittal and transversal cuts through the reconstructed

volumes are shown in Figure 10, all narrowly windowed

(maximum display intensity equals 10% of the maxi-

mum voxel value) such that the ghosting artifacts are

FIG. 6. Reconstruction errors and computation time versus kernel size. The x-axes denote kernel sizes expressed as the square root of

the number of points used in the slice unaliasing kernel (i.e., noninteger for the 1D-SENSE-GRAPPA method, which uses rectangular
kernels, see Figure 4). For both Slice-GRAPPA and 1D-SENSE-GRAPPA, the follow-up in-plane kernel scales along with the slice
unaliasing one as [N � N-1]. In all cases, the SMS factor was 3 and the in-plane acceleration factor was 2. A: The reconstruction error

within the brain mask is shown expressed as the average absolute value of the relative error w.r.t. the gold standard. The dashed lines
belong to reconstructions where the odd–even method was not applied. This results in large ghosting artifacts (see also Figure 5). The
2D-SENSE-GRAPPA performs worst here because the other two methods still attempt to correct part of the ghosting before in-plane

unaliasing whereas this cannot be done in the 2D case. When using the odd–even method the three methods perform very similar with
only a very slight disadvantage to the 2D method. Slice-GRAPPA and 1D-SENSE-GRAPPA perform identically. B: The computation

times for the three odd–even methods are shown. The solid colors indicate the time it took for the matrix inversion in the kernel estima-
tion stage (2 inversions for odd–even slice unaliasing, plus 3 for in-plane unaliasing in the 1D methods; two larger inversions for odd–
even 2D-SENSE-GRAPPA). The solid lines show the predicted computation time based on the computational complexity of the

pseudoinverse. The lighter colors indicate the application times for 50 measurements (putting them on a similar scale). In all cases the
2D-kernel inversion is faster than the other methods. On the application side, 2D-SENSE-GRAPPA is faster than the other two for kernel

sizes below 8.
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clearly visible. Whereas Slice-GRAPPA and 1D-NGC-

SENSE-GRAPPA still show ghosting, 2D-NGC-SENSE-

GRAPPA shows a much better result.

DISCUSSION

Speed

Blaimer et al presented two methods for reconstructing

data that were undersampled in two dimensions, the 2D-

GRAPPA method and the 2D-GRAPPA-operator method,

the latter referring to two serially executed 1D kernels

(21). Serial reconstruction was slower due to the require-

ment of two separate inversions, as shown in the Appen-

dix. The computational burden, however, is dependent

on the specific algorithm that is used to calculate the

pseudoinverse. For other implementations, similar calcu-

lations would need to be made to decide which method

is faster.
Figure 6B confirms that 2D-SENSE-GRAPPA is compu-

tationally less expensive than the serial methods. Matrix

inversion was always faster, regardless the kernel size

and in the kernel application stage the advantage was

lost only for extremely large kernels. It should be noted,

however, that the applications were performed using

convolution in k-space, whereas one can also use matrix

multiplication in image space (31). This can reduce the

computational burden at the cost of memory requirement

and for such applications similar efficiency calculations

would need to be done.

Quality

Blaimer et al showed that serial methods yielded slightly

higher image quality because kernels were individually

FIG. 7. Simulation of error due to breathing. Rows show different kernel sizes. Columns indicate the methods used, the title colors cor-
responding to the error histograms in the last column. Slice-GRAPPA and 1D-NGC-SENSE-GRAPPA perform identically. For kernel sizes

larger than four, 2D-NGC-SENSE-GRAPPA outperforms the other two methods leading to narrower error histograms.

FIG. 8. Simulation of error due to motion. Rows show different kernel sizes. Columns indicate the methods used, the title colors corre-
sponding to the error histograms in the last column. The three methods perform equally and increasing kernel sizes does not have an

effect on the error.
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better determined (illustrated in Figure 4 where the 2D
kernel has a less favorable ratio of blue versus orange

dots). The authors did warn about error propagation,
however, and proposed to use a principle component
analysis to determine which dimension should be

unaliased first. In this study, these issues were examined
in the context of SMS imaging where the quality of the
reference data proves to play a vital role.

Figure 6A shows that in gold-standard simulations

without propagation errors 2D-NGC-SENSE-GRAPPA has
a slightly larger error indicating that indeed two-step
approaches are better determined. Slice-GRAPPA or 1D-

NGC-SENSE-GRAPPA did not show any differences in

any of the scenarios tested in this study, which is note-
worthy considering the differences in theory underlying

both methods.
As soon as the possibility of error propagation was

introduced differences between serial 1D and 2D recon-
structions could be seen. The breathing simulation

clearly showed that the 2D method was able to achieve
higher reconstruction fidelity. In the single-shot EPI
experiments, however, it proved to be better to first unalias

the SMS slices based on an in-plane accelerated single-
slice acquisition (i.e., REF2 with matched distortion) than
to use the fully sampled reference ACS data to unalias

everything in one go. Finally, when the distortion problem

FIG. 9. Reconstructions of SMS
EPI data using the CMRR dis-

tributed diffusion sequence.
Rows show Slice-GRAPPA (7 �
7 kernel) and 2D-NGC-SENSE-

GRAPPA (6 � 6) reconstructions
of four different scans of the

same subject, slices are approxi-
mately matched to show the
same location and are scaled

identically. For single-shot
acquisitions, 2D-NGC-SENSE-

GRAPPA shows slightly less
ghosting as the Slice-GRAPPA
reconstruction (red arrows). In

the case of segmented ACS
lines (multishot) and an SMS fac-
tor of 3, the Slice-GRAPPA

method performs slightly better
(blue arrows).

FIG. 10. Reconstructions of readout-segmented SMS EPI data. The blue lines indicate the positions of the cuts shown. Kernels used
are indicated on the lower row. Image scaling was identical in all images and set to 10% of the maximum image value. Slice-GRAPPA

without odd–even kernels clearly shows leakage of another slice’s ghost signal (indicated by red arrow). Odd–even Slice-GRAPPA and
the equivalently performing 1D-NGC-SENSE-GRAPPA both massively improve the reconstruction, but nevertheless show residual four-
fold ghosting. Such ghosting occurs when in-plane unaliasing is applied to ghosted data, indicating the ghost correction after slice-

unaliasing has not worked properly. When using 2D-NGC-SENSE-GRAPPA the majority of this artifact disappears although at the top of
the brain a small CSF ghost remains (yellow arrowhead).
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was alleviated using an intrinsically low-distortion read-
out-segmented EPI sequence better reconstructions were
obtained with the single-step 2D algorithm.

In the rigid body motion simulation, all methods suf-
fered equally. A possible explanation is that unlike in
the other tests where nonlinear differences between ref-
erence and imaging data were introduced, in the motion
case, it are the coil sensitivities themselves that are
wrong which affects all methods equally and linearly.

Reconstructions of readout-segmented EPI SMS data
clearly confirm the benefit of the use of odd–even ker-
nels (17). Although both serial 1D-reconstructions do not
show slices with obvious components from other slices
following the mechanism in Figure 1, they do both con-
tain a residual four-fold ghosting pattern. Such artifacts
occur when two-fold in-plane accelerated data contain-
ing line-to-line inconsistencies are unaliased with ker-
nels that were not trained on this pattern. Residual
ghosting in Figure 10 is likely caused by the slice-
unaliasing step failing to exactly reproduce the original
ghosts in each individual slice (through for example the
filtering effects of the GRAPPA operation or because the
kernel fit fails to capture the ghosting pattern). Therefore,
afterward, the reference-data-based ghost correction
before in-plane reconstruction fails, resulting in poor in-
plane reconstruction.

Attempts to improve ghost correction by abandoning
reference data and directly estimating ghosting using the
data-driven approach did not resolve this issue. In other
words, the slice-unaliasing step has introduced or left an
inconsistency between odd and even lines in the data
that cannot be corrected by applying linear phase ramps
along the readout.

An alternative explanation would be that the ghosts in
the reference data did not match those in the SMS data,
as this experiment is not as well controlled as the simu-
lations. However, as 2D-NGC-SENSE-GRAPPA was able
to reconstruct the images in Figure 10 without four-fold
ghosting this seems an unlikely candidate explanation.
The results are in line with the differences in sensitivity
to error propagation as demonstrated in the breathing
simulation: even though the cause of the residual ghost-
ing after slice-unaliasing is unknown, the 2D reconstruc-
tion is more robust against it.

Ghosting Robustness

Gold-standard simulations allowed testing of the algo-
rithms in the presence of large sets of perfect ACS lines.
The method was tested on simulated SMS data into
which known linear ghosting was introduced. This is a
simplification of true EPI data, where nonlinear or non-
stationary ghosts can occur as well. Nonlinear ghosts are
not necessarily a problem; however, as long as they can
be measured and corrected, the flow chart in Figure 3
remains appropriate. Please note that the requirement to
be able to measure and correct the ghosting is shared by
all methods. A nonlinear effect appears in the top 6 mm
of the brain in Figure 10 where CSF signal still shows
residual ghosting. The presence of nonlinearity was con-
firmed by investigating a nonphase encoded reference
scan.

Nonstationary ghosts are an unresolved issue. Two
types can be distinguished (slow/fast). If the ghosting
parameters vary significantly over the time series due to,
e.g., cryostat heating, the reconstruction quality of later
volumes in the dataset could suffer. This, however, is
true for all reconstruction methods presented here: if
ghosting levels change, kernels should be re-evaluated
which for an entire image series would take relatively
long. If one were to do it, however, the new ghosting
parameter would be needed for each slice individually.
A possible solution could be to use the time course of
ghosting estimates of aliased SMS data as an indicator of
the change in individual slices under the approximation
that they all scale similarly.

A case of fast nonstationarity would occur if there was
significant variation throughout the echo train. This is
potentially more harmful as it violates one of the funda-
mental underpinnings of GRAPPA: the kernel should be
translationally invariant. This would, therefore, preclude
kernels in any of the methods to be evaluated on ghosted
data, and probably a generalization of the odd–even ker-
nel method allowing even more kernels would be needed
to solve this but this is beyond the scope of this study.
Investigation of nonphase encoded reference scans
revealed that in the protocols presented here the effects
were very stationary.

Finally, spatially varying ghosting in SMS acquisitions
can partially be addressed by applying the ghost correc-
tion on a coil-wise basis. This ensures that the correction
is dominated by the slice that is closest to the coil to
alleviate the problem to an extent (27).

Interpretation

This study shows that using the odd–even kernel strat-
egy and readout-concatenation allows 1D-NGC-SENSE-
GRAPPA to perform the same as Split-Slice-GRAPPA
under all circumstances explored here. The choice
between the two will, therefore, mainly depend on prac-
tical considerations: advanced methods have been devel-
oped within the GRAPPA framework (18–20) readily
compatible with SENSE-GRAPPA and could, therefore,
be exploited with minimal effort. On the other hand,
large-scale SMS projects such as the HCP (27) have
adopted Slice-GRAPPA and have brought online scanner
implementations to a high level of maturity, and these
can easily be used for other EPI sequences.

The overall picture of the results is that single-step 2D
algorithms may be able to perform very well but that
acquiring the best possible ACS data is key to obtaining
high-quality reconstructions. The importance of good ref-
erence data is a topic of active investigation, and specifi-
cally the FLEET-like ACS data acquisitions could offer a
good solution (22). These allow distortion-matched ACS
lines to be acquired using a segmented approach while
alleviating the effects of intersegment physiological fluc-
tuations that would otherwise corrupt the ACS data.

The goal of the study was to obtain reconstructions
with minimal residual ghosting and compare them to
ones obtained with established techniques, similar to the
ones used in the HCP project in this case. It is important,
however, to stress that reported differences should not

2D-NGC-SENSE-GRAPPA SMS 1007



be over-interpreted. First of all, the HCP protocols are

highly optimized, but their reference data acquisition

was incompatible with the 2D algorithm tested here.

Therefore, the protocols needed to be adjusted, which

precludes a direct comparison. Furthermore, it is incred-

ibly difficult to oversee the impact the changes in resid-

ual ghosting have on elucidating biological information.

Metrics of interest in large-scale studies like the HCP

(e.g., tractography results) are not easily re-evaluated

using a wide range of reconstruction algorithms (or any

other preprocessing step for that matter) and, therefore,

the results of this study should not be interpreted at that

level.
Although treated in this study in the context of SMS

imaging where the issue of ghosting differences between

excited locations is quite apparent, one could argue that

a similar issue would occur in 3D-EPI (32). Given the

equivalence of 3D-CAIPI-EPI and blipped-CAIPI SMS EPI

reconstructions (11,33), it may prove advantageous to

implement a similar ACS modification scheme as shown

in Figure 2 together with the odd–even kernel estimation

in 3D imaging. By using a 2D-EPI reference scan with

the same EPI train as used for the 3D imaging readout, z-

location specific ghosting parameters could be obtained

to construct a modified ACS dataset. This could lead to

better reconstructions in 3D unaliasing, where a single

ghost-correction applied to the entire volume will not

cover the spatial variation as reliably. It must be noted,

however, that 3D-EPI sequences are known to be affected

by shot-to-shot phase fluctuations (34,35) and that these

variations along the kz-encoding could well be more

influential than the spatial variation of the Nyquist

ghosting when it comes to reconstruction fidelity of 3D

data that is undersampled in two dimensions.

CONCLUSIONS

The presented work shows that split-slice-GRAPPA and

1D-NGC-SENSE-GRAPPA perform all but identically in

all cases. In tests where good reference ACS data were

available, 2D-NGC-SENSE-GRAPPA showed reduced

error propagation compared to the serial 1D methods,

but this relationship reversed when inferior reference

data were used, stressing the importance of high quality

reference data for SMS reconstruction. The proposed 2D-

NGC-SENSE-GRAPPA algorithm can reconstruct SMS

EPI data robustly in the presence of Nyquist ghosting,

and can be an attractive alternative to serial 1D methods

due to its lower computational demands.
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APPENDIX 1: Computational Complexity

Calculation times for kernel inversion can be predicted

provided the numerical implementation of the pseudoin-

verse is known. In Matlab’s “pinv.m” the complexity is

�O(mn2), with m>n of the [m x n] matrix. The calcula-

tion time of the kernel inversion is proportional to:

Time � Number of kernel positions

� ðNumber of source points in kernelÞ2

with:

Number of source points in kernel ¼ NrCoils � K1 � K2

where Ki denotes kernel sizes in each dimensionand

Number of kernel positions ¼
�

NrLines1 � ðK1 � 1Þ �AF1

�

�
�

NrLines2 � ðK2 � 1Þ �AF2

�

where AFi denotes the acceleration factor. For a large

number of calibration lines, the (K-1)�AF terms become

negligible, and the number of kernel positions equates to

the number of elements in the imaging matrix. Setting
AF1 to the SMS factor, AF2 to the in-plane acceleration

factor AFPE, and M to the size of a square imaging

matrix, the comparison between the calculation times

can easily be interpreted. Please note that the n2 factor is
the same in all methods when equal kernel sizes are

used for fair comparison and hence can be ignored.

Slice-GRAPPA and 1D-SENSE-GRAPPA

Time � ðSMS�MÞ � ðM=AFPEÞ � n2 þ SMS�M2 � n2

where the first term reflects the slice unaliasing, and the

second the in-plane GRAPPA kernels

2D-SENSE-GRAPPA

Time � ðSMS�MÞ �M � n2:

The second term in the serial 1D methods equates to that

of 2D-SENSE-GRAPPA, meaning the latter will always be

faster unless memory limitations become relevant. In

Figure 6B, the predicted values for inversion (scaled to
the measured value of the largest kernel) were calculated

without the aforementioned (M�K) simplification of the

n dimension.
The complexity of the kernel application stage can be

calculated similarly. This is dependent on the number of
possible kernel positions in the target k-space and on the

number of elements in the kernel (�O(NrPositions 3

NrElements)) but it should be noted that kernel applica-

tion can be significantly accelerated by applying it in
image-space (31) and, therefore, could affect efficiency

calculations.
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