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Abstract

Glial cells missing 2 (gcm2) encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In
contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid), gills, and H+-ATPase–rich cells
(HRCs), a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved
in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and
Na+-Cl2 co-transporter–rich cells (NCCCs), another subset of ionocytes in zebrafish. We also identified gcm2 enhancer
regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions
revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in
embryos of the teleost fishes Medaka (Oryzias latipes) and fugu (Fugu niphobles), the extant primitive ray-finned fishes
Polypterus (Polypterus senegalus) and sturgeon (a hybrid of Huso huso 6 Acipenser ruhenus), and the amphibian Xenopus
(Xenopus laevis). Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not
found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm2
contributes to a diversity of ionocytes in zebrafish during evolution.
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Introduction

Developmental evolutionary studies have played an important role

in elucidating the molecular mechanisms that give rise to morpholog-

ical divergence and acquisition of new morphological structures and/

or functions. These studies have proposed a model for the evolution of

a novel morphological structure by modification of temporal and

spatial patterns of gene expression; that is, changes in gene regulatory

networks by adaptive mutations of transcription factors, including cis-

regulatory elements [1–3]. However, only a few actual examples have

been reported. In our current study, we focused on the glial cells missing

(gcm) family and investigated the evolution of ion-regulating organs in

vertebrates that may have evolved by changing the molecular

developmental mechanisms of gene regulation of the gcm family.

gcm encodes a GCM-motif transcription factor in Drosophila and

functions as a determinant in glia/neuron and plasmatocyte/

macrophage cell fates [4–9]. Homologues of Drosophila gcm, gcm1 and

gcm2, have been isolated from vertebrates [10–12], and both genes

are expressed in non-neuronal organs with diverse functions [12–

20]. Mouse gcm1 is expressed in the thymus, kidney, and placenta,

where it is required for chorio-allantois morphogenesis [17,20]. In

contrast, mouse gcm2 is expressed in the third pharyngeal pouch and

the parathyroid gland that develops from the third pouch and is an

essential gene for their development [21].

gcm2 is expressed in pharyngeal pouches of the teleost fish

zebrafish and the small-spotted catshark Scyliorhinus canicula. Its

expression patterns suggest that the evolutionary origin of the

parathyroid organ may be traced back to the pharyngeal pouches

of fishes [22–24]. Furthermore, it has been reported that gcm2 is

expressed in H+-ATPase–rich cells (HRCs), a subset of ionocytes

that are rich in H+-ATPase and located in the skin of zebrafish

[25,26]. Ionocytes are ion transporters with abundant mitochon-

dria and extensive basolateral membrane infoldings that form a

tubular system [27]. They are located in gills and scattered over

the skin surface of aquatic vertebrates but are not found in

amniotes. They play a central role in maintaining body fluid

homeostasis by actively taking up and excreting ions [28–30].

In our current study, we showed that gcm2 is essential for the

development of HRCs and Na+-Cl2 co-transporter–rich cells

(NCCCs), another subset of ionocytes in the skin of zebrafish. We

also identified gcm2 enhancers specific for the skin of zebrafish that

are upstream and downstream of the gcm2 locus. These enhancers

were not found in the syntenic regions of tetrapods. Furthermore,

we investigated gcm2 expression patterns in embryonic stages of the

teleost fishes Medaka (Oryzias latipes) and fugu (Fugu niphobles), the

primitive ray-finned fishes Polypterus (Polypterus senegalus) and

sturgeon (a hybrid of Huso huso 6 Acipenser ruhenus), and the

amphibian Xenopus (Xenopus laevis). gcm2-expressing cells were

observed in the skin of Medaka and fugu but not in Polypterus,

sturgeon, or Xenopus embryos. We will discuss an importance of

our finding of cis-elements for ionocytes in the skin of zebrafish.

Results

Zebrafish gcm2 is essential for morphogenesis of
ionocytes on the skin surface

To confirm that gcm2 is necessary for ionocyte development,

zebrafish morphants injected with gcm2 antisense morpholinos
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(MOs) were examined using scanning electron microscopy. The

observations focused on yolk sac areas because expression of gcm2

was localized in the gills and yolk sac (Figure 1A and B). In control

embryos at 72 hours post-fertilization (hpf), ionocytes on the skin

surface protruded between epithelial cells (Figure 2A), whereas in

gcm2 morphants at 72 hpf, the number of ionocytes was reduced.

We observed a reduction of approximately 40% in the number of

ionocytes on the skin surface per 0.04 mm2 when compared to the

number of ionocytes in control embryos (Figure 2B and C). The

reduction in the number of ionocytes in gcm2 morphants suggested

that gcm2 MO treatment resulted in inhibition of ionocyte

morphogenesis.

Zebrafish gcm2 is essential for the development of two
of the three types of ionocytes

Although gcm2 morphants showed a reduction in ionocyte

numbers on the skin surface, it was not clear which types of

ionocytes were reduced during morphogenesis. A recently

proposed model suggests that there are at least three subtypes of

ionocytes on the zebrafish skin surface: H+-ATPase–rich cells

(HRCs); Na+-K+-ATPase–rich cells (NaRCs); and Na+-Cl2 co-

transporter–rich cells (NCCCs) [28]. It has been reported that

gcm2 morphants are depleted of HRCs but not NaRCs [25,26],

although the status of NCCCs is unknown. To determine which

types of ionocytes require gcm2 for their development, we analyzed

the expression patterns of ionocyte marker genes in gcm2

morphants. In control embryos at 48 hpf, we detected with

whole-mount in situ hybridization skin surface expression of

atp6v1al (H+-ATPase subunit A) as a HRC marker gene [31],

atp1b1b (Na+-K+-ATPase transporting beta 1b subunit) as a NaRC

marker gene [31], and slc12a10.2 (thiazide-sensitive Na+-Cl2 co-

transporter, a member of the SLC12 family) as a NCCC marker

gene [32] (Figure 3A, C, and E). In contrast, gcm2 morphants

showed a strong reduction in the number of HRCs, no significant

change in the number of NaRCs, and an increase in the number of

NCCCs (Figure 3B, D, F, and G). These results suggested that

gcm2 was essential for the development of HRCs, was not essential

for the development of NaRCs, and suppressed the development

of NCCCs.

zgcm2-expressing cells on the skin surface are present
only in teleosts

To investigate if the induction of gcm2 expression in ionocytes on

the skin surface is unique to teleosts, we examined gcm2 expression

patterns in embryos of Medaka (13 days old), fugu (7 days old),

Polypterus (48 hpf), sturgeon (stage 32), and Xenopus (stage 37). All

embryos expressed gcm2 in the pharyngeal pouches and gills

(Figure 4A, C, E, G, and J). The Medaka and fugu embryos also

expressed gcm2 in a scattered pattern on the skin surface (Figure 4B

and D). On the other hand, Polypterus, sturgeon, and Xenopus

embryos did not express gcm2 on the skin surface (Figure 4E, G, and

J), although Polypterus and sturgeon embryos showed atp1b1-positive

Figure 1. Expression of gcm2 in the gills and the cells on the skin surface of zebrafish. Whole-mount in situ hybridization of 5-day-old
zebrafish with gcm2 probes. (A) gcm2 is expressed in the gills. (B) Magnification of a yolk sac area. Some cells in the yolk sac express gcm2
(arrowheads).
doi:10.1371/journal.pone.0023746.g001

Figure 2. Scanning electron microscopy of the yolk sac membrane in 3-day-old zebrafish. (A, B) Magnification of the yolk sac membrane.
(A) An embryo injected with a control morpholino (MO). (B) An embryo injected with a gcm2 MO. (C) Quantitative comparison of the ionocyte
number per 0.04 mm2 between embryos injected with control MO and gcm2 MO. The ionocyte number on the yolk sac membrane area in gcm2
morphants is less than that in control MO. Arrowheads indicate ionocytes. Because it is likely that cells were still alive or had differentiated without
expression of a marker gene by loss of function, we observed the external morphology of the skin surface in morphants using scanning electron
microscopy.
doi:10.1371/journal.pone.0023746.g002

Enhancers Contributed to a Diversity of Ionocytes
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cells on the skin surface (Figure 4F and H). These results suggested

that the cells expressing gcm2 on the skin surface were unique to

teleosts.

Zebrafish 160 kb BAC includes gcm2 enhancers specific
for ionocytes on the skin surface

Because gcm2 was uniquely expressed in ionocytes on the skin

surface of teleosts, the zebrafish was used to identify potential cis-

regulatory elements (i.e., enhancers of gcm2 that may regulate its

expression on the skin surface). To examine whether putative

enhancers are located near the gcm2 locus, we prepared a 160 kb

BAC (Bacterial Artificial Chromosome) clone containing zebrafish

gcm2 and its neighboring genes, elongation of very long chain fatty acids

like 2 (elovl2) and male germ cell–associated kinase (mak). Venus was then

inserted into the gcm2-coding region of the 160 kb BAC clone, and

this construct was injected into zebrafish eggs (Figure 5A). In

transient transgenic embryos, Venus was detected on the skin

surface, especially over the yolk sac membrane after 24 hpf, but it

was not observed in the gills at any of the observed stages of

development (Figure 5B). Because all Venus-expressing cells also

were labeled with MitoTracker, an ionocyte marker that stains

mitochondria (Figure 5C, D, and E), our results demonstrated that

Venus-expressing cells in the transgenic embryos were ionocytes

and that the 160 kb BAC-Venus clone contained gcm2 enhancers

specific for ionocytes in the skin. In addition, when the 160 kb

BAC-Venus construct was injected into fugu embryos, Venus-

expressing cells were observed on the skin surface (Figure 5F). This

result suggested that there were common trans factors that induced

gcm2 on the skin surface in zebrafish, but whether the common

factors are actually present in fugu remains to be investigated.

gcm2 enhancers are located 8 kb upstream and 41 kb
downstream of gcm2

To characterize gcm2 enhancers specific for ionocytes on the

skin surface, several fragments derived from the zebrafish genomic

region containing the gcm2, elovl2, and mak loci were PCR

amplified, cloned into the Tol2 transposon-based Venus expression

vector (pTolfV), and injected into zebrafish eggs. Transient

transgenic embryos injected with the pTolfV vector containing

either the 8 kb upstream region or the 41 kb downstream region

of the gcm2 translation site showed Venus expression specifically in

ionocytes on the skin surface (Figure 6A, B and Table S1).

Moreover, all reporter constructs with the 8 kb upstream region

between 28249 and 28004 bp (28 kb enhancer) or the 41 kb

downstream region between +41277 and +41497 bp (+41 kb

enhancer) displayed Venus positivity, indicating that each region

contained enhancers that specifically regulated expression of gcm2

in ionocytes on the skin surface.

Venus-expressing cells on the skin surface express a HRC
marker gene

To examine whether Venus-expressing cells on the skin surface

are HRCs, zebrafish embryos were injected with a construct

containing the 28 kb or +41 kb enhancer and examined with in

situ hybridization using an atp6v1al probe in combination with

immunohistochemistry using anti-GFP. All Venus-expressing cells

on the skin surface expressed atp6v1al mRNA (Figure 6C, D, E,

and F), which demonstrated that the gcm2 enhancers we identified

were enhancers specific for HRCs in the skin.

gcm2 enhancer regions specific for HRCs in zebrafish are
not found in tetrapods

We used VISTA software [33] to examine whether the two gcm2

enhancers are conserved among different species of vertebrates.

Analysis of the gcm2 locus and neighboring sequences in zebrafish

and some tetrapods, including Xenopus, chick, mouse, and human,

showed no conserved sequences in these vertebrate species

(Figure 7).

Discussion

The genes that regulate the specification of NaRCs, HRCs, and

NCCCs from their common precursor cells in zebrafish remain to

be determined. Previous studies [25,26] and our current study

suggest that regulation of gcm2 plays a key role in the specification

and differentiation of common precursor cells into each type of

ionocyte. Ionocytes are derived from common precursor cells of

keratinocytes [31,34]. Furthermore, a positive regulatory loop

involving foxi3a and foxi3b [31] regulates the specification and

differentiation of HRCs and NaRCs; however, the genes that

regulate the specification and differentiation of NCCCs remain

unknown. Our current study using gcm2 morphants showed that

Figure 3. gcm2 is essential for the development of HRCs and
suppresses the development of NCCCs on the skin surface. (A,
B) Whole-mount in situ hybridization of zebrafish 48 hours post-
fertilization (hpf) with an atp6v1al probe as a HRC marker. (C, D) Whole-
mount in situ hybridization with an atp1b1b probe as a NaRC marker. (E,
F) Whole-mount in situ hybridization with a slc12a10.2 probe as a NCCC
marker. (A, C, E) Zebrafish (48 hpf) injected with a control morpholino
(MO). (B, D, F) Zebrafish (48 hpf) injected with a gcm2 MO. (G)
Quantitative comparison of atp6v1al-positive cells, atp1b1b-positive
cells, and slc12a10.2-positive cells in zebrafish injected with control MO
and gcm2 MO.
doi:10.1371/journal.pone.0023746.g003
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gcm2 is involved in the differentiation of both HRCs and NCCCs

on the skin surface. gcm2 morphants showed not only extremely

reduced numbers of HRCs but increased numbers of NCCCs

(Figure 3). Therefore, we propose that gcm2 functions as a binary

switch in determining HRC or NCCC fate on the skin surface.

Because gcm in Drosophila functions as a binary switch in

determining glial or neuronal cell fate [4,5], it is possible that

vertebrate gcm2 has a similar function.

If gcm2 functions as a binary switch, then what trans factors

directly regulate gcm2 in progenitor cells of HRCs? foxi3a is a

candidate gene because positive feedback of gcm2 and foxi3a in the

specification of HRCs may maintain the expression of gcm2 [26].

Figure 4. Expression of gcm2 in Medaka, fugu, Polypterus, sturgeon and Xenopus. (A, B) Whole-mount in situ hybridization for gcm2 in 13-
day-old Medaka. (C, D) Whole-mount in situ hybridization for gcm2 in 7-day-old fugu. (B, D) Magnification of the skin surface. gcm2 is expressed in the
gills (arrowheads) and the cells on the skin surface of the teleostean fishes, Medaka and fugu. (E, F) Whole-mount in situ hybridization for gcm2 and
atp1b1 probes in 48-hpf Polypterus. (E) gcm2 is expressed in the gills (arrowhead). (F) atp1b1 is expressed in the kidney and the cells on the skin
surface. (G, H) Whole-mount in situ hybridization for gcm2 and atp1b1 in sturgeon at stage 32. (G) gcm2 is expressed in the gills (arrowhead). (H)
atp1b1 is expressed in the cells on the skin surface. (I) Scanning electron microscopy on the yolk sac membrane of sturgeon at stage 32. Ionocytes
(arrowheads) protrude between the epithelial cells. (J) Whole-mount in situ hybridization with the gcm2 probe in Xenopus at stage 37. gcm2 is
expressed in the gills (arrowhead) but not on the skin surface of Polypterus, sturgeon, and Xenopus embryos.
doi:10.1371/journal.pone.0023746.g004
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This raises the question of whether foxi3a directly regulates gcm2

enhancers. Because the 28 kb enhancer region contains a

consensus sequence for a Fox protein binding site [35] (Figure

S1), this binding site may directly control the 28 kb enhancer

upon its binding to foxi3a. However, a transient transgenic

zebrafish that was injected with a pTolfV vector containing the

28 kb enhancer region with a deletion of the Fox protein binding

site did not lose Venus activation (Table S2). In addition, the

+41 kb enhancer region did not contain a sequence identical to

the Fox protein binding site (data not shown). These results and

the genetic data of Esaki et al. (2009) suggest that foxi3a indirectly

regulates gcm2 enhancers [26].

It has been hypothesized that the acquisition of enhancers

during the evolution of animals is an evolutionary opportunity for

animals to obtain new cells and organs [1–3]. Because the

enhancers we identified in our current study are required for the

expression of gcm2 in progenitor cells of HRCs, gcm2 enhancers

may have enabled zebrafish to acquire new HRC ionocytes. When

the zebrafish 160 kb BAC-Venus construct that contained gcm2

enhancers was injected into fugu embryos, Venus-expressing cells

were observed on the skin surface (Figure 5F). Unfortunately, since

the genome database of Medaka, fugu, and stickleback at the gcm2

locus still contains unsolved sequences, it remains uncertain if gcm2

enhancers of zebrafish are conserved in fugu and even other

teleosts. Further studies will be needed to confirm our results.

Expression of gcm2 on the skin surface of cells was identical among

zebrafish, Medaka, and fugu (Figure 1 and 4); however, gcm2 was not

expressed in cells on the skin surface of the embryos of Polypterus or

sturgeon, stem groups of actinopterygian fishes [36–38], or Xenopus,

despite the fact that these animals have cells on the skin surface that

Figure 5. Analysis of gcm2 enhancers specific for ionocytes on the skin surface of zebrafish. (A) Construction of the 160 kb BAC-Venus.
The targeting construct was amplified by PCR from a plasmid containing Venus, polyA, and Kmr. Each primer contained 50 bp of the gcm2-derived
sequences that served as homology arms for homologous recombination. The 160 kb BAC contained sequences that were 120 kb upstream and
40 kb downstream of the gcm2 locus. After homologous recombination, Venus was inserted into the translation site (160 kb BAC-Venus). (B) A 160 kb
BAC-Venus transient transgenic zebrafish (72 hpf). Venus-expressing cells are observed on the skin surface but not in the gills. (C) Several cells on the
yolk sac expressed Venus. (D) Ionocytes stained with MitoTracker. (E) Merge of (C) and (D), showing overlap in staining with a subset of ionocytes. (F)
A 160 kb BAC-Venus transient transgenic 7-day-old fugu. Venus-expressing cells are observed on the skin surface.
doi:10.1371/journal.pone.0023746.g005
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are positive for ionocyte markers (Figure 4) [39,40]. In addition, gcm2

enhancer regions in zebrafish were not found in the synteny block

that contained the gcm2 locus and its neighboring regions in the

tetrapods that we examined (Figure 7). All together, these results

suggest that an acquisition of enhancers for the expression of gcm2

contributes to a diversity of ionocytes in zebrafish. Whether the same

enhancers are responsible for development of ionocytes in other

teleosts including fugu remains to be investigated. Since gcm2-

expressing cells were not observed in primitive actinopterygian fishes

and because gcm2 enhancers are not found in tetrapods, the evolution

of gcm2 enhancers is one of a few examples to provide a fish model for

evolutionary developmental studies of a novel morphological

structure through changes in gene regulatory networks after the

teleost-specific whole genome duplication [41–43].

Materials and Methods

Animals
Zebrafish and Medaka were purchased at a local pet shop and

maintained as described [44]. Fertilized eggs were incubated in E3

medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, and

0.33 mM MgSO4) at 28.5uC. Fugu (F. niphobles) eggs were collected

on Arai beach, Kanagawa prefecture, Japan, and incubated in

artificial seawater, Tetra marine salt pro (Tetra), at 20uC. Polypterus

(P. senegalus) was purchased at a local pet shop, and fertilized eggs

were incubated in E3 medium. Sturgeon is a hybrid of H. huso6A.

ruhenus. Their eggs were supplied by Fujikin Incorporated, and

embryos were incubated in freshwater at 20uC. Embryos were

staged according to Ballard and Needham (1964) [45]. Xenopus laevis

was purchased at a Xenopus culture shop, and fertilized eggs were

obtained in vitro using standard methods. Embryos were staged

according to Nieuwkoop and Faber (1967) [46].

Scanning electron microscopy
Zebrafish and sturgeon embryos were fixed in 2% glutaralde-

hyde in 0.1 M PBS at 4uC overnight, washed with 5% sucrose in

0.1 M PBS for 15 minutes, and fixed in 1% osmium tetroxide in

0.1 M PBS for 60 minutes. Fixed embryos were washed with 5%

sucrose in 0.1 M PBS for 15 minutes and dehydrated in a graded

series of ethanol. The embryos were critical-point dried using

Figure 6. Transient transgenic analysis of the gcm2 enhancer regions for HRCs specific to the skin surface. (A, B) The chart on the right
shows the percentage of embryos with Venus-positive cells on the skin surface at 24 hpf. (C–F) In situ hybridization with an atp6v1al probe in
combination with immunohistochemistry using anti-GFP on the yolk sac of transient transgenic 4-day-old zebrafish. (C, D) A zebrafish expressing
pTolfV that contains the gcm2 enhancer region that is 8 kb upstream. (E, F) A zebrafish expressing pTolfV that contains the gcm2 enhancer region
that is 41 kb downstream. The gcm2 loci at 28249 to 28004 bp upstream and at +41277 to +41497 bp downstream were required for Venus
expression in HRCs.
doi:10.1371/journal.pone.0023746.g006
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liquid CO2, mounted on a sample holder, covered with gold, and

viewed using a JSM-5800LV scanning electron microscope

(JEOL).

Enhancer analysis in zebrafish
A BAC containing the gcm2 locus in zebrafish was identified

by the gcm2 cDNA sequence using the BAC sequence from

the Sanger Institute (http://www.sanger.ac.uk/cgi-bin/blast/

submitblast/d_rerio). The BAC clone 160 kb BAC (CH211-

203G10), which was purchased from BACPAC Resources Center,

CA, USA, had a ,160 kb insert, of which ,120 kb was upstream

of gcm2. To generate gcm2 reporter constructs, we followed the

method of Lee et al. (2001) [47] using the BAC homologous

recombination system (a gift from N. Copeland, National Cancer

Institute, Frederick, MD, USA). To make a plasmid construct of a

targeting DNA template, we subcloned Venus [48], the SV40

polyA signal, and a kanamycin resistance gene (Kmr) in this order

into pBluescript-SK. The gcm2-derived sequences were: 59 arm,

59-CTTCAGCTGAGACCAGCCATCTGTGACAAAGCGCG-

ACAGAAACAGCAG-39, which is located 300 bp downstream of

the putative translation start site of gcm2, and 39 arm, 59-CTT-

TGTCCGAACTGTAACTCAGCTCTTGAATTGATTCCGT-

GCCGAGGTCAC-39, which is located 354 bp downstream of

the putative translation start site.

The gcm2 locus around sequence fragments in the zebrafish

genome was subcloned with the homologous recombination

system [47] or amplified by PCR and cloned into the Tol2

transposon-based vector, pTolfV, which is converted to Tol2000

[49] with the c-fos promoter, Venus, and the SV40 polyA signal in

the opposite direction of the Tol2 element. Each construct and the

in vitro–synthesized capped RNA of Tol2 [49] were co-injected as

described [50]. All injected embryos at 24 hpf were observed with

a GFP microscope, SteREO Lumar, V. 12 (Carl Zeiss).

Staining with MitoTracker
MitoTracker Orange CMTMRos (Invitrogen) was used to

illuminate ionocytes [51]. Zebrafish that were injected with the

160 kb BAC-Venus were stained with MitoTracker at a final

concentration of 1 mM in E3 medium for 30 minutes. Observa-

tions were made with confocal microscopy using an LSM 510

microscope (Carl Zeiss).

Injection of zebrafish embryos
Supercoiled plasmid and antisense MOs were injected into

zebrafish embryos with a glass micro needle using NARISHIGE

IM-30 (NARISHIGE). Control zebrafish MOs and MOs against

gcm2 were injected as described previously [24]. MOs (1 mM/

embryo) were injected into cells at one- to two-cell–stage zebrafish

embryos.

Molecular cloning and probe synthesis
Total RNA was extracted from whole bodies of zebrafish (5 days

old), Medaka (3–13 days old), fugu (3–7 days old), Polypterus (1–3

days old), sturgeon (stage 32), and Xenopus (stage 37) embryos. The

samples then were transferred to TRIzol (Invitrogen) and treated

with DNase (Invitrogen). Single-stranded cDNA was synthesized

from total RNA using a PrimeScript 1st strand cDNA synthesis kit

(TAKARA) according to the manufacturer’s instructions.

Zebrafish cDNA clones of gcm2 (NM_001005603), atp1b1b

(NM_131671), atp6v1al (NM_201135), and slc12a10.2 (EF591989)

were isolated by PCR using the following forward and reverse

primers: gcm2, 59-CAGGACACGAAGCAGTATGATGCTTTT-

CAG-39 and 59-GTGAAGACATCCTTCTTTTTACCGCACT-

CC-39; atp1b1b, 59-CAGAGTCGCTCCTCCAGGTCTCAC-39

and 59-CGGAGGCTTCCCTCTTCAGTATTAC-39; atp6v1al,

59-CCAAGCTGCCTAAGATCCGAGATG-39 and 59-GAGTT-

TGTGCCGCTGCGTACCAAAG-39; and slc12a10.2, 59-CAG-

GGACAGCAATGTCCCTCATC-39 and 59-CAGATGGTGG-

ACGATGTGAATGACG-39. The sequence of Medaka gcm2 was

identified with the expressed sequence tag database available at

the Graduate School of Science, The University of Tokyo, Tokyo,

Japan, and cDNA was isolated by PCR using the following

forward and reverse primers: 59-GAGGGCGAGGAAACG-

GACTGCGTG-39 and 59-CGTTTGGGCGTGAATGGAGGC-

GAG-39. The sequence of fugu gcm2 (AB615439) was identified

from the genome database available at the International Fugu

Genome Consortium (http://www.fugu-sg.org/project/info.html).

The cDNA was isolated by PCR using the forward and reverse

primers, 59-GCAGGACATGAAGCAGTTCGACTCG-39 and

59-GCTGTGTGTCCGTCGGTAGCTCACC-39, and 39 RACE

using the SMART RACE cDNA amplification kit (Clontech).

The Polypterus cDNA clone of gcm2 (AB615440) was isolated by

degenerate PCR using the following forward and reverse primers:

Figure 7. Two gcm2 enhancers in zebrafish are not found in tetrapods. VISTA plots of zebrafish, Xenopus, chick, mouse, and human genomic
sequences of the gcm2 locus with its neighboring genes, elovl2 and mak.
doi:10.1371/journal.pone.0023746.g007
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59-GARTGGMCNGAYGGNTAYGT-39 and 59-ACYTTNGT-

NGTNGTNGTDAT-39. The sturgeon cDNA clones for gcm2 were

amplified or isolated by degenerate PCR using the following

forward and reverse primers: 59-GARTGGMCNGAYGGN-

TAYGT-39 and 59-TCRTGNACNCCYTTNGCYTG-39. The

Xenopus cDNA clone of gcm2 (AB175676) was isolated as described

previously [24]. The Polypterus cDNA clone of atp1b1 (AB615441)

was identified from a Polypterus EST project (M. Okabe. unpublished

results) and isolated by PCR using the following forward and reverse

primers: 59-CGAAAATGAGGGAGGATGGAAGAAG-39 and

59-CACATTAGGCTGTACTTTGTCCTG-39. The sturgeon

cDNA clone of atp1b1 was isolated by degenerate PCR using the

following forward and reverse primers: 59-CARGAYMGWG-

TYGCWCCTCCAGGW-39 and 59-TTTKCCRTARTAKGGR-

TARTA-39.

The PCR clone in the pGEM-T-Easy Vector (Promega) was

used as a template, and a digoxigenin (DIG)-labeled antisense

RNA probe was synthesized by in vitro transcription with T7 RNA

polymerase (Promega) and DIG RNA labeling mix (Roche).

In situ hybridization combined with
immunohistochemistry

All samples for whole-mount in situ hybridization in combina-

tion with immunohistochemistry were fixed in 4% paraformalde-

hyde in 0.1 M PBS at 4uC overnight and were breached with

breaching solution (1% H2O2, 5% formamide, 0.56SSC:75 mM

NaCl, and 7.5 mM sodium citrate, pH 7). Fixed samples were

incubated in hybridization buffer (50% formamide, 56 SSC,

500 mg/ml yeast tRNA, 50 mg/ml heparin, and 0.1% Tween-20,

pH 6.0) containing DIG-labeled antisense RNA probe at 60uC
overnight. The hybridized embryos were washed several times for

3 hours each with 26SSC and 0.26SSC and then for 10 minutes

with MABT (100 mM maleic acid, 150 mM NaCl, and 0.1%

Tween 20, pH 7.5). After incubation for 1 hour with blocking

solution (2% Blocking Reagent (Roche) in MABT), embryos were

immunoreacted overnight at room temperature with an anti-DIG

Fab fragment conjugated to alkaline phosphate (Roche, 1:5000)

and rabbit anti-GFP (MBL, 1:500). After several washes for

6 hours with MABT and three washes with NTMT (100 mM

NaCl, 50 mM MgCl2, 100 mM Tris-HCl (pH 9.5), and 0.1%

Tween-20), samples were treated with BM purple AP Substrate

precipitating solution (Roche). When satisfactory coloration was

achieved, samples were washed with PBST and then reacted with

Alexa Fluor 488–conjugated goat anti–rabbit IgG (Invitrogen,

1:500 in PBST) overnight at room temperature in the dark.

Finally, samples were washed with PBST and photographed.

Phylogenic analysis of the conserved sequences
The VISTA program (http://www-gsd.lbl.gov/vista/index.

shtml/) was used for homology comparison. Draft genome

sequence of zebrafish, Xenopus, chick, mouse, and human were

obtained from the databases of UCSC Genome Bioinformatics

(http://genome.ucsc.edu/) and the Wellcome Trust Sanger

Institute, Genome Research Limited (http://www.sanger.ac.uk/).

In vivo deletion assay of gcm2 enhancer regions
A deletion assay for upstream region between 28249 and

28004 bp of gcm2 were carried out using Gene TailorTM Site-

Directed Mutagenesis System (Invitrogen). All the fragments were

cloned into pTolfV and injected into zebrafish eggs. All injected

embryos at 24 hpf were observed under a GFP microscope,

SteREO Lumar, V. 12 (Carl Zeiss).

Supporting Information

Figure S1 The sequence of 28 kb enhancer regions. The

possible transcription factor binding sites are shown in the boxes.

The sequence was analyzed in search of transcription factor

binding sites using TFSEARCH Data Base (http://www.cbrc.jp/

research/db/TFSEARCHJ.html). A candidate for FOX protein

binding site was previously described [52]. GATA: GATA-binding

factor, SRY: sex-determining region Y gene product, FOX:

Forkhead box protein, C/EBPb: CCAAT/enhancer binding

protein beta, HNF-3b: hepatic nuclear factor 3beta, OCT1:

octamer-binding factor 1.

(TIF)

Table S1 Transient transgenic analysis of the gcm2
enhancer regions. Fragments are upstream (2) or downstream

(+) of the gcm2 loci. Each fragment was cloned into the Tol2

transposon-based Venus expression vector (pTolfV) and injected

into zebrafish eggs.

(TIF)

Table S2 In vivo deletion assay of 28 kb enhancer
regions. Deletion sites, a-f, are shown in Figure S1. The sites

were deleted and all the fragments were cloned into pTolfV. All

reporter constructs displayed Venus positivity, indicating that the

possible transcription factor binding sites of 28 kb enhancer

regions in the analysis do not affect the enhancer activity.

(TIF)

Acknowledgments

We thank Prof. K. Kawakami and Dr. S. Kondo for providing us with

plasmids for the Tol2-mediated transgenesis, Fujikin Incorporated and Dr.

K. Ohta for sturgeon eggs and the corresponding RNA, Dr. S. Higashijima

and Dr. N. Copeland for BAC constructs, Prof. H. Takeda and Mr. Y.

Moriyama for Medaka embryos and the corresponding cDNA, Dr. A. O.

Noda for advice and discussion, and members of the Department of

Anatomy at The Jikei University School of Medicine, Tokyo, Japan.

Author Contributions

Conceived and designed the experiments: TS MO. Performed the

experiments: TS DK TM. Analyzed the data: TS DK TM MO. Wrote

the paper: TS TM MO.

References

1. Wagner GP, Lynch VJ (2010) Evolutionary novelties. Current Biol 20: R48–52.

2. Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: A genetic

theory of morphological evolution. Cell 134: 25–36.

3. Wray GA (2007) The evolutionary significance of cis-regulatory mutants. Nat

Rev 8: 206–216.

4. Hosoya T, Takizawa K, Nitta K, Hotta Y (1995) glial cells missing: a binary switch

between neuronal and glial determination in Drosophila. Cell 82: 1025–1036.

5. Jones BW, Fetter RD, Tear G, Goodman CS (1995) glial cells missing: a genetic

switch that controls glial versus neuronal fate. Cell 82: 1013–1023.

6. Vincent S, Vonesch JL, Giangrande A (1996) glide directs glial fate commitment

and cell fate switch between neurones and glia. Development 122: 131–139.

7. Bernardoni R, Vivancos V, Giangrande A (1997) glide/gcm is expressed and

required in the scavenger cell lineage. Dev Biol 191: 118–130.

8. Lebestky T, Chang T, Hartenstein V, Banerjee U (2000) Specification of

Drosophila hematopoietic lineage by conserved transcription factors. Science 288:

146–149.

9. Alfonso TB, Jones BW (2002) gcm2 promotes glial cell differentiation and is

required with glial cells missing for macrophage development in Drosophila. Dev

Biol 248: 369–383.

10. Akiyama Y, Hosoya T, Poole AM, Hotta Y (1996) The gcm-motif: a novel

DNA-binding motif conserved in Drosophila and mammals. Proc Natl Acad Sci

USA 93: 14912–14916.

Enhancers Contributed to a Diversity of Ionocytes

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e23746



11. Altshuller Y, Copeland NG, Gillbert DJ, Jenkins NA, Frohman MA (1996)

Gcm1, a mammalian homolog of Drosophila Glial Cells Missing. FEBS Let 393:
201–204.

12. Kim J, Jones BW, Zock JC, Chen Z, Wang H, et al. (1998) Isolation and

characterization of mammalian homologs of the Drosophila gene glial cells missing.
Proc Natl Acad Sci USA 95: 12364–12369.

13. Basyuk E, Cross JC, Corbin J, Nakayama H, Hunter P, et al. (1999) Gcm1 gene is
expressed in a subset of plancental trophoblast cells. Dev Dyn 214: 303–311.

14. Kanemura Y, Hiraga S, Arita N, Ohnishi T, Izumoto S, et al. (1999) Isolation

and expression analysis of a novel human homologue of the Drosophila glial cells

missing (gcm) gene. FEBS Let 442: 151–156.

15. Kammerer M, Pirola B, Gilio S, Giangrande A (1999) GCMB, a second human
homolog of the fly glide/gcm gene. Cytogenet Cell Genet 84: 43–47.

16. Nait-Oumesmar B, Copperman AB, Lazzarini RA (2000) Placental expression
and chromosomal localization of the human Gcm1 gene. J Histochem Cytochem

48: 915–922.

17. Anson-Cartwright L, Dawson K, Holmyard D, Fisher SJ, Lazzarini RA, et al.
(2000) The glial cells missing-1 protein is essential for branching morphogenesis

in the chorioallantoic placenta. Nat Genet 25: 311–314.
18. Gnther T, Chen ZF, Kim J, Ruegar JM, Amling M, et al. (2000) Genetic

ablation of parathyroid glands reveals another source of parathyroid hormone.

Nature 406: 199–203.
19. Gordon J, Bennett AR, Blackburn CC, Manley NR (2001) Gcm2 and Foxn1 mark

early parathyroid- and thymus-specific domains in the developing third
pharyngeal pouch. Mech Dev 103: 141–143.

20. Hashenilhosseini S, Hadjihannas M, Stolt CC, Haas CS, Amann K, et al. (2002)
Restricted expression of mouse GCMa/Gcm1 in kidney and thymus. Mech Dev

118: 175–178.

21. Liu Z, Yu S, Manley NR (2007) Gcm2 is required for the differentiation and
survival of parathyroid precursor cells in the parathyroid/thymus primordia.

Dev Biol 305: 333–346.
22. Hanaoka R, Ohmori Y, Uyemura K, Hosoya T, Hotta Y, et al. (2004) Zebrafish

gcmb is required for pharyngeal cartilage formation. Mech Dev 121: 1235–1247.

23. Hogan BM, Hunter MP, Oates AC, Crowhurst MO, Hall NE, et al. (2004)
Zebrafish gcm2 is required for gill filament budding from pharyngeal ectoderm.

Dev Biol 276: 508–522.
24. Okabe M, Graham A (2004) The origin of the parathyroid gland. Proc Natl

Acad Sci USA 101: 17716–17719.
25. Chang WJ, Horng JL, Yan JJ, Hsiao CD, Hwang PP (2009) The transcription

factor, glial cell missing 2, is involved in differentiation and functional regulation

of H+-ATPase-rich cells in zebrafish (Danio rerio). Am J Physiol Regul Integr
Comp Physiol 296: R1192–1201.

26. Esaki M, Hoshijima K, Nakamura N, Munakata K, Tanaka M, et al. (2009)
Mechanism of development of ionocytes rich in vacuolar-type H+-ATPase in the

skin of zebrafish larvae. Dev Biol 329: 116–129.

27. Philpott CW (1980) Tubular system membranes of teleost chloride cells: osmotic
response and transport sites. Am J Physiol 238: R171–184.

28. Hwang PP (2009) Ion uptake and acid secretion in zebrafish (Danio rerio). J Exp
Biol 212: 1745–1752.

29. Hirose S, Kaneko T, Naito N, Takei Y (2003) Molecular biology of major
components of chloride cells. Comp Biochem Physiol B 136: 593–620.

30. Kaneko T, Shiraishi K, Katoh F, Hasegawa S, Hiroi J (2002) Chloride cells

during early life stages of fish and their functional differentiation. Fish Sci 68:
1–9.

31. Hsiao CD, You MS, Guh YJ, Ma M, Jiang YJ, et al. (2007) A positive regulatory

loop between foxi3a and foxi3b is essential for specification and differentiation of
zebrafish epidermal ionocytes. PLoS ONE 2: e302.

32. Wang YF, Tseng YC, Yan JJ, Hiroi J, Hwang PP (2009) Role of SLC12A10.2, a

Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio

rerio). Am J Physiol Regul Integr Comp Physiol 296: R1650–1660.

33. Loots GG, Ovcharenko I (2004) rVISTA2.0: evolutionary analysis of
transcription factor binding sites. Nucl Acids Res 32: W217–211.

34. Jänicke M, Carney TJ, Hammerschmidt M (2007) Foxi3 transcription factors

and Notch signaling control the formation of skin ionocytes from epidermal
precursors of the zebrafish embryo. Dev Biol 307: 258–271.

35. Carlsson P, Mahlapuu M (2002) Forkhead transcription factors: key players in
development and metabolism. Dev Biol 250: 1–23.

36. Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, et al. (2007) A
new time-scale for ray-finned fish evolution. Proc Biol Sci B 274: 489–498.

37. Kikugawa K, Katoh K, Kuraku S, Sakurai H, Ishida O, et al. (2004) Basal jawed

vertebrate phylogeny inferred from multiple nuclear DNA-coded genes. BMC
Biol 2: 3.

38. Inoue JG, Miya M, Tsukamoto K, Nishida M (2003) Basal actinopterygian
relationships: a mitogenomic perspective on the phylogeny of the ‘‘ancient fish’’.

Mol Phylogenet Evol 26: 110–120.

39. Dubaissi E, Papalopulu N (2011) Embryonic frog epidermis: a model for the
study of cell-cell interactions in the development of mucociliary disease. Dis

Model Mech 4: 179–192.
40. Quigley IK, Stubbs JL, Kintner C (2011) Specification of ion transport cells in

the Xenopus larval skin. Development 138: 705–14.
41. Ohno S (1970) Evolution by Gene Duplication. Berlin: Springer-Verlag.

42. Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific

genome duplication (FSGD). Bioessays 27: 937–945.
43. Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the

fish-specific genome duplication correlates with the diversification of teleost fish.
J Mol Evol 59: 190–203.

44. Nsslein-Volhard C, Dahm R (2002) Zebrafish: a practical approach. New York:

Oxford University Press.
45. Ballard WW, Needham RG (1964) Normal embryonic stages of Polyodon spathula

(Walbaum). J Morphol 114: 465–478.
46. Nieuwkoop PD, Faber J (1967) Normal Table of Xenopus laevis. Amsterdam:

North Holland.
47. Lee EC, Yu D, Martinez de Velasco J, Tassarollo L, Swing DA, et al. (2001) A

highly efficient Escherichia coli-based chromosome engineering system adapted for

recombinogenic targeting and subcloning of BAC DNA. Genomics 73: 56–65.
48. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, et al. (2002) A variant of

yellow fluorescent protein with fast and efficient maturation for cell-biological
applications. Nature Biotech 20: 87–90.

49. Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, et al. (2004)

A transposon-mediated gene trap approach identifies developmentally regulated
genes in zebrafish. Dev Cell 7: 133–144.

50. Fisher S, Grice EA, Vinton RM, Bessling SL, Urasaki A, et al. (2006) Evaluating
the biological relevance of putative enhancers using Tol2 transposon-mediated

transgenesis in zebrafish. Nat Prot 3: 1297–1305.
51. Lin LY, Horng JL, Kunkel JG, Hwang PP (2006) Proton pump-rich cell secretes

acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290: C371–378.

52. Carlsson P, Mahlapuu M (2002) Forkhead transcription factors: key players in
development and metabolism. Dev Biol 250: 1–23.

Enhancers Contributed to a Diversity of Ionocytes

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e23746


