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Abstract

The Leiden Longevity Study consists of families that express extended survival across generations, decreased morbidity in
middle-age, and beneficial metabolic profiles. To identify which pathways drive this complex phenotype of familial
longevity and healthy aging, we performed a genome-wide gene expression study within this cohort to screen for mRNAs
whose expression changes with age and associates with longevity. We first compared gene expression profiles from whole
blood samples between 50 nonagenarians and 50 middle-aged controls, resulting in identification of 2,953 probes that
associated with age. Next, we determined which of these probes associated with longevity by comparing the offspring of
the nonagenarians (50 subjects) and the middle-aged controls. The expression of 360 probes was found to change
differentially with age in members of the long-lived families. In a RT-qPCR replication experiment utilizing 312 controls, 332
offspring and 79 nonagenarians, we confirmed a nonagenarian specific expression profile for 21 genes out of 25 tested.
Since only some of the offspring will have inherited the beneficial longevity profile from their long-lived parents, the
contrast between offspring and controls is expected to be weak. Despite this dilution of the longevity effects, reduced
expression levels of two genes, ASF1A and IL7R, involved in maintenance of chromatin structure and the immune system,
associated with familial longevity already in middle-age. The size of this association increased when controls were compared
to a subfraction of the offspring that had the highest probability to age healthily and become long-lived according to
beneficial metabolic parameters. In conclusion, an ‘‘aging-signature’’ formed of 21 genes was identified, of which reduced
expression of ASF1A and IL7R marked familial longevity already in middle-age. This indicates that expression changes of
genes involved in metabolism, epigenetic control and immune function occur as a function of age, and some of these, like
ASF1A and IL7R, represent early features of familial longevity and healthy ageing.
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Introduction

Nonagenarians and centenarians delay or escape age-related

diseases [1], their first degree family members have a life-long

survival advantage [2,3] and their middle-aged offspring have a

decreased prevalence of and mortality from coronary heart

disease, type 2 diabetes, and cancer [4,5]. In addition, the

offspring of long-lived individuals have beneficial physiological

characteristics for lipid and lipoprotein particle profiles [6,7],

glucose metabolism and insulin sensitivity [8,9]. However, they do

not differ from controls with respect to body mass index, serum

IGF-1 levels, height and lifestyle factors such as physical activity

levels and smoking behavior [10,11]. Although familial longevity is

a complex phenotype, identifying transcriptional targets that may

contribute to the physiological benefits observed in long-lived

families will increase our understanding of which pathways can

influence susceptibility to and protection from age-related disease.

Previous studies have investigated whether there are gene

expression changes that occur with age in brain, lymphocyte,
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kidney and skeletal muscle tissues [12–17]. The expression of some

genes were found not only to change with age but also to reflect

the biological function of the source organs [18,19]. These studies

have demonstrated that gene expression levels are not only

markers of chronological age but also of tissue function. However,

these studies cannot discriminate between genes showing expres-

sion changes in mid-life that may contribute to the aging process,

from those showing expression changes later in life as a

consequence of the aging process.

Here we report transcriptional profiling of whole blood samples

from participants of the Leiden Longevity Study which is based in

the Netherlands and comprises nonagenarian sibling pairs, their

middle-aged offspring and the partners of the offspring as

population controls. A comparison of gene expression profiles

between the nonagenarian siblings and controls identified profiles

that associate with age. The subsequent comparison of the middle-

aged offspring and the controls enabled the identification of genes

that mark the propensity to become long-lived in middle-age.

Results

Whole genome microarrays and analysis design
Gene expression profiles were generated from 150 whole blood

total RNA samples collected from 50 families belonging to the

Leiden Longevity Study (LLS). From each family, one nonage-

narian sibling, one of their offspring and the offspring’s partner

(Table 1) were profiled. We identified 47,209 probes (88% of the

total number of probes) which were expressed in at least 10% of

the samples. Of these, 45,164 probes (containing at least 17,896

unique genes) could be mapped to a chromosomal position and

were, therefore, used for further analyses.

The explorative analysis is divided in two parts (Figure 1). The

first analysis focused on the comparison between the long-lived

nonagenarians and the population controls (the partners of the

offspring). Using this design we aimed to find genes whose

expression changed with increasing age and among these, those

that were differentially expressed in long-lived families. In the

second analysis we investigated which of the differentially

expressed genes emerging from the first analysis were already

differentially expressed between long-lived family members and

controls in middle-age. Therefore we compared the offspring to

the controls for mean gene expression differences and also for the

interaction between the two groups with age to identify genes

whose expression changed differentially with age between

offspring and controls. Following the explorative analysis, we

performed replication analyses in an extended group of the LLS

using RT-qPCR on a selected subset of the differentially expressed

genes.

Differential gene expression associating with age
To investigate the differences in gene expression levels between

the nonagenarian subjects and the middle-aged controls a linear

regression model was applied to the probe data. With adjustments

for gender and batch effects (Model 1, see Materials and Methods)

2,953 probes (of which 1,853 represented known genes) were

found to be differentially expressed at a false discovery rate (FDR)

of 0.05 (Figure 2 and Supplementary Table S1). The expression

levels of 1,046 probes were increased and 1,907 decreased in the

nonagenarians compared to the younger controls. The probe that

associated with age with the highest significance (FDR adjusted p-

value = 5610210) is located in the leucine rich repeat neuronal 3

gene (LRRN3, 7q31.1) and showed a 3.1-fold decreased expression

in nonagenarians, which was also the largest difference in

expression level between the two groups. The largest increase in

expression level was 2-fold for a probe targeting the interferon,

alpha-inducible protein 27 isoform (IFI27, 14q32.13) gene locus.

This probe could also target SYTL1, but since the levels of a

specific probe for SYTL1 did not correlate with the IFI27 probe

(Pearson correlation = 20.14), while a unique probe for IFI27 did

correlate (Pearson correlation = 0.96), the result suggests that IFI27

mRNA is responsible for the association. Average expression levels

of the 2,953 probes show a distribution over the whole range of

measured intensities (Supplementary Figure S1) and 89.5% of

these probes were detected in $95% of the samples.

If a group of differentially expressed genes act in the same

pathway or biological function this could lead to an additive or even

synergistic effect on cellular function. Furthermore, the interpreta-

tion of transcriptional data in a pathway context is a more robust

signal to noise measurement. The Gene Ontology (GO) consortium

[20] provides structured vocabularies and classification of genes,

covering several domains of molecular and cellular biology. Hence,

GO terms were tested for differences between nonagenarians and

controls using the Globaltest methodology [21,22]. Globaltest

determines whether the expression pattern of genes within a set as a

whole is associated with an outcome, in this case being

nonagenarian or not, without testing single probes. We assayed

1,808 GO gene sets, representing groups of genes closely related in

their biological function or process, containing at least 10 probes per

GO term, again using Model 1. The Globaltest showed that 109

GO term gene sets were significantly differentially expressed

between nonagenarians and controls at a family-wise error rate

(FWER) of #0.05 (Supplementary Table S2). FWER is used

because the gene sets for GO terms are partly overlapping and

therefore not independent. These 109 GO terms include 73

biological processes, 31 molecular functions and 5 cellular

components. The biological processes identified under the higher

level GO classifications were ‘lymphocyte activation’, ‘anatomical

structure development’, ‘response to stimulus’ (including ‘immune

response’), ‘regulation of gene expression’, and ‘regulation of signal

transduction’. For the molecular functions list, pathways involved in

protein binding were the most abundant.

Differential gene expression in middle-age associating
with longevity

The nonagenarian participants in the LLS each exhibit the

longevity phenotype and their offspring, as a group, carry the

potential to become long-lived as demonstrated by beneficial

Table 1. Description of the participants of the LLS in the
microarray and validation population.

Controls Offspring Nonagenarians

A Microarray experiment

N 50 50 50

Males/females (%
males)

24/26 (48%) 25/25 (50%) 26/24 (52%)

Mean age in years
(range)

61.9 (43.7–78.8) 60.8 (42.8–74.8) 93.4 (89.3–102.2)

B RT-qPCR experiment

N 312 332 79

Males/females (%
males)

143/169 (45.8%) 190/142 (57.2%) 34/45 (43.0%)

Mean age in years
(range)

61.3 (40.9–81.4) 61.3 (33.6–78.3) 94.1 (89.0–101.2)

doi:10.1371/journal.pone.0027759.t001
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physiological characteristics and decreased morbidity of that

generation [23–25]. The physiological differences between

offspring and controls are small since not all individual offspring

may have inherited the longevity trait. To distinguish which of the

2,953 probes that associated with age also reflect familial longevity

already in middle-age, gene expression levels were compared

between the 50 offspring of the nonagenarians and the 50 controls

(Table 1). In a linear regression model adjusting for age, gender

and batch effects (Model 2, see Materials and Methods), we

observed no significant differences in the average expression levels

between the offspring and controls. Next, we investigated

differential expression changes as a function of age between the

offspring and the controls by testing the interaction between group

and age (Model 3, see Materials and Methods). Differential

expression (FDR#0.1) between offspring and controls across the

age-range (43–79 years) was observed for 360 probes, representing

244 unique genes (Supplementary Table S3). Of these probes, 359

had a fold change below 1, indicating that expression levels had

either a weaker increase with age or a stronger decrease with age

in the offspring compared to controls. These age-related

expression differences may represent early characteristics of

human longevity.

The most significant differentially expressed probe (FDR

adjusted p-value = 0.050, 1.6-fold decrease every ten years)

corresponded to the zinc finger protein 331 gene (ZNF331,

19q13.33) whereas the largest decrease in expression level was for

a probe targeting a mRNA at chromosome 1q43 (no known

corresponding gene); this had a 2.1-fold decreased expression in

offspring every ten years relative to controls. The only probe that

demonstrated a significant increase in expression with age in the

offspring (a 1.3-fold change every ten years) targeted an EST at

20q13.2 (no known corresponding gene, NCBI Build 36). We

Figure 1. Flowchart of gene expression analyses. The order of analyses is shown for the explorative analysis (top half of the figure) and the
replication analysis (bottom half of the figure). The probes/genes are depicted in the boxes and to the left thereof are the techniques or analyses
used.
doi:10.1371/journal.pone.0027759.g001
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observed no differential expression between offspring and controls

for LRRN3 and IFI27, which had the most extreme changes with

age in the first analysis in which nonagenarians and controls were

compared.

To investigate differential expression changes with age in a set

of genes acting in the same pathway or having the same function,

we implemented Model 3 in GlobalAncova [26]; a method similar

to the Globaltest for GO terms but additionally suited for models

including interaction terms. The GO biological process that was

most prominent among the longevity associated gene expression

profile was the Rho protein signal transduction pathway

(GO:0007266) (FWER = 0.079).

Extensive replication study
To replicate our results we measured the expression levels of a

subset of genes via RT-qPCR in 79 nonagenarians, 332 offspring

and 312 controls (Table 1 and Materials and Methods). We first

selected two genes on the basis of their effect size and significance

in the analysis between nonagenarians and controls (i.e. LRRN3

and IFI27) and the gene different between offspring and controls

(i.e. ZNF331). We added 22 genes that were differentially

expressed in the offspring compared to controls which additionally

associated with the concept ‘‘cell aging’’ in literature using the text-

mining tool Anni 2.0 [27], http://biosemantics.org/anni/. In total

25 genes (Figure 1), including the WRN progeria gene, the MYC

cancer gene and the longevity MTOR (also known as FRAP1) gene,

were selected for replication analyses.

As replication of the first analysis, the comparison between

nonagenarians and controls, the expression of 21 out of 25 genes

was in concordance with the observations in the microarray

dataset and hence the RT-qPCR results confirmed the microarray

findings (Table 2). LRRN3 again showed the largest significant

Figure 2. Expression profiles of 2,953 probes that differed between nonagenarians and middle-aged controls. Expression intensities of
the 2,953 probes were analyzed by one-dimensional hierarchical clustering. Each probe is represented by a row; each subject by a column. Samples
are organized left to right by increasing age which is indicated for a few individuals for reference. The largest cluster of probes exhibits reduced
expression (transition from red to blue), and another cluster exhibits increased expression (transition from blue to red) in nonagenarians compared to
controls. Mean centered expression values of probes are displayed according to the color scale in which red represents above average expression
levels and blue below average expression levels. Fold changes of individual probes are given in Supplementary Table S1.
doi:10.1371/journal.pone.0027759.g002
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decreased expression in the nonagenarian siblings and IFI27 the

largest increased expression. The analysis to test for replication of

the novel samples only (58 nonagenarians and 281controls)

resulted in the same observations (Supplementary Table S4).

To identify longevity associated genes in middle-age, we

replicated the second analysis by comparing the mean expression

levels of 23 genes between the offspring of the nonagenarians and

the controls (Model 2, see Materials & Methods). We excluded

LRRN3 and IFI27 from this analysis since expression of these two

genes was not different between offspring and controls in the

microarray dataset. Two genes showed significant differential

expression after Bonferroni correction for multiple testing: ASF1A

and IL7R (Table 2, p,0.0022). These two genes showed a

significant decrease in expression in samples from the long-lived

families compared to controls, in concordance with the microarray

results.

Analysis of healthy offspring
We noticed that the effect sizes of the differential expressed

genes in the comparison between offspring and controls were

small. Since the offspring are composed of individuals who carry

the longevity trait and those that do not, the detectable effect of the

longevity trait is diluted in the comparison between offspring and

controls. We hypothesize that the effect of the longevity trait will

increase if we compare the same controls to a subfraction of

offspring with the highest probability to age healthily and become

long-lived. Therefore we selected the offspring with the most

beneficial metabolic profile.

Offspring of long-lived parents exhibit as a group at least six

beneficial serum characteristics including: low levels of glucose

[28,29], triglycerides [30], total cholesterol over HDL cholesterol

ratio [31,32], free triiodothyronine [33], and large low-density

lipoprotein (LDL) particles [34], complemented by high adipo-

nectin [35]. The beneficial metabolic profile is also reflected by the

lower Framingham risk scores [36] which indicates a lower risk of

cardiovascular disease over the course of 10 years.

We selected a subfraction of the offspring, consisting of the 5%

beneficial tail of the distribution of each metabolic parameter,

separately for men and women, resulting in 78 offspring which we

consider the best proxy for the true long-lived cases. For these

Table 2. RT-qPCR results.

Nonagenarians vs. controls Offspring vs. controls

N = 79 312 332 312

Gene name Assay FC p FC p

Top genes

1 IFI27 Hs01086373_g1 1.41 2.661024 NA NA

2 LRRN3 Hs00539582_s1 0.56 ,1026 NA NA

3 ZNF331 Hs00218578_m1 0.93 1.061024 0.99 0.574

Cell aging associated genes

4 ADAMTS5 Hs00199841_m1 1.01 0.008 1.00 0.872

5 ASF1A Hs01011627_m1 0.85 ,1026 0.88 0.002

6 CCR6 Hs01890706_s1 0.68 ,1026 1.06 0.265

7 CD248 Hs00535586_s1 .10 0.322 1.04 0.736

8 CDK6 Hs00608037_m1 0.95 0.053 0.95 0.015

9 ENO2 Hs00157360_m1 0.99 ,1026 0.99 0.044

10 FLT3LG Hs00181740_m1 0.25 0.029 0.63 0.202

11 HK3 Hs01092843_g1 1.17 ,1026 1.00 0.929

12 IL7R Hs00902338_g1 0.76 ,1026 0.89 0.001

13 LEF1 AI6Q1P7 0.64 ,1026 0.97 0.565

14 MLLT3 Hs00971090_m1 0.80 ,1026 0.95 0.087

15 MTOR (FRAP1) Hs00234508_m1 0.97 6.061026 0.99 0.337

16 MYC Hs00153408_m1 0.78 ,1026 0.98 0.547

17 NOLC1 Hs01102319_g1 0.89 1.061026 0.95 0.082

18 NR3C2 Hs00230906_m1 0.78 ,1026 0.95 0.059

19 RUVBL2 AI7ZZWF 0.79 6.061025 1.07 0.469

20 SIDT1 Hs00214475_m1 0.70 5.061026 0.91 0.301

21 SMAD3 Hs00706299_s1 0.87 ,1026 0.99 0.825

22 SMYD5 Hs00300181_m1 0.93 ,1026 0.98 0.229

23 TCF12 Hs00918972_m1 0.90 ,1026 0.97 0.127

24 TCF4 Hs00972428_g1 0.88 1.561025 1.01 0.872

25 WRN Hs02561119_s1 0.76 ,1026 1.02 0.791

FC: fold change between groups; a FC above 1 indicates an increase in expression and a FC below 1 indicates a decrease in expression compared to the controls.
p: unadjusted p values. Bold indicate p values are below the significant level of 0.05 after Bonferroni correction for multiple testing (threshold p = 0.002).
doi:10.1371/journal.pone.0027759.t002
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offspring ASF1A and IL7R gene expression was compared to that

of 312 controls: this comparison resulted respectively in a 5.0%

and 1.2% additional decrease of mean gene expression relative to

the effect observed in the comparison between all offspring and

controls (Table 3).

Discussion

We have identified a transcriptional profile of 244 genes that

represent a potential ‘‘longevity-signature’’. In an extensive

biological replication study of nonagenarians, middle-aged off-

spring and controls, we focused on a subset of 25 genes in RT-

PCR experiments. An ‘‘aging-signature’’ was formed by the

expression pattern of 21 genes. Two genes, ASF1A and IL7R,

represented a ‘‘longevity-signature’’ since members of long-lived

families expressed at middle-age a 1.14-fold and 1.12-fold lower

level of these genes compared to controls respectively. The effect

size of this association with longevity was stronger for offspring of

nonagenarians with a beneficial metabolic profile characterized by

6 serum parameters and the Framingham Risk Score, which we

considered to be the best proxy for the true long-lived case group.

The decreased expression of these two genes is therefore likely to

mark metabolic health and it might precede or even contribute to

human longevity. ASF1A is a histone chaperone that is important

in the remodeling of chromatin structure during replication, DNA

repair, and cellular senescence [37–39]. Interestingly, histone

acetylation is among the processes regulated by signaling through

the IL7 receptor, which is required for development and

maintenance of the immune system [40]. Our results may point

at the importance of interactions between immune response,

metabolic state, and epigenetic control for human aging and

longevity.

The genome-wide expression analysis between nonagenarians

and controls resulted in the identification of 2,953 probes

associated with age. RT-qPCR replication experiments with a

large sample size resulted in replication of 21 out of 25 genes

identified by the microarray analysis as differentially expressed

with age. Five of these genes (LRRN3, ZNF331, ASF1A, MLLT3

and SIDT1) have previously been reported to associate with age in

a microarray study of T cell mRNA [41], although this study had a

relatively small number of samples (25 male subjects). The largest

age-related effects observed in our study were for the IFI27 and

LRRN3 genes. IFI27 encodes interferon alpha-inducible protein 27

whose biological function is currently unknown. Leucine rich

repeat neuronal 3 (LRRN3) is mainly involved in activation of

MAPK activity and endocytosis [42] and, further supporting our

findings, also showed the largest age-related decrease in expression

in a large study on lymphocytes [16]. This ‘‘aging-signature’’

included decreased expression of several well-known genes

involved in aging and lifespan, like MYC, WRN and MTOR. The

MYC protein is a transcription factor that regulates transcription

of specific target genes and overexpression of the MYC gene has

been associated with a variety of cancers [43–45]. Defects in the

WRN gene cause the Werner progeria syndrome, an autosomal

recessive disorder characterized by premature aging and genetic

variation in or near this gene have been associated with several

age-related diseases and survival [46–49]. The MTOR gene

encodes a serine/threonine kinase and its downregulation is

associated with extended lifespan in model organisms [50–52] and

elevated mTOR activity has been implicated in different forms of

human cancer [reviewed in 53,54]. We conclude from our data

that, from all significantly differentially expressed genes at least 21

genes distinguish nonagenarians from middle-aged controls. In

addition, our study is the first to include an extensive biological

replication sample set validating these results.

The main cellular pathways that changed with age in the

microarray dataset were ‘response to stimulus’ (including ‘immune

response’ and ‘response to stress’), ‘signal transduction’, ‘gene

expression’ and ‘protein binding’. These GO terms have

previously been found to associate with aging, suggesting that

these are systemic age-related processes. The only pathway that

associated with longevity at middle-age in the offspring-control

comparison was the ‘Rho protein signal transduction’ pathway,

which is part of the GO term ‘signal transduction’. The Rho

family of GTPases are small GTPases that regulate a wide variety

of processes in the cell including growth, cytoskeletal organization,

transcription and lipid metabolism [55,56]. Rho signaling is

regulated by the mTOR complex 2, a part of the mTOR pathway

which is shown to influence lifespan and health. All associated

pathways are general processes, indicating that regulation of the

system seem to be an important process involved in aging and

longevity.

Research into human familial longevity and healthy ageing is

complex in the sense that there are no controls from the same birth

cohort to compare to long-lived persons since such controls would

have died twenty years ago. We investigated offspring as a proxy

for the nonagenarian case group since these can be compared to

controls from the same birth cohort. However, in the offspring the

longevity phenotype will undoubtedly be diluted as compared to

the nonagenarians, since only a part of the offspring will become

long-lived and a part will age comparable to controls. The

consequence of the dilution of the longevity cases is that effect sizes

are underestimated. Indeed the effect size of the association with

longevity increased when the healthiest offspring was compared to

the controls. Future follow-up data on age of death will reveal

which offspring carries the longevity phenotype.

In this study we investigated expression profiles in whole blood

samples of participants because blood is an easily accessible tissue.

This allows us to investigate the large sample sizes required to

detect small effect sizes. An advantage of using blood compared to

other tissues is that cell subsets can easily be measured and used to

select samples or used as covariates in analyses whereas different

cell subsets present in other tissues are difficult to quantify and can

not be taken into account in any analyses. In our microarray study

we selected samples from offspring and controls with similar cell

counts. Furthermore, since aging affects the whole organism and

since blood is in contact with all tissues, blood may reflect in part

the physical health of the whole body. Disease state is mirrored by

Table 3. Gene expression levels of ASF1A and IL7R in all as
well as subfraction of offspring compared to controls.

ASF1A IL7R

n Mean p Mean p

Controls All 312 1.85 6.18

Offspring All 332 1.65 0.0022 5.98 0.0012

Subfraction1 78 1.57 0.0093 5.91 0.0103

Mean: relative expression in fold change to reference value.
1: subfraction of offspring most probable to age healthily (for more details, see
Materials and Methods),

2: p value of comparison between controls and all offspring,
3: p value of comparison between controls and subfraction of offspring (best
5% men and women per parameter taken together). Bold indicated p values
are below the significant level of 0.05 after Bonferroni correction for multiple
testing.

doi:10.1371/journal.pone.0027759.t003
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gene expression profiles in blood [summarized in 57], which at

least partial overlap with expression profiles in other tissues [58].

Thus, although tissue-specific effects will undoubtedly be missed,

investigating blood is valuable and practical for researching

human aging.

In conclusion, we identified a transcriptional signature in whole

blood consisting of 21 genes that repeatedly differentiated between

nonagenarians and middle-aged controls. The expression level of

two of these genes, ASF1A and IL7R marked familial longevity

already in middle-age and the effect size was enhanced in the

subset of longevity family members with a beneficial metabolic

marker profile. Functional and longitudinal studies are necessary

to establish which of these genes are true biomarkers for healthy

ageing and which contribute causally to this trait. Our findings

illustrate that gene expression changes occurring as a function of

age may partly represent early detectable features of human

longevity and healthy ageing.

Materials and Methods

Study population
The individuals investigated in this study are participants of the

Leiden Longevity Study. The families participating in this study

have at least two siblings with a minimum age for men of 89 years

and for women of 91 years [59]. The offspring of these long-lived

individuals, who have an increased potential to become long-lived

individuals, were also included. In addition, the partners of the

offspring were included as population controls of similar age and

environmental exposures as the offspring, and as a young control

group for the nonagenarian siblings. Blood samples were taken

from all the participants. The Leiden Longevity Study was

approved by the medical ethical committee of the Leiden

University Medical Centre and all participants gave written

informed consent.

Sample collection and RNA preparation
One long-lived sibling, one of their offspring and the partner of

the offspring were selected from 50 families for the current study

(Table 1). These trios were randomly selected, but in such a way

that age and gender were balanced between the groups and the

age range for the offspring and partners was as large as possible.

Additionally, individuals with outlying cell counts (beyond 3 SDs

below or above the standard error of the mean) were excluded.

From the 150 selected non-fasted individuals, peripheral blood was

harvested using PAXgeneTM tubes (Qiagen, Venlo, The Nether-

lands). The tubes were frozen and kept at 220uC for ,3–5 years.

After thawing at room temperature for at least 2 hours, total RNA

was extracted from the approximately 2.5 ml of peripheral blood

in each tube following the manufacturer’s recommended protocol

(PAXgene Blood RNA Kit Handbook, Qiagen, Venlo, The

Netherlands). The quality and integrity of the total RNA was

evaluated on the 2100 Bioanalyzer (Agilent Technologies,

Amstelveen, The Netherlands) and the concentration was

measured using a NanoDrop spectrophotometer (NanoDrop

Technologies, Wilmington, DE, USA). Quality criteria included

a 28S/18S ratio as measured by the Bioanalyzer of at least 1.2,

and a total RNA yield of at least 3 mg.

Oligonucleotide microarrays
The 150 samples that met the RNA quality criteria were

hybridized onto 54k CodeLink Human Whole Genome Bioarrays

(GE Healthcare, Bucks, UK, cat. No. 300026, currently of

Applied Microarrays). cDNA synthesis, amplification, biotin

labeling and hybridization onto the microarrays were performed

according to the manufacturer’s instructions using the Codelink

iExpress reagent kit (cat. No. 67601000). The slides were scanned

with a MicroArray Scanner G2505B scanner (Agilent Technolo-

gies, South Queensferry, UK) and the image was quantified with

the CodeLink Expression software (version 4.2).

Microarray data pre-processing
Raw intensities were background subtracted, set to 0.5 when

results were negative and normalized using the Cyclic Loess

method in the Codelink software package [60] of the Bioconductor

R software [61] (http://www.bioconductor.org). After normaliza-

tion, we used log2-transformed expression intensities for all

subsequent analyses. Raw and normalized microarray data are

stored in the GEO online database record GSE16717 in

compliance to MIAME guidelines. A principal component analysis

(PCA) was performed on all samples (GeneSpring software,

Agilent Technologies, South Queensferry, UK) and hybridization

date was identified as a confounding factor causing a deviation in

the data, which was attributed to a scanner maintenance check

during the measurements of the samples (data not shown).

Therefore, all subsequent analyses were adjusted for hybridization

date coded as the 14 days of hybridization as categorical variable,

which was sufficient to adjust for this technically induced variation.

Since samples were randomly hybridized, no confounding with

group was present. None of the other tested parameters, like RNA

quality, isolation date and time of blood draw appeared to be a

significant confounder of the expression data.

Probe annotation and filtering
The 54,243 probes on the CodeLink Bioarray were newly

annotated to Entrez Gene ID’s and GO identifiers in two steps.

First, all probe sequences were mapped to Unigene and dbEst

sequences with BLAT while allowing for, at most, one mismatch-

ing nucleotide. Subsequently, all Probe to Unigene annotations

were transformed to probe to Entrez Gene ID and probe to GO

ID annotations using Entrez Gene-to-Unigene and Entrez Gene-

to-GO ID mappings available on the ftp server of NCBI. Probe-to-

EST annotations were treated in a similar way, except that ESTs

were first mapped to RefSeq Gene IDs by aligning ESTs to

RefSeq exons using galaxy and the genomic alignments of ESTs

and RefSeq genes from UCSC (hg18). All EST to RefSeq

mappings with a sequence similarity .95% were maintained for

further mappings of ESTs-to-Entrez Gene IDs using the Entrez

Gene-to-RefSeq Gene ID mappings available at NCBI. All

information used was downloaded in October 2008, using versions

NCBI Build 36.1 or UCSC hg18.

Probes without a ‘‘Good’’ flag indicating that the mRNA is

detected, as determined by the CodeLink Expression software, in

at least 10% of the samples (7,034 probes) and/or probes without

at least a known chromosome band location according to the new

annotation (an additional 2,045) were excluded from the analysis,

resulting in 45,164 remaining probes.

Single gene analysis
All single gene analyses were performed using the Limma

(Linear models for microarray data) package in R [62,63]. To

determine changes in expression levels of each probe with age, we

used the following linear regression model:

Yij~b0jzb1jGroupizb2jGenderizb3jHybizeij ð1Þ

where Yij is the base 2 logarithm of the expression level of probe j in

sample i, Groupi is the group (0 for control or 1 for long-lived
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nonagenarian) of subject contributing sample i, Genderi corresponds

to the gender of the ith sample (0 for male, or 1 for female), Hybi is

the categorical term of hybridization day on which the sample i was

measured and eij represents an error term. The coefficients b1j

represents by how much gene expression increases between the

groups, b2j represents the change in expression for a female in

comparison with a male sample, b3j represents the change of

expression across hybridization dates, and b0j represents the

baseline regression level of the probe, for male control samples on

the first hybridization date. Resulting p-values were adjusted for

multiple testing using Benjamini and Hochberg’s False Discovery

Rate (FDR) method [64]. One-dimensional hierarchical clustering

of probes was performed using GeneSpring (version GX 7.3.1) gene

tree clustering, using Pearson correlation and average linkage.

To find longevity-related differences between offspring and

controls, the following model was used:

Yij~b0jzb1jGroupizb2jAgeizb3jGenderizb4jHybizeij ð2Þ

where Groupi corresponds to the offspring/control status of the ith

sample (0 for control, 1 for offspring) and b1j is the change of

expression with group status. For each probe j, we determined the

coefficient with respect to group status (b1j).

To test differences in biological aging rate in offspring and

controls, we used the following model:

Yij~b0jzb1jGroupizb2jAgeizb3jGenderizb4jGroupi|Agei

zb5jAgei|Genderizb6jGroupi|Genderizb7jHybizeij

ð3Þ

where Groupi*Agei corresponds to the slope of expression with age

of the jth probe set for offspring or controls, Agei*Genderi
corresponds to the slope of expression with age of the jth probe

set for males or females, Groupi*Genderi indicates the interaction of

group and gender of the jth probe set for the ith sample, b4j

represents the change of expression with age for offspring in

comparison to control, b5j represents the change of expression with

age for a female in comparison with a male sample, b6j represents

the change of expression with gender between offspring and

controls. The interaction between group and offspring in

comparison to control (b2j for the intercept, b4j for the other

groups) was determined and resulting p-values were corrected for

multiple testing using the FDR method.

Pathway analysis
The Globaltest methodology was designed to determine whether

the common expression pattern of genes within a pre-defined set is

significantly related to clinical outcome [21,65,66]. A generalized

linear model is used to estimate a ‘‘Q-statistic’’ for each gene set,

which describes the correlation between gene expression profiles, X,

and clinical outcomes, Y. The Q-statistic for a gene set is the

average of the Q-statistics for each gene in the set. The Globaltest

method was used to perform pathway analysis on Model 1.

When performing pathway analysis on Model 3 we used

GlobalAncova, which is a method similar to Globaltest suited for

models including interaction terms [67,68]. Resulting p-values

from both methods were corrected for multiple testing using

Holm’s procedure for controlling the Family-Wise Error Rate

(FWER) method [69].

RT-qPCR
To confirm the accuracy of the measured expression profiles, we

compared the expression level of 25 probes from the CodeLink

Bioarrays with corresponding TaqmanH assay (Applied Biosys-

tems, Table 2). Samples included 18 nonagenarians, 16 offspring

and 21 controls that have been measured on the microarray and

additional novel replication samples of randomly chosen 61

nonagenarians, 316 offspring and 291 controls. Reverse transcrip-

tion was performed by using total RNA from blood of in total 723

samples, excluding individuals with outlying cell counts (outside

3SD of the mean), which passed QC and processed with the First

Strand cDNA Synthesis Kit according to the manufacturer’s

protocol (Roche Applied Science). cDNA was amplified using the

DNA Engine TetradH 2 Peltier Thermal Cycler (Bio-Rad). qPCR

was then performed with the TaqmanH method using the

BiomarkTM 48.48 and 96.96 Dynamic Arrays (Fluidigm). Relative

gene expressions of the BioMarkTM Array data were calculated by

using the 22DDCt method, in which Ct indicates cycle threshold,

the fractional cycle number where the fluorescent signal reaches

detection threshold [70]. YKT6 was used as internal control and

commercially available human total reference RNA (Clontech

Laboratories, Mountain View, CA, USA) as reference RNA.

Differences in expression level between long-lived siblings, their

offspring and the partners of their offspring were assessed using

linear regression. In these analyses, expression level was the

dependent variable and the two groups of individuals (either

nonagenarians vs. controls or offspring vs. controls) were included

in the model as a categorical variable together with age (in

offspring vs. controls only) and gender and their interaction as

covariates. To take into account dependencies within sibships,

robust standard errors were used, i.e. the variance was computed

from the between family variation. P-values were also based on

these robust standard errors. Analyses were performed using the

software package STATA/SE 11.0 (DPC Software, StataCorp

2009).

Analysis of healthy offspring
To further investigate the candidate genes, their expression level

was again tested for association with longevity, but only including

the offspring with most beneficial profile of seven published

longevity markers: a low level of non-fasted serum glucose (mmol/

L) [71,72], triglycerides (mmol/L) [73] and free triiodothyronine

levels (pmol/L) [74], a small ratio of total cholesterol (mmol/L)

over HDL cholesterol (mmol/L) [75,76], small low-density

lipoprotein (LDL) particle sizes (nm) [77], a high level of

adiponectin (mg/L) [26], and a low Framingham risk score

(FRS) which is based on the factors age, sex, total cholesterol level,

HDL cholesterol level, systolic blood pressure (mm/Hg), and

whether the person smokes [78]. The FRS is a well known test

reflecting the risk of cardiovascular disease over the course of 10

years.

All serum measurements were performed with fully automated

equipment. For glucose, triglycerides, total cholesterol, HDL-

cholesterol, adiponectin and free triiodothyronine, the Hitachi

Modular or the Cobas Integra 800, both from Roche, Almere, the

Netherlands were applied. CVs of these measurements were all

below 5%. Lipoprotein particle sizes have been analyzed in 165

families from the Leiden Longevity Study using a 400-MHz

proton NMR analyzer at LipoScience.

To select that subfraction of offspring with the highest

probability to age healthily and become long-lived because of

their metabolic risk profile in middle-age, we identified the

subjects, separately for men and women, within the lower 5% tail

of the distribution for glucose, triglycerides, free triiodothyronine,

ratio of total cholesterol over HDL cholesterol and the FRS.

Additionally we identified for LDL particle size and adiponectin

those subjects, separately for men and women, within the upper
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5% tail of the distribution. This resulted in a total of 78 offspring

out of 332 from which gene expression levels of ASF1A and IL7R

was compared to the levels in 312 controls using linear regression.

In this analysis, expression level was the dependent variable and

the two groups of individuals (offspring vs. controls) were included

in the model as a categorical variable together with age and gender

and their interaction as covariates. To take into account

dependencies within sibships, robust standard errors were used,

i.e. the variance was computed from the between family variation.

P-values were also based on these robust standard errors. Analyses

were performed using the software package STATA/SE 11.0

(DPC Software, StataCorp 2009).

Supporting Information

Figure S1 Distribution of expression intensities of 2,953
age-related probes. The x-axis indicates average log2 expres-

sion intensities of all samples; the y-axis indicates the log2 fold

change between nonagenarians and controls. Black circles

represent all 45,164 probes; red filled dots represent the 2,953

age-related probes with a FDR#0.05.

(TIF)

Table S1 Significant gene expression changes with
chronological age and/or familial longevity. A total of

2,953 probes whose expression level changed significantly between

controls and long-lived nonagenarians (regression modeling with

FDR multiple testing correction) are shown. The table also

indicates the chromosomal location of the probe. ‘‘FC’’ indicates

the fold change between groups, a FC above 1 indicates increased

expression in nonagenarians compared to controls, and a FC

below 1 indicates decreased expression in nonagenarians com-

pared to controls. MULTIPLE indicates a probe annotated to

more than three chromosomal locations.

(XLS)

Table S2 GO terms found significantly differentially
expressed between nonagenarians and controls. Globalt-

est pathway analysis resulted in 109 Gene Ontology terms of

which the expression of the involved probes differed between long-

lived nonagenarians and controls (FWER#0.05). Gene Ontology

categories include biological process (BP), molecular function (MF)

and cellular component (CC).

(XLS)

Table S3 List of probes of which the gene expression
changes with age significantly differed between off-
spring and controls. A total of 360 probes whose expression

level changed significantly with age between offspring and controls

(regression modeling with FDR multiple testing correction) are

shown. ‘‘FC’’ indicates the fold change between offspring and

controls per 10 years; a FC above 1 indicates a larger slope of

expression as a function of age in offspring, a FC below 1 indicates

a larger slope of expression as a function of age in the controls.

MULTIPLE indicates a probe annotated to more than 3

chromosomal locations.

(XLS)

Table S4 RT-qPCR results of replication samples only.
RT-qPCR results of replication samples only are shown. ‘‘FC’’

indicates the fold change between groups; a FC above 1 indicates

an increase in expression and a FC below 1 indicates a decrease in

expression compared to the controls. ‘‘p’’ indicates the unadjusted

p values. Bold indicate p values are below the significant level of

0.05 after Bonferroni correction for multiple testing.

(DOC)
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