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Abstract: Versatile product protective coatings that deliver faster drying times and shorter
minimum overcoat intervals that enable curing at faster line speeds and though lower energy
consumption are often desired by coating manufacturers. Product protective coatings, based
on silsesquioxane-modified diglycidyl ether of bisphenol-A (DGEBA) epoxy resin, are prepared
through a glycidyl ring-opening polymerization using dicyandiamide (DICY) as a curing agent.
As silsesquioxane modifier serves the octaglycidyl-polyhedral oligomeric silsesquioxane (GlyPOSS).
To decrease the operational temperature of the curing processes, three different accelerators for
crosslinking are tested, i.e., N,N-benzyl dimethylamine, 2-methylimidazole, and commercial Curezol
2MZ-A. Differential scanning calorimetry, temperature-dependent FT-IR spectroscopy, and rheology
allow differentiation among accelerators’ effectiveness according to their structure. The former
only contributed to epoxy ring-opening, while the latter two, besides participate in crosslinking.
The surface roughness of the protective coatings on aluminum alloy substrate decreases when the
accelerators are applied. The scanning electron microscopy (SEM) confirms that coatings with
accelerators are more homogeneous. The protective efficiency is tested with a potentiodynamic
polarization technique in 0.5 M NaCl electrolyte. All coatings containing GlyPOSS, either without or
with accelerators, reveal superior protective efficiency compared to neat DGEBA/DICY coating.

Keywords: polymers; octaglycidyl-POSS; DGEBA; dicyandiamide; accelerators; corrosion; protective
coatings; infrared spectroscopy; rheology

1. Introduction

Typically, alloys corrode merely from exposure to moisture and pollutants in the air atmosphere.
According to NACE International (National Association of Corrosion Engineers), the global cost of
corrosion is estimated to €2.2 billion, which is equivalent to 3.4% of global gross domestic product
(GDP) (<€640 billion or 3.8% GDP in Europe) [1]. Just by available proper corrosion control practices,
it is estimated that savings of between 15–35% of the cost of corrosion can be realized (globally
€340–800 billion per year) [1]. Commonly used anticorrosion approaches to slow down the corrosion
rate are cathodic protection with sacrificial anodes, deposition of protective coatings [2], the addition of
inhibitors directly into corrosive environments, or in the structure of protective coatings [3]. Protective
coatings are one of the most prospective and widespread methods for the corrosion prevention of
metals, which makes it one of the main critical technologies underpinning the competitiveness of the
European industry. The deposited coatings isolate the metal surface from the atmosphere or any other
corrosive media.
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As a corrosion barrier, the epoxy coatings [4] have been a subject of research and commercial
applications for a long time [5]. The well-established routes of their preparation use curing of
epoxy-precursors with amino groups-containing compounds; for example, a reaction of diglycidyl
ether of bisphenol-A (DGEBA) with dicyandiamide (DICY) curing agent (Figure 1). Despite that,
epoxy-based coatings continued to remain a promising topic of investigations through the formation
of various composite materials [6–8] and advanced metal/polymer laminates [9,10]. For instance, as a
challenging issue has remained the development of nanocomposite polymers, in which nanosized
reinforcement is applied to obtain improved performance of such protective coatings. Most commonly,
nano reinforcement compounds of <100 nm size have been added to the polymeric matrix, and the
uniform dispersion is the crucial key for achieving the desired properties. Nanoparticles are commonly
introduced as fillers [11] but can also be bound directly into the polymeric matrix as pendant groups.
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Figure 1. Structures of the precursors: (A) diglycidyl ether of bisphenol-A (DGEBA), (B) octaglycidyl-
POSS (GlyPOSS), (C) dicyandiamide (DICY), (D) 2-methylimidazole (2-MeIm), (E) 2,4-diamino-
6-[2’-methylimidazolyl-(1’)]-ethyl-s-triazine (Curezol) and (F) N,N-benzyl dimethylamine (BDMA).

Nanoparticles that can, for example, be bound in the epoxy networks are polyhedral oligomeric
silsesquioxanes (POSS) [12]. They belong to a group of organic-inorganic hybrids [13]. Specifically,
the core is composed of an inorganic silsesquioxane, while different organic pendant groups can be
attached to each of the eight corners of the T8 cage. Homoleptic POSS nanoparticles have the same
organic groups in their shells, while organic groups in heteroleptic POSS can differ. Consequently,
POSS can incorporate in different modes into novel materials. (i) When no reactive organic group
is present in the shell, POSS simply behaves as a nanofiller. (ii) On the other hand, the presence of
a suitable reactive organic group can lead to the bounding of POSS into the epoxy network. POSS
can enter the epoxy curing reaction either as: (ii-a) glycidoxy-group containing precursor or (ii-b) an
amine-POSS hardener compound. (ii-a) The examples of the former approach are epoxy networks
based on DGEBA that contained different fractions of monoglycidyl-heptaisobutyl-POSS [14–17]
and were cured with different hardeners. Strachota et al. [18], on the other hand, used POSS with
1, 2, 4, or 8 glycidyl groups while remaining groups to T8 cage being either phenyl, isooctyl, or
cyclopentyl. (ii-b) The latter approach was demonstrated by partial exchange of hardener with either
monoamino-functionalized POSS [17,19–21] or octaamino-functionalised POSS [22]. (iii) Nevertheless,
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the open-cube trisilanol-heptaphenyl-POSS was studied as a promotor of the curing reaction between
glycidyl and amino groups, i.e., the influence of silanol groups on epoxy curing kinetics [23].

By incorporation of POSS nanoparticles into polymer matrices, the composite materials with
superior functional properties can be obtained. For example, a combination of epoxy and various
glycidoxy-POSS nanoparticles have been studied from mechanical [14] and viscoelastic [18] perspective.
It was found that monoglycidoxy-POSS does not contribute to the deformation process of the network
while enhancing the thermal properties [14]. The thermal stability of epoxy/glycidyl-POSS materials
is improved, but higher loadings tend to decrease this beneficial influence [18]. The behavior of
DGEBA with monoglycidoxy-heptaisobutyl-POSS cured with short aromatic amines was studied
from the kinetic perspective by differential scanning calorimetry (DSC) [16]. In a similar material,
local thermal analysis (LTA) and DSC gave evidence of amorphous POSS-rich domains which can
eventually arise from phase separation [15]. As the main reason for that, the incompatibility of the
isobutyl groups of monoglycidoxy-heptaisobutyl-POSS and the aromatic epoxy-amine network was
suggested. Anyhow, when octaglycidoxy-functionalized POSS (Figure 1B) was introduced into the
DGEBA-based nanocomposite system, it was found to accelerate the rate of opening of glycidyl epoxy
rings of DGEBA [24].

POSS molecules also have a robust resistance to environmental degradation factors, such as
moisture, oxidation, corrosion, and UV radiation. It is therefore not surprising that various POSS
nanoparticles have already been tested as an additive in polymeric protective coatings for alloys,
for example, aminopropyl-heptaisooctyl-POSS in epoxy coatings [20,21]. However, although epoxy
coatings are used worldwide as corrosion protective coatings [7], we haven’t found any research
report on the corrosion topic where the glycidyl-POSS molecules are added to improve the protective
efficiency of epoxy coatings. Much more obvious are reports on the addition of different silanes [8]
or the application of silane primers [5]. Since the addition of monoglycidyl-heptaisobutyl-POSS
nanoparticles can cause phase separation, as hydrophobic isobutyl groups are not compatible with
the epoxy network [15], the much easier is to incorporate homoleptic octaglycidyl-POSS (abbreviated
GlyPOSS in Figure 1) molecules in the epoxy matrix [24]. Such molecule can be represented by
formula (R–SiO1.5)n (n = 8, R = –(CH2)3–O–CH2–[C2H3O]). Under this premise, it is expected that the
developed coatings shall have lower curing and glass transition temperature (Tg), lower roughness,
dense structure, and consequently, also the outstanding protective properties.

To achieve the dense coating structure and other above-listed properties, special attention has to
be given to the selection of the amine hardener. In reports on epoxy composites with glycidyl-POSS
nanoparticles as hardeners, different aromatic amines [15,16] and polyetheramines (Jeffamines) [14,18]
were studied. However, the small aliphatic molecule of dicyandiamide (DICY in Figure 1C) also
suggests that dense crosslinking of the epoxy matrix is possible [7].

In order to decrease the production cost of protective coatings, the lowering of curing temperature,
is desired. This can be achieved through the acceleration of curing reactions, i.e., the addition of
suitable accelerators. The lowering of the activation energy for glycidoxy ring opening can be achieved
by the presence of proton donors, for example, alcohols or hydroxyl groups emerging from previous
reactions [25]. Further lowering of the ring-opening temperature is achieved by the addition of tertiary
amines [25]. Different tertiary amines have been tested for DGEBA-based systems, ranging from benzyl
dimethylamine (BDMA in Figure 1F) to various imidazolium-based structures [26,27]. The results
confirmed the influence of tertiary amine accelerators on the curing dynamics and resulting materials.
This suggests that specific studies should include different accelerators.

Herein, we report on a successful preparation of composite epoxy protective coatings for aluminum
alloy AA 2024. Part of DGEBA precursor is exchanged by GlyPOSS to decrease the influence of
bisphenol-A on public health, to decrease the production costs, and to achieve better protective efficiency
of coatings. Three different amine groups-containing accelerators, i.e., N,N-benzyl dimethylamine
(BDMA), 2-methylimidazole (2-MeIm), and commercial accelerator Curezol (Figure 1D–F), are
compared regarding the triggering of the curing reaction. They are studied regarding their capacity
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for the opening of glycidoxy rings but also their eventual contribution to crosslinking. The influence
of accelerators on the curing is proved via thermal- and time-dependent FT-IR spectroscopy and
rheological examination. Differential scanning calorimetry (DSC) is used to determine the thermal
properties of epoxy-octaglycidyl-POSS composites. Morphology of the coatings is checked using atomic
force microscopy (AFM) and scanning electron microscopy (SEM). The electrochemical technique, i.e.,
potentiodynamic polarization, gives a clear answer on improved protective efficiency of the developed
epoxy-GlyPOSS coatings.

2. Materials and Methods

2.1. Materials

Diglycidyl ether of bisphenol-A (DGEBA) was obtained from ABCR (Karlsruhe, Germany), as well
as solvent 2-butanone (ACS, 99%). Commercial octaglycidyl-POSS (abbreviated GlyPOSS) nanoparticles
were purchased from Hybrid Plastics (Hattiesburg, MS, USA). Curing agent dicyandiamide (DICY)
and accelerators 2-methylimidazole (2-MeIm, 99%) and N,N-benzyl dimethylamine (BDMA, 99%)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Commercial accelerator Curezol 2MZ-A
(abbreviated Curezol) was obtained from Air Products (Allentown, PA, USA). Dimethyl sulfoxide
(DMSO) was purchased from Merck (Darmstadt, Germany). All chemicals were used as supplied.

2.2. Preparation of Coatings

The preparation procedure of coatings is depicted in Figure 2. DGEBA (1.6 g) and GlyPOSS
(0.4 g) were dissolved in butanone (2 g) and stirred for 30 min. For coating without GlyPOSS, only
2 g of DGEBA was dissolved in butanone (2 g). Separately, DICY (0.25 g) was dissolved in DMSO
(1 g). Into the latter solution, if appropriate, one of three accelerators was introduced in molar
ratio DICY:accelerator = 1:0.1. Both solutions were finally mixed. Before dip-coating deposition on
aluminum alloy AA 2024 (Aviometal, Italy) with a pulling velocity of 10 cm/min, mixtures were left to
stir 5 min. The substrates (dimensions: 2 × 5 cm2) were polished using 3 M Perfect-IT III paste and
subsequently sonicated in hexane, acetone, and methanol for 15 min. Specifically, for this research five
types of coatings were prepared:

• DGEBA/DICY (D coating) without the accelerator,
• DGEBA/GlyPOSS/DICY (D-P coating) without the accelerator,
• DGEBA/GlyPOSS/DICY/BDMA (D-P-BDMA) coating,
• DGEBA/GlyPOSS/DICY/2-MeIm (D-P-2MeIm) coating,
• DGEBA/GlyPOSS/DICY/Curezol (D-P-Curezol) coating.

In parenthesis, the abbreviations that are depicted on graphs are shown. The curing process
was performed at 150 ◦C for 1 h for coatings without accelerators and at 120 ◦C for 1 h for coatings
with accelerators.

2.3. Methods

FT-IR absorbance measurements were made on a Bruker spectrometer, model IFS 66/S (Bruker,
Billerica, MA, USA). All samples, i.e., either precursors or formulations, were deposited on silicon
wafers. Temperature-dependent FT-IR absorbance measurements, from room temperature to either
120 or 150 ◦C, were performed in Spectra-Tech heated demountable cell with a controller. When the
desired temperature was achieved, the spectrum was recorded. The spectra were gathered every
10 min during measurements at 120 and 150 ◦C. The resolution was 4 cm−1.

DSC measurements were performed on a Mettler-Toledo DSC-1 (Columbus, OH, USA) calorimeter
under a nitrogen atmosphere with a flow rate of 50 mL/min. Samples were sealed in 40 µL alumina
crucibles with the lids. The mass of the samples was around 10 mg for all lyophilized mixtures.
The analysis was performed with a heating rate of 5 K/min from −30 to 300 ◦C.
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The rheological behavior of the epoxy resin was observed by nonisothermal dynamic oscillation
with a rotational controlled rate rheometer (Physica MCR301, Anton Paar, Graz, Austria), equipped
with a parallel geometry (PP-25). The epoxy samples were heated by convection. A solvent trap was
used to minimize solvent evaporation, while a temperature-controlled hood was applied to prevent
heat dissipation. The measurements were performed under a constant shear strain (10–20%) with a
gap of 0.5 mm. Dynamic measurements were performed using a heating rate of 2 ◦C/min from 23 to
180 ◦C under a constant flow of dry nitrogen to eliminate any oxidative processes during heating.
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Figure 2. The preparation procedure of the protective coatings.

Taylor Hobson Series II profilometer (Leicester, United Kingdom) was used for coatings thickness
determination. Coatings were characterized by a scanning electron microscope FE-SEM Zeiss SUPRA
35VP (Zeiss, Oberkochen, Germany). Atomic force microscopy (AFM) images were made on an AFM
attachment of WITec alpha 300 confocal Raman spectrometer (Ulm, Germany). The images were
recorded on areas of 10 × 10 µm2 of the prepared coatings deposited on AA 2024 coupons. The images
are presented in the two-dimensional representation without filtering. According to the scale bars
alongside the images, the brighter the color, the higher the spot on the surface. Consequently, surface
roughness (SR) was calculated. Samples were measured at room atmosphere and temperature.

An Autolab PGSTAT30 potentiostat-galvanostat (Metrohm Autolab, Utrecht, The Netherlands)
was used to perform electrochemical measurements. Potentiodynamic polarization measurements
were made in a K0235 flat cell (Ametek Scientific Instruments, Oak Ridge, USA) with a built-in Pt grid
counter electrode. The cell was filled with a 0.5 M NaCl electrolyte. The coating on AA 2024 was
mounted as a working electrode, while Ag/AgCl/KClsat served as a reference electrode. The coating was
held at an open circuit potential for 30 min before the measurement. Then linear sweep voltammetry
was swept from 1.0 to 0.0 V using a scan rate of 1 mV/s. The corrosion current density (jcorr) was
extrapolated with Tafel slopes from the measured potentiodynamic polarization curves.
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3. Results

3.1. Characteristics of Formulations and Curing Process

Epoxy-based formulations belong to thermosetting materials that cure upon heating. Insight into
curing dynamics can be obtained using different analytical techniques. DSC analysis, for example,
provides information on glass transition temperature (Tg), start and completion of the curing process
and the enthalpy of the curing process (Figure 3). Time-dependent FT-IR absorbance measurements
during temperature treatment of coatings (Figures 4–6) enables insight into the crosslinking by
observation of decreasing intensity of the epoxy mode at 915 cm−1 [28]. Rheology (Figures 7 and 8), on
the other hand, gives quite a piece of information on changes in consistency during the transformation
of the formulation into a crosslinked structure [18,29]. When the obtained results are observed in
parallel experiments, designed to approach to the same conditions as much as possible, they can
throw light to the curing processes that lead to the formation of highly crosslinked protective coatings.
The important point of this study is to follow the influence of accelerators on the curing process. We look
forward to connecting their structural properties with the behavior during the curing of formulations.

3.1.1. Thermal Properties

DSC analysis showed that for all curves of D-P-based formulations, the characteristic exothermic
peaks appear (Figure 3). The curing of the D-P formulation without accelerator took place in the
range of 130–280 ◦C and the enthalpy of the reaction reached 506 J/g (Table 1). As expected, the
addition of any of the three accelerators speeded up the curing. Consequently, the curing maximums
were found at approximately 30–40 ◦C lower temperatures (Table 1). The enthalpy detected for
formulations with accelerators was lower for 100–160 J/g, meaning that some reactions already started
during the lyophilization preparation procedure. In the case of BDMA and 2-MeIm accelerators, this
phenomenon was more prominent as the crosslinking reaction started at lower onset temperatures
(Tonset: 2-MeIm < BDMA < Curezol). The shapes of DSC curves of D-P and D-P-Curezol formulations
were the same indicating that the behavior of Curezol is similar to DICY. Namely, Curezol acts
as an epoxy ring-opening initiator (2-methyl imidazole part of its molecule accelerates and shifts
the curing reactions to lower temperature) and as a crosslinking agent (through amino groups on
the triazine ring). However, the Curezol accelerator shifted the D-P-Curezol curve to lower onset
temperature. As Curezol, also 2-MeIm can act in both roles, i.e., as ring-opener and crosslinking
agent. The crosslinking role of imidazoles was confirmed already long ago by NMR studies [30]. In
addition, it was proposed that imidazole ring in the polymer matrix positively influences its physical
and chemical properties [30].

It is commonly accepted that accelerators in epoxy resins decrease the curing temperature and
enhance the curing rate. As described above, DSC curves (Figure 3, Table 1) confirmed that for all
three tested accelerators in our D-P system. The addition of any accelerator also led to a change
in Tg value [30–32]. However, these changes vary in both directions with regard to the Tg value
of 116 ◦C obtained for D-P formulation without accelerator (Table 1). Interestingly, the Tg value
increased in case of BDMA and Curezol, but decreased for accelerator 2-MeIm. It is reported for
the DGEBA+DICY system that the increasing amount of accelerator 1-ethyl-3-methyl-imidazolium
dicyanamide consistently decrease the Tpeak temperature. All described formulations exhibit Tg above
120 ◦C and the values increased slightly with the increase in the concentration of the accelerator
1-ethyl-3-methyl-imidazolium dicyanamide. On the other hand, in a similar DGEBA+DICY system
with either BDMA or 2-MeIm accelerators showed similar values of Tg to ours, i.e., 115–116 ◦C for the
2-MeIm accelerator and 139–147 ◦C for the BDMA accelerator depending on cure characteristics [32].
More detailed dependency studies of Tg were performed for the BDMA accelerator [32]. Specifically,
the Tg value is dependent on the concentration of the BDMA accelerator and ratio DICY/BDMA, which
was confirmed with the maximal Tg value achieved in the middle of the tested concentration profile.
Moreover, dependency of Tg on amine/epoxy ratio in systems with BDMA was also demonstrated [32].
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It can be concluded though that the Tg value considerably depends on the systems and should be more
detailed studied for each system separately. This will be made in our future work.

Some studies observed the appearance of the second peak in DSC curves, as was noted for
accelerator 1-ethyl-3-methyl-imidazolium dicyanamide [31]. Such peaks became more dominant with
the increasing amount of the imidazolium salt accelerator. It was suggested that the second peaks can
be tentatively attributed to the more pronounced reaction of DICY (since the addition of this accelerator
decreased the amount of the unreacted DICY [31]. In addition, this aspect remains for our future
concentration-dependent investigation of our system.
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Table 1. Thermal properties of D-P-based formulations used for the preparation of coatings.
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Tg

4

(◦C)

D-P 112 168 −506 116
D-P-BDMA 76 125 −345 128
D-P-2MeIm 62 131 −363 113
D-P-Curezol 78 130 −405 120

1 Tonset—onset temperature; 2 Tpeak—temperature of the peak; 3 ∆H—enthalpy of the curing reactions;
4 Tg—glass temperature.

3.1.2. Temperature-Dependent FT-IR Spectra

The characteristic bands in the FT-IR absorbance spectra of precursors (DGEBA, GlyPOSS)
and formulations D and D-P are evident from Figure 4 and Figure S1, the latter in Supporting
Information. The epoxy modes appear in the spectrum of DGEBA at 3056 (νs(C–H)epoxy ring),
1132 (ν(C–O–C)epoxy ether) and 915 (ν(C–O)epoxy ring) cm−1 [5,16,28]. The first two bands are of
low intensity and in the proximity of other modes. The intensity of the band at 915 cm−1 is moderate
and can serve as a measure of the extent of the curing reaction, i.e., opening of glycidoxy rings and their
crosslinking into polymeric materials [28]. The spectrum of D formulation, in addition to vibrations of
DGEBA, shows the stretching of primary and secondary amines (ν(NH2), ν(NH)) between 3430 and
3150 cm−1 and cyano group at 2208 and 2162 cm−1 [33] (Figure 4A). When DGEBA is in part exchanged
with GlyPOSS, i.e., for D-P formulation, the spectrum retains the basic characteristics of amino and
cyano groups (Figure 4A). As well, the epoxy bonds at 3056 and 915 cm−1 remained visible in this
spectrum, but the low-intensity epoxy band at 1132 cm−1 became overlapped with the broad bands in
the spectral region 1200–1080 cm−1. They belong to the stretching vibrations of ν(Si–O–Si) originating
from the silsesquioxane cage of GlyPOSS. Such intensive ν(Si–O–Si) band was also noted in the
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spectrum of GlyPOSS/4,4′-(1,3-phenylenediisopropylidene) epoxy composites [24]. Importantly, in that
study, the appearance of the glycidoxy groups of GlyPOSS is reported at ~745 cm−1 [24]. In our spectrum
of GlyPOSS, the nearest band that can be assigned to glycidoxy groups is at 762 cm−1 (Figure 4B).
However, it overlaps with the glycidoxy groups of DGEBA. Therefore, it only marginally contributes
to the intensity increase of the 762 cm−1 band in D-P formulation regarding the D formulation. For this
reason, it cannot be used to follow the curing of GlyPOSS glycidoxy groups.
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Figure 4. FT-IR absorbance spectra of precursors DGEBA and GlyPOSS, and initial D and D-P
formulations in the spectral ranges: (A) 4000–1900 cm−1 and (B) 2000–400 cm−1.

The FT-IR absorbance spectra obtained during the curing of D-P formulation with temperature
is evident from Figure 5 and, for comparison, for D formulation in Figure 6. The whole spectra are
shown in Figures S2 and S3 in Supporting Information. The spectrum recorded at 100 ◦C for D-P
formulation already showed a notable change (Figure 5). Specifically, the reactions between the opened
glycidoxy rings of DGEBA, GlyPOSS and primary and secondary amine groups of DICY started to
occur. The result was also the formation of hydroxyl groups [5,25], while the opening of glycidoxy
rings of DGEBA was indicated through the decrease in the intensity of the above-mentioned epoxy
stretching bands at 3056 and 915 cm−1. Regarding the low intensity of the 3056 cm−1 band, the 915 cm−1

band (Figure 5) remains the most appropriate one for the following of this curing reaction through a
calculation of its integral intensity [28]. The uncertainties can occur in the final curing stages when
the concentration of glycidoxy rings became very low [28]. As the reference band for normalization,
1509 cm−1 band of C–C stretching of the aromatic ring was taken.

The same trend, i.e., decrease in the intensity during curing (Figure 5), was observed for the
bands associated with amines of DICY in the spectral region 3430–3150 cm−1 (ν(NH2), ν(NH)) and
1650–1500 cm−1 (δ(NH)). According to the literature, cyano–CN groups (2208 and 2162 cm−1) can
also provide crosslinking at higher temperatures [31]. Such network crosslinking in the formulation
is evident from the appearance of the stretching ν(C–N) band at 1084 cm−1 at temperatures around
190 ◦C. Since this band is overlapped by ν(Si–O–Si) bands of silsesquioxane GlyPOSS in Figure 5, its
evolution can only be followed in the spectra of D formulation (Figure 6; Figure S3 in Supporting
Information). The curing process of D-P formulation was finished after 80 min at 200 ◦C (Figure 5).
The main characteristics of the FT-IR bands with curing were similar, in the case of D formulation
(Figure 6). The spectra revealed the decrease in intensity of epoxy, amino and cyano bands at 200 ◦C.
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As mentioned above, due to the absence of ν(Si–O–Si) bands, the increase in the intensity of stretching
ν(C–N) band can be observed (Figure 6B).

The spectra of D-P-accelerator formulations revealed similar features than the described D-P
one (Figure 5) due to the low concentration of accelerators. Consequently, the time-dependent FT-IR
spectra during thermal curing are not shown for the formulations with accelerators. Anyhow, the
influence of accelerators on the course of the curing reactions is shown through the presentation of the
integral intensity decrease in the 915 cm−1 band for either of the formulations (Figure 7). The curing
was performed up to either 120 or 150 ◦C, at which the process was followed for a certain period, before
the continuation with the temperature increase. The spectra of formulations without accelerators (D,
D-P) were only cured with the 150 ◦C temperature profile (Figure 7A).
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Figure 5. Time-dependent FT-IR absorbance spectra during the thermal curing process of formulation
D-P in the spectral ranges: (A) 4000–1900 cm−1 and (B) 2000–400 cm−1.

The curing of D and D-P formulations occurred quite gradually (Figure 7A). For D formulation
two slopes can be discerned. When GlyPOSS was added to the coating formulation (D-P), the integral
intensity of the 915 cm−1 band decreased slower during the initial 20 min, but then somewhat more
abruptly around 60 ◦C. After reaching the isothermal temperature of 150 ◦C, the initial increase in
slope is followed by some relaxation and then a steady decrease. The integral intensity approached
zero after ~2 h of isothermal treatment for either of formulations, D or D-P. The observed differences in
the intensity decrease reflect the composition of both formulations. The incorporation of GlyPOSS
molecules into the epoxy matrix of D-P formulation induced the sterical hindrances. Specifically,
such molecules are equipped with eight reactive groups extending into all directions. When only
DGEBA and DICY are the reactive species in the D formulation (Figure 6; Figure S3 in Supporting
Information), the formation of the epoxy matrix demands the approaching of the reactive amine groups
to glycidoxy rings. The addition of GlyPOSS with eight glycidoxy rings in the corners of the cube
silsesquioxane, however, enabled their bonding without any necessary preceding orientation of the
silsesquioxane. Consequently, the crosslinking occurred somewhat faster at certain temperatures,
which becomes apparent at 60 ◦C. After that temperature, the inclinations of the slopes are similar for
both formulations, i.e., D and D-P, throughout the whole isothermal treatment.
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Figure 6. Time-dependent FT-IR absorbance spectra during the thermal curing process of formulation
D in the spectral ranges: (A) 4000–1900 cm−1 and (B) 2000–400 cm−1.
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Figure 7. Time-dependent integral intensity changes in the characteristic epoxy band of 915 cm−1 with
thermal curing. The temperature profile that was followed with time is depicted, as well: (A) 150 ◦C
and (B) 120 ◦C.

The addition of accelerators to D-P formulation changed the course of the integral intensity curves
(Figure 7A). During the temperature increase up to 150 ◦C, the integral intensity of the 915 cm−1

band decreased quicker compared to that of the neat D-P formulation. Interestingly, the accelerators
BDMA and 2-MeIm behaved similarly. Such behavior was expected since at this temperature these two
accelerators are characterized as compounds that catalyze the opening of glycidoxy rings [32]. When
accelerator Curezol was added, the integral intensity decreased abruptly after reaching 130–140 ◦C
(after 30–40 min in Figure 7A). This is understandable since the Curezol—in addition to the opening of
the glycidoxy rings—can also contribute to the crosslinking reactions (post-curing) through primary
amino groups at the triazine ring (Figure 1E).

The inspection of the integral intensity behavior of the 915 cm−1 band during a 120 ◦C temperature
profile (Figure 7B) revealed the difference among both accelerators with the predominantly catalytic
activity. Initially, during heating to 120 ◦C (40 min in Figure 7B), the intensity decrease was similar for
BDMA and 2-MeIm accelerators. However, during isothermal treatment at 120 ◦C, the integral intensity
remained considerably constant when BDMA was added. It did not continue to decrease until 150 ◦C
(190 min) was reached, showing that BDMA possesses only the ring-opening properties. In contrast,
formulation with 2-MeIm showed a considerable decrease in the intensity of the 915 cm−1 band already
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during the isothermal treatment. The described discrepancy pointed out that the 2-MeIm as aromatic
amine is an epoxy ring-opener which can be after initiation ingrained in the polymer structure [31].
Curezol remained the quickest in its action that occurred through an opening of glycidoxy rings and
crosslinking up to 120 ◦C, while during isothermal treatment, it approached the intensity behavior of
formulation with 2-MeIm.

3.1.3. Rheological Characteristics

With the same aim, i.e., to investigate the influence of different accelerators on the curing of
D-P-based formulations, rheological characterization was made. Figure 8 shows the dynamic storage
modulus (G′) and loss modulus (G”) versus temperature during heating at a heating rate of 2 ◦C/min.
These rheograms confirm that curing processes are time- and temperature-dependent [18,29]. Although
the shapes of the curves obtained for elastic and viscous modulus are similar for all formulations, the
curing reactions start at considerably different temperatures (i.e., times). However, G′ or G” tend to
final values of the order of magnitude 3 × 105 Pa (G′) and 104 Pa (G”) for all formulations, respectively.
The evolution of the elastic G′ modulus, which is proportional to the rigidity of the cured epoxy,
indicate the formation of molecular networks through the formation of chemical bonds (crosslinking)
in the either of the investigated epoxy systems [29].

The curves of the basic formulation D (Figure 8, Table 2) reveal that up to approximately 154 ◦C
when the viscous modulus G” dominated the elastic G′ one, this epoxy system was in a viscous state
(G” > G′). This gradual increase in the G”, viscous modulus shows that the reaction processes have
already started in the formulation. The crosslinking, however, occurred at 66 min and the temperature
of 155 ◦C, when G′ equals G” (Table 2). Afterward, the gel state occurred, but the values of elastic and
viscous moduli continue to increase. The elastic G′ portion prevails the viscous G” one thereupon.
The final stage of the curing process is the formation of the plateaus for both G′ or G”, indicating the
cured epoxy system. The more significant is the difference between both moduli in the plateau region,
the stronger is the cured epoxy system (i.e., more rigid solid matter).

The processes that are described for the D formulation also occurred in other investigated systems
but at a different temperature-scale (Figure 8). In D-P formulation, the crosslinking happened already
after 62 min and the temperature of 146 ◦C (Table 2). Other characteristics of the curing processes
remained similar as for D formulation. However, the absolute value of elastic modulus G′ reached
higher values for the formulation with GlyPOSS compared to neat D formulation. This indicated that
more crosslinked and stiff structure formed when GlyPOSS with eight glycidoxy groups steaming
from the siloxane cube center was added.

The addition of any accelerator (BDMA, 2MeIm, Curezol) to D-P formulation contributed to even
faster crosslinking (~50 min) and at approximately 22 ◦C lower temperatures (Figure 8A, Table 2).
Differences among accelerators were small. Interestingly, the differences between plateau G′ and G”
values were similar for all three accelerators, but when BDMA was added, both plateau were shifted to
somewhat lower values. This indicates that the extent of the crosslinking of the internal matrix was
the lowest in the case of BDMA accelerator (as it did not take part in crosslinking), which is in the
correlation with FT-IR results (Figure 7B) as more or less sufficient crosslinking was achieved at 120 ◦C.
When 2-MeIm or Curezol were used, the achieved moduli G′ and G” were similar to the ones obtained
by D-P formulation, resulting in a similar crosslinking. These two accelerators could also collaborate
in crosslinking, they are not only epoxy ring-openers. BDMA only acts as the epoxy ring-opener.

As described above, rheology was used to check the influence of accelerators on the D-P system
(Figure 8A, Table 2). Besides, we evaluated their influence on sole D formulation (Figure 8B, Table 2).
At first glance, the temperature of crosslinking is quite similar for either of the D-accelerator formulations.
However, if an average value is calculated out of temperatures of crosslinking for formulations with
accelerators, the average temperature obtained for D-accelerator formulation is about 1 ◦C lower
(Table 2). This implements that accelerators can exert a slightly larger influence on D formulation
compared to D-P formulation. Such an effect can be understandable since the introduction of GlyPOSS
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brings about some sterical hindrances and tensions during the packaging of the compounds into the
crosslinked solid material.
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Figure 8. Rheological characterization formulations during thermal curing: (A) D-P-based and
(B) D-based formulations.

Table 2. Rheological characterization of D-P-accelerator formulations used for the preparation
of coatings.

Sample t 1

(min)
T 2

(◦C)
Taverage

3

(◦C)

D 66 155
D-BDMA 50 123
D-2MeIm 49 119 122
D-Curezol 51 125
D-P 62 146
D-P-BDMA 51 124
D-P-2MeIm 50 122 124
D-P-Curezol 51 125

1 t—time, at which G′ = G”; 2 T—temperature, at which G′ = G”; 3 Taverage—average temperature, at which G′ = G”
for all three formulations with accelerators.

The typical characteristics of the crosslinking processes in the investigated epoxy formulations
can also be viewed through the behavior of phase angle (Figure 9). This parameter is defined as a ratio
between the lost and the stored deformation energy, which means the ratio between the viscous and
the elastic contribution to the viscoelastic behavior. Namely, the proper balance between the viscous
and the elastic contribution in the viscoelastic formulation before the deposition of the coatings is of
particular importance when our aim is the deposition of the protective coatings with excellent barrier
properties [18,29].
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Specifically, the phase angle δ shows the time delay between the determined sinusoidal parameters
and the measured characteristics G′ and G”. These differences occur due to the viscosity changes of the
measured formulations. The values of phase angle are 45◦ to 90◦ for liquids, at δ = 45◦ crosslinking
occurs, while below 45◦ to 0◦ G′ dominates over G” indicating formation of solid materials. An ideal
elastic deformation would result in δ = 0◦, an ideal viscous deformation in δ = 90◦. These characteristics
can also be viewed from Figure 9. Namely, in the beginning, when formulations are in a liquid state,
but their viscosity increase, the values of phase angle are between 90◦ and 45◦. When crosslinking
occurs for G′ = G”, the phase angle equals 45◦. Then the decrease in the values of the phase angle
towards 0◦ indicates the solid-state of the measured material. In this range, the epoxy formulations
become highly crosslinked, molecules with larger and larger molar mass form, and their mobility is
significantly decreased. The rigidity of the material increase, but during all stiffening processes also
some reactive components may be present.

3.2. Characterstics of Protective Coatings

3.2.1. Surface Properties

Protective efficiency of coatings is usually affected also by their surface morphology, originating
from the intensity of the interface between the coating surface and the corrosive media. Consequently,
SEM analyses of the surface and cross-cut of D-P and D-P-BDMA coatings are shown in Figure 10.
The surface of the D-P coating (Figure 10A,B) reveals tiny inhomogeneities. On the contrary, the surface
of the coating with the BDMA accelerator (Figure 10C,D) shows the presence of some elevated particles,
but the surrounding surface is more homogeneous compared to the D-P coating. This tentatively
suggests that when the accelerator was added the surface became more homogeneous. Nevertheless,
some particle formation was observed also in this coating with the accelerator. The SEM of the cross-cut
examples showed a compact coating structure for either coating without or with accelerator which is a
prerequisite for sufficient protective efficiency (Figure 10E,F).
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Besides, AFM images were recorded for D, D-P and D-P-accelerator coatings (Figure S4 in
Supporting Information). The surface roughness is reported in Table 3. The AFM image of D coating
shows areas with spherical particles in the coating composition with the size of a few hundreds of
nanometers to the size of a micron. The measurements show random particle distribution. Moreover,
similar morphology with some spherical particles can be observed in the D-P coating (Figure S4).
Surface roughness values (SR), calculated from images demonstrate a considerably higher value for
the coating composed of D compared to the D-P coating.

Table 3. Morphological and electrochemical characterization of the protective coatings.

Protective
Coating

d 1

(µm)
SR 2

(nm)
Ecorr

3

(V)
jcorr

4

(A/cm2)
Protective
Coating

Ecorr
3

(V)
jcorr

4

(A/cm2)

D 1.2 426 −0.336 1.8 × 10−11

D-P 1.6 148 −0.549 2.8 × 10−11 D −0.336 1.8 × 10−11

D-P-BDMA 1.5 91 −0.695 9.4 × 10−12 D-BDMA −0.695 9.4 × 10−12

D-P-2MeIm 3.3 80 −0.138 2.6 × 10−12 D-2MeIm −0.138 2.6 × 10−12

D-P-Curezol 3.5 58 −0.721 1.7 × 10−11 D-Curezol −0.721 1.7 × 10−11

1 d—thickness; 2 SR—surface roughness; 3 Ecorr—corrosion potential; 4 jcorr—corrosion current density.

As already shown by SEM (Figure 10), the addition of accelerators causes a more uniform and
homogenous morphology of the coatings (Figure S4C–E in Supporting Information). As well, the
addition of accelerators decreased the average roughness values (Table 3), ranging from 91 nm for the
coating with BDMA to the smallest value of 58 nm obtained for the coating with Curezol (Figure S4C,E).
Such a difference can originate from added accelerators. Specifically, all three accelerators stimulate
the opening of the glycidoxy rings, which mitigated the reactions of crosslinking. Despite the reactions
start at lower temperatures in the presence of accelerators, the support in ring-opening enabled
more uniform crosslinking. Except in surface roughness, AFM images do not reveal any significant
differences among accelerators (Figure S4C–E). The eventual bonding of Curezol or 2-MeIm in the
epoxy coating does not influence their images.

3.2.2. Electrochemical Characteristics

Potentiodynamic polarization is a quick test of the protective efficiency of investigated coatings.
The test is relative and the measurements should be performed in the same way and conditions.
Figure 11 reports the potentiodynamic curves for D-P- and D-based coatings without and with
accelerators in comparison. The difference in the current density between the measurement of the
uncovered AA 2024 and the substrates covered with coatings reveals their protective efficiency. It is
obvious that the shape of the potentiodynamic curves obtained for either of the D-P-based coatings
shows its considerably improved performance with regard compared to D coating (Figure 11A). Even
when either of accelerators was added into the D formulation (D-accelerator coatings in Figure 11B),
the shape of the curves did not improve but resembled that of the D coating. Namely, the anodic
current density for the D and D-accelerator coatings increased significantly with the increase in the
potential. On the other hand, the current density of the D-P-based coatings remained low for all
examined potentials. This showed the excellent protective efficiency of the D-P and D-P-accelerator
coatings. Their compact structure (Figure 10E,F) prevents the formation of corrosion products at the
interface coating substrate.
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4. Summary and Conclusions

Epoxy coatings are known for their excellent protective efficiency in corrosion applications.
Mostly, increased protective efficiency can be achieved through the formation of advanced epoxy
nanocomposites [5–8]. The addition of suitable nanoparticles can result in improved temperature,
chemical, and electrochemical resistance. An important parameter for the formation of nanocomposite
materials is the appropriate incorporation of nanoparticles in the polymer matrix. Although in some
cases reinforcement can be achieved by the simple addition of nanoparticles, their eventual bonding
into the epoxy matrix can prevent leakage, migration, and agglomeration. Consequently, homoleptic
octaglycidyl-POSS was used in this study. Specifically, 20 wt.% of DGEBA precursor was exchanged
by GlyPOSS in reaction with DICY hardener. Three different accelerators that promote the opening of
the glycidoxy rings were also tested.

DSC (Figure 3), temperature-dependent FT-IR absorbance (Figures 4–7) and rheology (Figure 8)
measurements confirmed that the addition of accelerators induced the lowering of the temperature
at which the crosslinking processes occur. Such an effect is desired from the industrial viewpoint,
significantly simplifying the production procedures and reducing the production costs. DSC (Figure 3)
revealed a similar lowering of crosslinking temperature for 2-MeIm (131 ◦C) and Curezol (130 ◦C),
while somewhat lower peak temperature was obtained by BDMA (136 ◦C). Temperature-dependent
FT-IR absorbance measurements further differentiated among the accelerators. When isothermal
treatment was performed at 150 ◦C (Figure 7A), the Curezol was the quickest in its action. BDMA
was found the slowest during isothermal treatment at 120 ◦C (Figure 7B). Rheologically, the lower
plateau values of elastic G′ and viscous G” moduli for D-P-BDMA formulation showed that the BDMA
accelerator, as it did not take part in crosslinking, led to less strong internal structure compared to
2-MeIm and Curezol (Figure 8). Temperatures at which G′ = G” were similar for all three accelerators,
although slightly lower (122 ◦C) when accelerator 2-MeIm was used. The described findings reflect
the basic characteristics of the chosen accelerators. According to their structure, all three accelerators
function as glycidoxy ring openers. However, Curezol can also contribute to crosslinking processes
via primary amino groups on the triazine ring and 2-MeIm via aromatic secondary amine. These
differences in the structures of accelerators reflect in the crosslinking behavior of the D-P-based
formulations. All three applied measurement techniques differentiate BDMA accelerator from 2-MeIm
and Curezol ones. The double function of the latter two, being openers for the glycidoxy rings and
their possibility to collaborate in the crosslinking, prevented any final decision on the superior action of
either of them. Interestingly, the rheological time sweep experiments performed to determine gel time
(G′ = G”) based on viscoelastic parameters showed even its decrease when 1-benzyl-2-methylimidazole
catalyst was added to DGEBA/triethylene-tetraamine formulation [29]. The G′ and G” crossovers were
determined isothermally at five different temperatures from 60 to 100 ◦C and only in case of some
diluted formulations an accelerative effect of the catalyst was noted. This pointed to the importance of
the presence of aromatic secondary amine in the structure of 2-MeIm (Figure 1). Anyhow, the slight
differences in our DSC (Figure 3), FT-IR absorbance (Figures 4–7) and rheology (Figure 8) measurements
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do not allow the decision on the preference. The preference may, however, be set via experimental
demands. Namely, while the admixture of BDMA or 2-MeIm is straightforward, the addition of
Curezol might occasionally result in the formation of an opaque formulation. This is a consequence of
the low solubility of Curezol in organic solvents and water.

The surface roughness values obtained from AFM (Figure S4 in Supporting Information) showed
distinct changes among the surfaces. When accelerators were not applied, i.e., neat D and D-P
coatings, the surfaces revealed the presence of spherical particles and inhomogeneities in AFM images.
The addition of either of accelerators resulted in lower values of the surface roughness (Table 3).
SEM micrographs (Figure 10) confirmed the rougher surface of the D-P coating concerning the
D-P-BDMA coating with the BDMA accelerator. It is worth mentioning, that also the coating with
BDMA contained certain elevated areas, but the surrounding surface was much flatter and more
homogeneous (Figure 10C,D). The SEM measurements of the cross-cut samples (Figure 10E,F) revealed
the compact inner structures of D-P and D-P-BDMA coatings. Such a compact structure also resulted
in the extremely good protective efficiency of D-P and D-P-accelerator coatings with regard to the neat
D coating (Figure 11).

In conclusion, we can say that the time-dependent FT-IR absorbance measurements showed
that partial exchange of DGEBA with GlyPOSS resulted in curing at a somewhat lower temperature.
The reason probably lies in the eight glycidoxy groups that are positioned in the corners of this
homoleptic cube-shaped GlyPOSS. The further lowering of the temperature of curing was achieved
by the addition of various accelerators. It was found that the action of the accelerators considerably
depends on their structure. Although all three accelerators are capable of the opening of glycidoxy
rings, only Curezol and 2-MeIm can collaborate in crosslinking reactions. Specifically, Curezol can
bind via two primary amino groups and 2-MeIm through aromatic secondary amine. Potentiodynamic
polarization tests showed that all coatings comprising GlyPOSS show better protective efficiency
compared to neat DGEBA/DICY (D) coatings. Consequently, our material is a promising candidate for
a wide range of applications, such as coatings for food cans, white goods, etc.
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Figure S1: FT-IR absorbance spectra of precursors DGEBA and GlyPOSS, and initial D and D-P formulations,
Figure S2: Time-dependent FT-IR absorbance spectra during the thermal curing process of D-P formulation,
Figure S3: Time-dependent FT-IR absorbance spectra during the thermal curing process of D formulation, Figure S4:
AFM images of protective coatings: (A) D, (B) D-P, (C) D-P-BDMA, (D) D-P-2MeIm, (E) D-P-Curezol.
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