
fnins-13-01120 November 7, 2019 Time: 16:37 # 1

ORIGINAL RESEARCH
published: 08 November 2019

doi: 10.3389/fnins.2019.01120

Edited by:
Stefano Brivio,

Institute for Microelectronics
and Microsystems (CNR), Italy

Reviewed by:
Keum-Shik Hong,

Pusan National University,
South Korea

Guoqi Li,
Tsinghua University, China

*Correspondence:
Jun Li

jun.li@coer-scnu.org
Jie Yu

jieyu@shu.edu.cn

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 19 June 2019
Accepted: 03 October 2019

Published: 08 November 2019

Citation:
Xu L, Geng X, He X, Li J and Yu J

(2019) Prediction in Autism by Deep
Learning Short-Time Spontaneous

Hemodynamic Fluctuations.
Front. Neurosci. 13:1120.

doi: 10.3389/fnins.2019.01120

Prediction in Autism by Deep
Learning Short-Time Spontaneous
Hemodynamic Fluctuations
Lingyu Xu1,2, Xiulin Geng2, Xiaoyu He2, Jun Li3,4* and Jie Yu2*

1 Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China, 2 School
of Computer Engineering and Science, Shanghai University, Shanghai, China, 3 Guangdong Provincial Key Laboratory of
Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal
University, Guangzhou, China, 4 Key Lab for Behavioral Economic Science & Technology, South China Normal University,
Guangzhou, China

This study aims to explore the possibility of using a multilayer artificial neural network
for the classification between children with autism spectrum disorder (ASD) and typically
developing (TD) children based on short-time spontaneous hemodynamic fluctuations.
Spontaneous hemodynamic fluctuations were collected by a functional near-infrared
spectroscopy setup from bilateral inferior frontal gyrus and temporal cortex in 25
children with ASD and 22 TD children. To perform feature extraction and classification,
a multilayer neural network called CGRNN was used which combined a convolution
neural network (CNN) and a gate recurrent unit (GRU), since CGRNN has a strong
ability in finding characteristic features and acquiring intrinsic relationship in time series.
For the training and predicting, short-time (7 s) time-series raw functional near-infrared
spectroscopy (fNIRS) signals were used as the input of the network. To avoid the
over-fitting problem and effectively extract useful differentiation features from a sample
with a very limited size (e.g., 25 ASDs and 22 TDs), a sliding window approach was
utilized in which the initially recorded long-time (e.g., 480 s) time-series was divided
into many partially overlapped short-time (7 s) sequences. By using this combined
deep-learning network, a high accurate classification between ASD and TD could be
achieved even with a single optical channel, e.g., 92.2% accuracy, 85.0% sensitivity,
and 99.4% specificity. This result implies that the multilayer neural network CGRNN can
identify characteristic features associated with ASD even in a short-time spontaneous
hemodynamic fluctuation from a single optical channel, and second, the CGRNN can
provide highly accurate prediction in ASD.

Keywords: ASD, fNIRS, neural network, time series, CGRNN model

INTRODUCTION

Autism spectrum disorder (ASD) refers to a group of neurodevelopmental disorders, including
autism and Asperger’s syndrome (AS). The current diagnostic criteria for ASD focus on two
core symptoms: social communication impairment, restricted interests, and repetitive behaviors
(Sharma et al., 2018). Due to the complexity and diversity of ASD, it often takes a long time from
detection of the behavioral signs to the definitive diagnosis, which inevitably leads to the lagging
of necessary treatment or intervention. In recent years, the ASD prevalence is increasing rapidly
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(e.g., 1 in 59, with the prevalence of 4:1 male to females), therefore
the study in ASD has drawn significant attention to the public
(Christensen et al., 2016). To overcome the drawback that the
diagnosis of ASD relies on behavioral observation solely, a variety
of studies have been performed, including those brain imaging
studies to find characteristics associated with this disorder.
On the other hand, with the advance of machine learning,
in particular, deep-learning artificial neural network, it may
become possible for neurologists to use these machine-learning
algorithms to analyze the brain image data collected from ASD
and perform image-based early diagnosis of ASD. In addition to
this, machine-learning may also play a promising role in ASD
intervention, for instance, using personalized intelligent robots to
interact with ASD individuals to improve their behaviors (Amaral
et al., 2017; Rudovic et al., 2018).

A large variety of brain image studies have demonstrated
functional and structural abnormalities in brains of ASD.
For example, magnetic resonance imaging (MRI) studies have
uncovered that individuals with ASD present an aberrant age-
related brain growth trajectory in the frontal area (Elizabeth
and Eric, 2005; Lainhart, 2010; Courchesne et al., 2011), which
strongly suggests that functional brain measurement at young
ages is crucial for revealing ongoing abnormalities in ASD.
Libero et al. (2015) utilized multimodal brain imaging modalities
[structural MRI, diffusion tensor imaging (DTI), and hydrogen
proton magnetic resonance spectrum (1H-MRS)] to investigate
neural structure in the same group of individuals (19 adults with
ASD and 18 adults with TD) and used the decision tree with
fractional anisotropy (FA), radial diffusivity (RD), and cortical
thickness as features to perform classification between ASD
and TD. This combination method overcomes the discrepancy
problem arising from using each imaging method separately
(Libero et al., 2015). Some functional brain studies have shown
atypical brain activation in response to various cognitive tasks
or decreased resting-state functional connectivity (RSFC). These
characteristics could also be used for differentiating between
individuals with ASD and TD individuals (Kaiser and Pelphrey,
2012; Murdaugh et al., 2012; Deshpande et al., 2013). For
example, Iidaka calculated the correlation matrix of resting-state
functional magnetic resonance imaging (RS-fMRI) time series
and then sent the matrix as input to a probabilistic neural
network (PNN) for the classification, which demonstrated that
the inherent connection matrix generated by RS-fMRI data might
serve as biomarkers for predicting ASD (Iidaka, 2015).

Functional near-infrared spectroscopy (fNIRS) as an optical
brain imaging modality utilizing near-infrared light to probe
human brain functional activity, is advancing rapidly in
techniques and applications. Hong et al. (2018) investigated
a brain-computer interface framework for hybrid fNIRS and
electroencephalography (EEG) for locked-in syndrome (LIS)
patients, and found that the prefrontal cortex is identified as
a suitable brain region for imaging. They also studied hybrid
fNIRS and EEG for early detection of hemodynamic responses
(Hong and Khan, 2017; Khan et al., 2018). Furthermore, they
developed a new vector phase diagram to differentiate the initial
dip phase and the delayed hemodynamic response (HR) phase
of oxy-hemoglobin changes (1HbO) (Zafar and Hong, 2018).

Very recently fNIRS was also adopted in the investigation
of atypical brain activity associated with ASD (Adelina and
Bravo, 2011; Jung et al., 2016; Li and Yu, 2018). For instance,
Mitsuru et al. measured brain hemodynamic fluctuations of
bilateral Brodmann area 10 (BA10) in 3- to 7-year-old ASD
and TD children under conscious conditions. They found that
slow hemodynamic fluctuations showed abnormal functional
connections in ASD (Mitsuru et al., 2013).

Thus far, most of the classifications between ASD patients and
normal controls depend on prior characteristic features extracted
empirically from brain images. However, due to the complexity
and limited knowledge about the pathogenic mechanism of ASD,
the hidden factors associated with ASD, which can be used for
accurate differentiation between ASD and normal controls, are
not easy to be observed and identified merely through reading the
brain images. Since the deep-learning artificial neural network
is a data-driven method, has the ability to find characteristics
hidden in the complete data set. We hypothesize that deep-
leaning model might be used for the prediction of ASD through
brain images, in particular, our fNIRS data collected from
children with ASD, though deep learning based approaches have
not been well studied (Ilias et al., 2016; Dvornek et al., 2017;
Chiarelli et al., 2018).

On the other hand, a critical challenge for acquiring
brain images of most of brain imaging modalities such
as MRI/functional magnetic resonance imaging (fMRI),
magnetoencephalography (MEG), single photon emission
computed tomography (SPECT) and positron emission
tomography (PET), et al. is that the subject has to be strictly still
during image acquisition that could last 5–10 min or longer.
It is not an easy task for conscious (not sedated) children, in
particular children with ASD. Therefore if the characteristics of
ASD can extract from brain images collected in a short time, it
is of great practical significance for brain imaging study in ASD.
Even though EEG and fNIRS are not as sensitive to motion as
those imaging techniques mentioned above, the artifact caused
by head movement still can deteriorate the time-series signals,
resulting in an inaccurate result. Thus we aim at two goals in
this study: (1) exploring the possibility of using a deep-learning
neural network to extract features associated with ASD from
fNIRS signals; and (2) using a short-time (e.g., 7 s) fNIRS
time series to perform accurate classification between ASD
and TD children.

To test our hypothesis and realize the goals, we collected
approximate 8-minute spontaneous hemodynamic fluctuations
from the bilateral inferior frontal gyrus and temporal lobe
by an fNIRS setup in 25 children with ASD and 22 TD
children. To analyze the fNIRS data [i.e., time-series of
oxygenated hemoglobin (HbO2), deoxygenated hemoglobin
(Hb), and total hemoglobin (HbT = HbO2 + Hb)], we
designed a multilayer neural network consisting of CNN and
GRU as a combined unit (called CGRNN) for learning and
predicting ASD. The CGRNN is powerful in recognizing
characteristic features, identifying the relationship among data
in the sequence, and has low computation cost. To test
the possibility of using short-time spontaneous hemodynamic
fluctuations for the differentiation between ASD and TD,
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we segregated the long-time (i.e., 8 min) data sequence
into many overlapped short-time (i.e., 7 s) sub-sequences,
and then sent them as the input to the CGRNN for the
training and classification. The result demonstrated that even
using the short-time hemodynamic fluctuation from a single
optical channel, we could achieve a rather high accurate
classification with 92.2% accuracy, 85.0% sensitivity, and
99.4% specificity. Receiver operating characteristic curve (ROC)
Curves also showed that the performance of CGRNN for
the classification between ASD and TD is better than GRU,
CNN, and Long Short-Term Memory (LSTM) model, implying
that CGRNN is a suitable deep-learning neural network for
predicting ASD by using spontaneous hemodynamic fluctuations
recorded by fNIRS.

MATERIALS AND METHODS

fNIRS Data Collection
In this study, we used a continuous wave fNIRS system
(FOIRE-3000, Shimadzu Corporation, Tokyo, Japan) to record
spontaneous hemodynamic fluctuations. fNIRS uses near-
infrared light to probe brain activity in terms of HbO2 and Hb.
As an optical imaging modality, fNIRS is relatively low cost,
portability, safety, low noise (compared to fMRI), and easiness to
use. Unless EEG and MEG, its data are not much susceptible to
electrical noise. At the same time, it can measure the blood flow
changes in the local capillary network caused by neuron firings
(Naseer and Hong, 2015). FOIRE-3000 has 16 light sources and
16 detectors. Each light source emits three different wavelengths
(780, 805, and 830 nm) near-infrared light in an alternating way.
The back reflected light which has passed through the cortex
is received by neighboring light detectors. Each source-detector
(SD) pair forms a detection channel with a fixed SD distance
of 3.0 cm. The fNIRS is used to measures the change in light
intensity of the three wavelengths, which is converted to the
concentration change in hemoglobin (e.g., HbO2, Hb, and HbT)
by the modified Beer-Lambert law. Neural activity can induce a
change in hemoglobin concentration in the local region of the
cortex through the neurovascular coupling, which is the basic
principle of fNIRS (and fMRI).

Twenty-five children with ASD and twenty-two TD children
with an average age of 9.3 (±1.4) and 9.5 (±1.6) respectively were
recruited in this study. They were all right-handed. Among them,
the ASD group consisted of eighteen boys and seven girls. The
TD group included eighteen boys and four girls. Experienced
clinicians diagnosed all ASD patients in hospitals. Before fNIRS
data collection, each subject was informed about the experimental
protocol and written informed consent was obtained from his/her
parents. During the data collection, the subject sat in a dark,
quiet room with their eyes closed and tried to stay still. The
spontaneous (or resting-state) hemodynamic fluctuations were
recorded from the bilateral inferior frontal and temporal regions
on each subject. The experimental protocol is following the
ethical standards of the Academic Ethics Committee of South
China Normal University (Zhu et al., 2014). It meets the Helsinki
Declaration (Inc, 2009).

Figure 1A represents the location of fNIRS measurement
channels. Yellow circles indicate light sources and green circles
represent light detectors. The number (1–44) in the white square
is the number for the channel (each channel consists of a pair
of a light source and light detector). Figure 1B displays the
location of each channel on the brain cortices. The probing area
included the bilateral inferior frontal gyrus (1–10 for the left
and 23–32 for the right) and bilateral temporal lobe (11–22 for
the left and 33–44 for the right). In locating channel positions,
the international 10–10 system for EEG was referenced. For
each subject approximate 8-minute spontaneous hemodynamic
fluctuations were recorded with∼70 millisecond time resolution,
corresponding to a sampling rate of 14.29 Hz.

Data Analysis
Data Processing Flow
Figure 2 gives an overview of our data processing flow. The
flow divides into two parts. The first part is to increase the
sample data for the problem of the small amount of original
hemoglobin data. We use the fNIRS time series data as input, and
traverse the ASD and TD raw hemoglobin data in the form of
sliding window. Each data set can be transformed into a series
of continuous and partially overlapping sub-sequence. Each sub-
sequence is the data within a labeled sliding window. Hence, the
expansion of the small sample data set is performed. The second
part, we propose a multilayer neural network, CGRNN model,
which combines CNN and GRU, and demonstrate its utility on
the accurate classification between ASD and TD with a short-
time fNIRS time series. The function in each part of the model
is listed below:

(1) The first part of the model uses three-layer CNN to
complete the local mode recognition of fNIRS time
series. CNN can extract local sub-sequence from the
input sequence. Its primary process is to perform the
equivalent input transformation on each sub-sequence.
So the pattern learned from a specific position of the
series can be recognized at any other place later. Thus we
can complete the identification of the regional pattern of
the sequence and strengthen the generalization ability of
feature recognition.

(2) The second part of the model adds the max-pooling layer
to prevent over-fitting. Max-pooling layer compresses the
data in the form of down-sampling to reduce the parameter
information and avoids over-fitting. Moreover, it extracts
the maximal value of the feature sequence and further
excavates the intrinsic characteristics of data.

(3) The third part of the model utilizes GRU to enhance time
series association. We make the feature sequences extract
by max-pooling as an input of the GRU. The GRU layer
is presented in Figure 2. The reset gate (Rt) and the
update gate (Zt) in the GRU are used to capture short-term
and long-term dependencies in the sequence. Therefore,
GRU can remember the features in the order of time and
infer results from features, which serve to strengthen the
correlation of series.
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FIGURE 1 | The source-detector configuration where the yellow circles indicate the sources, the green circles indicate the detectors, and the white square between
a source and a detector is a channel (A). Location of fNIRS measurement channels over the inferior frontal and temporal cortex (B).

FIGURE 2 | The process of the time-series data.
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(4) The fourth part is the construction of classifier. The
distributed feature learned by the full connection layer
maps to the sample tag space.

Expansion of Small Sample
Because of the less number of fNIRS time series, over-fitting is
easy to occur in the training of CGRNN model. Thus we expand
the data set in the form of setting the sliding window and excavate
the distinctive features of the small sample data set further, which
maximize the predictive ability of the CGRNN. More specifically,
the time-series of one attribute define as “m” in one channel
hemoglobin data. One uses a sliding window with step “s” and
width “w” (s < < w) to divide the time series, and obtains
N = ł(m−w + s)/sł (m > > w) sub-sequences of length w where
the symbol “łł” represents the rounding toward minus infinity.
Finally, m divides into N overlapping sub-sequences. And the set
of sub-sequence is T. There are T = {T1, T2,.. TN}. If the original
information is ASD, the sub-sequence collection label is 1. If the
original data is TD, the sub-sequence set label is 0. The process of
sliding window is shown in Figure 3.

CGRNN Model
The CGRNN model is proposed by a combination of CNN and
GRU. Among them, CNN is responsible for the identification
of the local mode of the original hemoglobin time series,
which uses its translation invariant property to extract subtle
but distinct features from fNIRS signals, distinguishing the
heterogeneity characteristics of ASD from TD in various feature
combinations. We use CNN to improve the CGRNN prediction
ability. Specifically, first of all, to learn the spatial hierarchies
of hemoglobin, the original data is converted into the three-
dimensional tensor (samples, time, feature). Then the three-
dimensional tensors are put into CNN part for training.
CNN uses the convolution kernel to perform the same input
transformation for the input data. Local sub-sequences can
be extracted from the entire sequence. Patterns learned from
one location in the series can be identified at any other
location afterward.

Our network uses three convolution layers to introduce
the special hierarchical structure of the space filter by making
the continuous convolution layer window grow larger. Further,

FIGURE 3 | The set of the sliding window (w) and step size (s).

Rectified Linear Unit (RELU) has the function of making
some neurons lose activity and reducing the complexity of
network structure. Hence, each layer of CNN aggregates a
RELU. Finally, the max-pooling layer is utilized to reduce the
occurrence of over-fitting further and extract the maximum value
of distinctive features by down-sampling. In other word, the
data are compressed to reduce the parameter information and
excavate the useful information further.

The original time series is prone to gradient disappearance
in the course of CNN training, which results in the invalid
training. So we use GRU behind the max-pooling layer to
solve this problem. GRU network model is a sequence structure
that prevents the gradual disappearance of early information
by carrying information across multiple time steps. It mainly
contains two gate functions (reset gate and update gate). The reset
gate and the update gate are utilized to capture the short-term
and long-term dependence in the sequence, respectively. GRU
remembers the features in the order of time and infers results
from features, which serves to strengthen the correlation of series.
The specific calculation formula is as follows:

Zt = σ
(
Wz •

[
ht−1, xt

])
(1)

rt = σ
(
Wr •

[
ht−1, xt

])
(2)

Where ht−1 is the hidden state at time t–1, xtis input. W stands
for weight. Zt represents the update gate, which determines
how much previous information is retained. rt stands for the
reset gate. It provides a mechanism to discard past implicit
states that have nothing to do with the future, i.e., reset gate
determines how much past information has been forgotten. The
activation function of both gates is the sigmoid function with a
range of {0, 1}.

h̃t = tanh
(
W •

[
rt ∗ ht−1, xt

])
(3)

ht= (1− zt) ∗ ht−1 + zt ∗ h̃t (4)

h̃t denotes candidate hidden state. It uses the reset gate to
control the inflow of the last hidden state that contains the past
information. If the reset gate is approximately 0, the previous
implicit state will discard.

ht is the hidden state at time t, which uses update gate Zt
to update the last hidden state ht−1 and candidate hidden state
h̃t. Update gate controls the important degree of the implicit
state of the past at the current moment. If the update gate is
approximately 1, the former implicit state will be saved and
passed to the present moment.

This design can deal with the gradient attenuation of CNN
and capture the widely spaced dependencies in time-series better.
Finally, CGRNN model builds a classifier in the form of adding
a full connection layer on the end of GRU. The distributed
feature of learned by the full-connection layer maps to the
sample tag space. The CGRNN flow is illustrated in Figure 4.
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FIGURE 4 | CGRNN flow.

RESULTS

Analysis of Different Channels
To prevent training samples too few to fitting, we adjusted the
experimental parameters and divided the data by the sliding
window of 100 and step of 50 finally, i.e., considered 7-second
data as a sub-sequence. Each sub-sequence corresponded to a
specific label. Then we converted the processed data into the
three-dimensional tensor (3552, 100, and 1) for the input. We
used the data of 28 people to train model. Most of people were
divided into 136 sub-sequences. But for a few people the number
of sub-sequences was less than 136 because of the recording time
was shorter than 8 min (e.g., some children could not tolerate
8-minute measurement, so we had to stop fNIRS recording
early). So the final sample size was 3552. Our CGRNN network
used three convolution layers. The three convolution layers,
respectively had 32, 64, and 128 filters, their kernel_sizes were all
five. In each convolution layer, the filter transforms the matrix
of a child node in the current layer into the matrix of a unit
node in the next layer. The node matrix processed by the filter
is determined by the filter size, namely kernel_size. Among of
them, the filter slides at regular intervals on the neural network
matrix of the current layer and does dot product. In other words,
the element of the filter at each position are multiplied by the
corresponding element of the input sample and we add up the
overall result. We assume that the input sample is [a, b, c, d],
and one of the filters is [2, 3], the interval is 1. Then we can get
[a × 2 + b × 3, b × 2 + c × 3, c × 2 + d × 3] through the
calculation of dot product. The result is called feature map, and
the number of feature map is the same as the number of filters.
For example, the first convolution layer uses 32 filters, 32 filter
maps are obtained after convolution calculation and serve as the
input of the second convolution layer.

The input of GRU includes the input sample at current time
and the hidden state of the previous sample. The hidden state
of the previous time and the current time is multiplied by the
weight matrix. Then the added data are sent to the update gate,
that is, multiply by the sigmoid function. Therefore, the update
gate determines how much previous information and current
information is retained. The operation of reset gate is similar
to update gate. However, the weight matrix of the reset gate
is different from that of the update date because the reset gate
determines how much past information has been forgotten it.
So GRU not only capture the short-term dependence, but also
capture the long-term dependence in the sequence. Furthermore,
the CGRNN model were trained using the RELU active function,
the binary_cross-entropy loss function, and the Adam optimizer
with the default parameter values. The dropout rate during
training was fixed to 0.5. Learning rate was 0.01. Models were
initialized using default settings. The output were 128 filters, each
filter was an 88 dimensional vector. Then, the hemoglobin data
were divided into three parts: training set, validation set, and test
set. Their proportion is 3:1:1. We trained the CGRNN in the
training set, evaluated the generalization ability of the model in
the verification set, and saved the optimal model with the smallest
loss function. Finally, the model was tested on the test set.

To evaluate the performance of CGRNN classifier, this
study applies sensitivity, specificity, and accuracy to the test
results of CGRNN classifier (Cheng et al., 2019). Among them,
ASD calls positive class, TD calls negative class. Sensitivity
means the proportion of actual positives that are correctly
classified in all positives. Specificity is the proportion of actual
negatives that are correctly identified in all negatives. Accuracy
defines the percentage of correct diagnoses among all diagnoses.
More specifically, we consider testing every 7-second data of
one attribute with a single-channel. There are 44 channels
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for each person’s data in the test set. Each channel consists
of three attributes (HbO2, Hb, and HbT). Each attribute
divides into sub-sequences in the form of the sliding window.
Every sub-sequence of 7 s tests its sensitivity, specificity, and
accuracy. Finally, the average of sub-sequences denotes the final
sensitivity, specificity, and accuracy. The test results are presented
in Figures 5, 6.

The hemodynamic activity recorded from the bilateral inferior
frontal and temporal lobes vary significantly, which may imply
that not every location (or channel) is closely associated with
ASD, or sensitive enough for the discrimination, so it is not
necessary to achieve good accuracy for the classification in
every channel. If the characteristics of ASD can extract from
brain images collected in few channels (which might be closely
associated with ASD), it is of great practical significance for brain
imaging study in ASD.

Figure 5 shows that CGRNN classifier performs well on
HbO2, Hb, and HbT. Although the classification results of
different channels under the same attribute are quite different,
some channel classification effects are significant. Therefore,
CGRNN classifier perform an accurate distinction between ASD
and TD children. Moreover, though HbT is the sum of HbO2 and
Hb, it may provide richer discriminative information than HbO2
and Hb. For instance, the accuracy of HbO2, Hb, HbT in channel
three are 76.8, 64.4, and 88.7%, respectively.

Accuracy represents the overall diagnostic accuracy of ASD
and TD. Hence, Figure 6 sorts the accuracy from large to
small and shows the top ten channels with their corresponding

attributes. The classification effect is evaluated by accuracy,
as shown in Figure 6. The first is the Hb of channel 10:
92.2% accuracy, 85.0% sensitivity, and 99.4% specificity. The
second is the HbO2 of channel 43: 90.8% accuracy, 87.9%
sensitivity, and 93.8% specificity. The third is the HbT of channel
25: 90.0% accuracy, 81.6% sensitivity, and 98.5% specificity.
Most of the functional imaging modalities such as fMRI,
MEG, and SPECT, et al., is that the imaging data usually
requires recording and analyzing for several minutes. However,
the CGRNN model proposed in this paper performs better
classification effect by using only 7-second data and has practical
application value.

Classification Effect of CGRNN
Moreover, to visualize the classification performance of the
CGRNN model further, we randomly select four pairs of ASD
and TD children to display the results of the test data. To expand
the number of test samples and make the predictive result more
accurate, we splice together the data from the same column.
Specifically, for each people, we splice 6,859 rows of one column
data into 13,718 rows of one column data. Then the time series
for most of people is divided into 273 sub-sequences by using
a sliding window with a width of 100, and a step of 50. The
predictive result for each sub-sequence is displayed in Figure 7A.
The average of the accuracy is shown in Figure 7B.

The classification effect of ASD and TD children is illustrated
in Figures 7A,B. Figure 7A is the real distribution of test
data. The X-axis represents the randomly selected four pairs

FIGURE 5 | (A–C) Show the prediction of 44 channels in HbO2, Hb, and HbT three attributes.
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FIGURE 6 | The display diagram of the top 10 channels with corresponding properties that have the best classification effect. Ten sets of data are sorted from large
to small by accuracy.

FIGURE 7 | CGRNN classification effect. (A) The predictive distribution of test data. (B) The accuracy of sequences diagnosis.

of people in the test set. Each pair consists of an ASD child
and a TD child. ASD children express by blue, and TD
children express by pink. Y-axis represents a collection of sub-
sequences. Z-axis represents the predicted value of CGRNN
model. Predictive values range from 0 to 1. The predictive
value of TD children is less than 0.5 for accurate forecasting,
and the predicted value of ASD is more than 0.5 for precise
prediction. Predicted values of ASD data are represented by
“o.” The Others are represented by “∗.” Figure 7B shows the
diagnostic accuracy of sub-sequences. The X-axis represents the
four pairs of people randomly selected in the test set. The Y-axis
is the percentage of correctly diagnosed sub-sequences in the
whole sequences.

We can see that the predictive values of ASD are basically
between 0.5 and 1.0 from Figure 7A. Most of the predicted
values of TD concentrate in the vicinity of zero. So there are
four clear lines on the Y-axis, and these are stacked by “∗.”
In other words, most of the TD test results are correct. As
shown in Figure 7B, the average predictive value of ASD children
greater than 0.5 is 89% and the average predictive value of TD
children less than 0.5 is 98%. Because each sub-sequence is a
7-second fNIRS time series, we can assume that the recognition
accuracy of 7 s of ASD data is 89%, and the recognition accuracy

of 7 s of TD data is 98%. Therefore, the CGRNN model
can effectively distinguish between ASD and TD children in a
short time (7 s).

Since our model is the first ASD classification using
a single channel of fNIRS time series data that employs
neural network model, there are no canonical comparison
partners. We thus compared our model with some widely used
traditional classification algorithms such as Logistic Regression
(LR), k-Nearest Neighbor (KNN), Random Forest (RF), and
Support Vector Machine (SVM) classification methods. LR
is a generalized linear regression analysis model, it is often
used in the binary classification of disease diagnosis. KNN
is a well-known machine learning classification algorithm, it
determines the category of the sample to be divided according
to the category of the nearest sample or samples. RF is a
classifier that uses multiple trees to train and predict samples,
its classification performance is much better than LR and KNN
algorithm. With limited sample size, SVM has stronger ability
of generalization in comparison with other existing machine
learning algorithms. Firstly, we divided data set in the form of
the sliding window (w = 100, s = 50), the input to these models
were two-dimension data (the number of samples, window_size).
Then we used GridSearchCV to tune hyper parameter and
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made feature engineering. By contrast, the CGRNN model
outperformed the other four traditional models as shown
in Table 1.

DISCUSSION

ROC Comparison Under Different Neural
Network Models
For further determining the efficiency of our model, we
respectively, applied CNN, LSTM, and GRU to the classification
between the children with ASD and TD children based on
short-time spontaneous hemodynamic fluctuations. CNN is a
feedforward neural network, it not only plays an important
role in computer vision tasks, but also has an impact on
the time-series analysis. CNN can extract features from local
time-series data by using convolution, modularize represented
information, utilize data more efficiently. LSTM can overcome
the limitation of vanishing gradient in time-series analysis of
RNN, thus can capture long-term dependence in time sequential
learning. Compared with LSTM, GRU has one less gating unit,
which leads to fewer parameters and easy convergence, its
computation cost is lower. In these neural network models, the
same input data sets as in the CGRNN model were used. The best
parameters for each model was selected by validation. We tested
the accuracy of each model in 44 channels, and displayed the
results in Figure 8. The red dot shown the four neural network
models (CNN, LSTM, and GRU) also have good performance in
the classification for channel 10.

Then we further used ROC to aggregate characteristics of
“True Positive Rate” (TPR) and “False Positive Rate” (FPR) and
evaluate CGRNN model classification by comparing with ROC
curves of different models. TPR represents the proportion of
true positives that are correctly classified in all true positives.
FPR denotes the percentage of false positives that are correctly
classified in all false positives. Empirical ROC curve takes TPR
and FPR as ordinate and abscissa, respectively. The TPR and FPR
points show different diagnostic locations. These are connected
to compose ROC curves. Without considering the effect of
misdiagnosis and missed diagnosis, we make the diagnosis
point closest to the top left corner (0, 1) as the cut-off point
(Fawcett, 2005).

Figure 9 showed the comparison of ROC curves of
different models. Since hemoglobin data of channel 10 had
the best-classified effect, we selected channel 10 to respectively,
verify the ASD classified effect of CGRNN, GRU, CNN, LSTM
four different neural network models. Each test selected three
thresholds, i.e., max value, min value, and mid-value. Each
threshold corresponded to a point (FPR, TPR). All coordinate
points were connected to draw the ROC curve these points were
used to identify different algorithm performance visually.

TABLE 1 | Accuracy of different classification models.

Model LR KNN RF SVM CGRNN

Accuracy 61.5% 65.0% 80.2% 81.2% 92.2%

FIGURE 8 | The performance of 44 channels.

FIGURE 9 | ROC comparison for different models.

CGRNN model was closest to the upper left corner in the ROC
curve, so it had the best classification effect. The second was the
CNN model, which was helpful to extract hemoglobin features.
The third was the GRU model, which cannot play a useful
role in classification. Finally, the LSTM model had the worst
classification effect. Besides, we compared the area (AUC) under
the ROC curve of each model. AUC is a comprehensive measure
of all possible classification effect. It regards as the probability that
the model randomly arranges the positive sample above negative
sample. Generally speaking, the larger the AUC value is, the better
the classification effect is (Fawcett, 2005). The comparison shown
that the AUC of GRU algorithm was the largest. Therefore, the
diagnosis of CGRNN algorithm is the most valuable.
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FIGURE 10 | The distribution of best classification performance (i.e., accuracy >80.0%) channels (blue number) based on HbO2 (A) and Hb (B) attributes in the left
and right brain regions. The yellow area indicates the frontal lobe. The rose-red area represents the temporal lobe.

Furthermore, most of the previous studies utilized multiple
feature variables to perform effective differentiation between
ASD and TD. No one applied seven seconds’ data of single-
channel to achieve a better classification effect. The CGRNN
uses the 7-second test data of the Hb attribute of channel 10
to have 92.2% accuracy, 85.0% sensitivity, and 99.4% specificity.
Therefore, the CGRNN model cannot only diagnose patients with
autism efficiently and accurately but also avoid the misdiagnosis
of healthy people.

Comparison of the Classification Ability
of Brain Regions
Figure 10 displays the location of selected channels with good
differentiating ability (accuracy >80.0%) in the HbO2 and Hb
attribute. For HbO2 (Figure 10A), there are seven channels
locating in the frontal lobe (4 on the left, 3 on the right),
and two channels situated in the temporal lobe (both on the
right), indicating that the HbO2 data of the frontal is more
discriminative than the temporal area. Among them, the most
discriminative channel 10 locates in the left frontal region.
Overall, on the HbO2, the data from the left and right hemisphere
has little difference in classification ability (four channels on the
left and five channels on the right). For the Hb data (Figure 10B),

there are seven channels on the right and two channels on the left,
indicating that the Hb data from the right brain is more separable.

CONCLUSION

Our study aims to explore the feasibility of using a multilayer
artificial neural network for the classification between children
with ASD and TD children based on short-time spontaneous
hemodynamic fluctuations.

The contribution of this study has three aspects. First of
all, a multilayer neural network called CGRNN was used,
which combined three-layered CNN and one-layered GRU. Since
CGRNN has a strong ability in finding characteristics associated
with ASD and acquiring intrinsic relationship in fNIRS time-
series, it can accurately predict ASD by using a short fNIRS
time series, which is of great significance for brain imaging
research on ASD.

Secondly, different from using small sample data of fNIRS,
we expanded the data in the form of the sliding window
and combined the CGRNN model to excavate the intrinsic
characteristics of the data and improved its predictive ability.
The result showed our model performed better than the other

Frontiers in Neuroscience | www.frontiersin.org 10 November 2019 | Volume 13 | Article 1120

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01120 November 7, 2019 Time: 16:37 # 11

Xu et al. Predicting Autism by Deep Learning

four traditional algorithms such as LR, KNN, RF, and SVM.
Furthermore, we used ROC curve to compare our model with
CNN, LSTM and GRU neural network model to demonstrating
the reliability of our model.

Finally, we demonstrated that though HbT is the sum of HbO2
and Hb, it may provide richer discriminative information than
HbO2 and Hb. On HbO2 attribute, the hemodynamic signal
from the frontal lobe rather than the temporal lobe leads to a
better classification. On Hb attribute, hemodynamic signal from
the right hemisphere contains more discriminative information
between ASD and TD than the left hemisphere.
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