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Abstract

Background: Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial
genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera,
Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have
been shown to have negative consequences in phylogenetic inference. In this study, we tested several
methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we
used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within
Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola
dataset, and we studied the contribution of individual genes.

Results: Long-branch attraction (LBA) artefacts were detected in all the datasets. Methods using Bayesian inference
outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when
using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method
was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or
morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the
order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in
agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-
Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the
holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera,
the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for
mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the
limits of the phylogenetic signal that can be extracted from Insecta mitogenomes. Based on the combined use of
the five best topology-performing genes we obtained comparable results to whole mitogenomes, highlighting the
important role of data quality.

Conclusion: We show for the first time that mitogenomic data agrees with nuclear and morphological data for
several of the most controversial insect evolutionary relationships, adding a new independent source of evidence
to study relationships among insect orders. We propose that deeper divergences cannot be inferred with the
current available methods due to sequence saturation and compositional bias inconsistencies. Our exploratory
analysis indicates that the CAT model is the best dealing with LBA and it could be useful for other groups and
datasets with similar phylogenetic difficulties.
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Background

From the seminal comprehensive study of Hennig [1], to
the impressive descriptive work of Kristensen [2,3], to the
increasingly common molecular approaches [4-14], Insecta
class systematics has been a challenging field of study.
Molecular phylogenies have become a powerful tool that
shed light on many parts of the Tree of Life. At the same
time, due to the increasing number of sequences and gen-
omes published, methodological questions are broadly
explored by researchers in order to correctly and fully
infer evolutionary relationships and patterns. In fact, it is
widely accepted that many factors can influence final tree
topologies, not to mention supports. Among these factors,
we can cite 1) the quality of the sequences and the align-
ment; 2) the amount of phylogenetic information present
in the sequences; 3) the presence of evolutionary biases
that are not taken into account by most used evolutionary
models (compositional heterogeneity, heterotachy...); 4)
the use of markers whose evolution does not reflect the
species evolutionary history (paralogs, xenologs); 5) the
accuracy of the evolutionary model and the efficiency of
the tree search algorithm used for the study [15-19]. Thus,
different strategies in the analyses can often lead us to
arrive at mutually contradictory conclusions starting from
the same dataset. This seems to be particularly true when
comparing the studies of relationships among the main
taxonomic groups of Arthropoda [20-26]. Intra- and inter-
ordinal insect relationships are not an exception and
represent a ceaseless source of debate. They have been
commonly explored using different types of molecular
data: rDNA 18S and 28S, mitochondrial genes, complete
mitochondrial genomes, nuclear protein coding genes, the
presence of shared intron positions [12] or mitochondrial
gene rearrangements [27]. Among the most controversial
insect groups with regard to systematic position we can
mention the Strepsiptera, an order of obligate endoparasi-
tic and morphologically derived insects. The most basal
relationships within the holometabolous and the para-
neopteran insects are another example of long-debated
relationships.

Mitochondrial genomes have been successful in reco-
vering intra-ordinal phylogenetic relationships concor-
dant with other sources of data, with convincing levels of
support, such as in Diptera [28], Hymenoptera [29],
Orthoptera [30] and Nepomorpha (Heteroptera) [31].
Nevertheless, mitogenomes proved so far to be generally
inadequate to study inter-ordinal relationships of insects
and deeper levels of Arthropoda, frequently resulting in
strong incongruence with morphological and nuclear
data, poor statistical supports, and high levels of inconsis-
tency among different methods [16,24-26,32]. Indeed,
comparative studies that contrast nuclear and mitochon-
drial datasets suggest that nuclear markers are better sui-
ted to deal with deep arthropod relationships, as the
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mitochondrial genome is on average more saturated,
biased, and generally evolves at a much faster rate than
the nuclear genome [33,34]. Thus, knowing the specific
limits for each set of mitogenomes analyzed, i.e. when
substitution rates result in saturation that distorts the
phylogenetic signal at deeper nodes, is crucial to assess
their usefulness in phylogenetics [35].

It is well known that arthropod mitochondrial genomes
present some anomalous characteristics, like very high
percentage of AT content, frequent gene rearrangements
[36] or accelerated evolutionary rates likely related to phe-
notypic changes in body size or to parasitic lifestyle [37],
all of which can limit their applicability in phylogenetic
reconstruction. These biases in the data can result in sys-
tematic errors when the evolutionary model used for phy-
logenetic inference does not take them into account.
Thus, homogeneous models of substitution or replace-
ment where all sites evolve under the same substitution
process [38] and constantly through time [19,39] are not
adequate for Arthropoda. One of the most usual artefacts,
especially in deep relationships where mutational satura-
tion exists [40], is the long-branch attraction (LBA), a sys-
tematic error where two or more branches tend to cluster
together producing false relationships [41]. Also, models
not accounting for heterogeneity in nucleotide composi-
tion among taxa [16] can lead to artefactually group unre-
lated taxa with similar base composition [42-45].

For all these reasons, artropods in general and insects in
particular, constitute an excellent model to tackle challen-
ging questions of phylogenetic methodological interest.
Several strategies have been designed to minimize poten-
tial biases: 1) Increasing the taxon sampling as far as possi-
ble, although generally counteracted by the removal of
taxa with an evidently incorrect placement disturbing the
reconstruction. 2) Filtering genes in large phylogenomic
analyses to avoid paralogy problems and unexpected
effects of missing data [45-47]. 3) The use of more specific
substitution/replacement models. For example, matrices of
amino acid replacement have been designed for Arthro-
poda (MtArt) [48,49] and Pancrustacea (MtPan) [25]. 4)
Removing fast-evolving sites according to discrete gamma
category [40,50-52]. 5) Removing third codon position or
recoding them as purines and pyrimidines (RY-coding) in
DNA alignments [23,53] to reduce the effects of satura-
tion. 6) Using a site-heterogeneous mixture model (CAT)
to allow flexible probabilities of the aminoacid replace-
ment equilibrium frequencies, in order to minimise LBA
effects [38,54,55].

In this work, we test the performance of different phy-
logenetic methodological strategies, using mitochondrial
genomes of the Class Insecta as a model and including
long-branched problematic taxa within Hymenoptera,
Strepsiptera, Thysanoptera and Phthiraptera orders that
have been usually excluded from mitochondrial datasets.
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We address controversial taxonomical questions at three
different levels of divergence, for which solid hypotheses
based on nuclear phylogenies and morphological data
exist. Our results show strong differences among the
methods tested in their power to resolve inter-ordinal
relationships. Using both real and simulated data (see
Additional file 1), we confirm the capacity of the site-
heterogeneous mixture model (CAT) under a Bayesian
framework, currently implemented in software Phylo-
Bayes [38,56], to substantially avoid the LBA artefacts.
We show for the first time that the reconciliation
between mitochondrial and previous nuclear and mor-
phological knowledge is possible in the cases studied.

Results and Discussion

About the exploratory phylogenetic framework

After applying a variety strategies for phylogenetic infer-
ence, we compared the trees obtained to the most widely
accepted nuclear DNA and morphology-based hypotheses
for Holometabola and Paraneoptera systematics (Figure 1).
These hypotheses were carefully selected from bibliogra-
phy based on a great variety of data sources. As a result,
we grouped the proposed relationships within Holometa-
bola in two main hypotheses mainly disagreeing in the
position of the order Hymenoptera, and a single general
hypothesis for Paraneoptera, although this group has been
much less intensely studied.

Methodologies that produced topologies identical or
very similar to these hypotheses were considered better
than those that resulted in very different trees. We noticed
a strong susceptibility of our data to the type of analyses
performed, confirming once more the instability of phylo-
genies based on insect mitochondrial genomes. Indeed,
almost each approach resulted in a different topology and
only the Bayesian inference using the CAT model with
amino acid sequences (BI-AA-CAT) was able to obtain
trees fitting potentially correct hypotheses. A better per-
formance of the CAT model was confirmed using simula-
tions (Additional file 1; Figure S1). No differences were
observed between the MtRev and MtArt models in ML
trees for any dataset. Cross-Validation statistics were per-
formed to test the fit of the replacement models for pro-
teins MtRev and CAT to the data. A better fit of the CAT
model for Paraneoptera (mean score = 9.216 + 12.038)
and Eumetabola (mean score = 5.75, SD = + 32.3539),
and a similar fit for Holometabola (mean score = -0.055,
SD = + 32.3539) were detected.

The site-heterogeneous mixture model CAT [38]
assumes the existence of distinct substitution processes,
which usually results in a better fit to the data than site-
homogeneous models based on empirical frequencies of
amino acid or nucleotide substitutions, like MtRev or
GTR [57-60]. In fact it has already been shown in other
taxonomical groups that the CAT model is very powerful
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to overcome LBA artefacts [45,54,61-63]. Thus, the use
of models accounting for compositional heterogeneity in
the replacement process seems to be more effective than
strategies focused on the removal of saturated positions
in the case of Insect mitogenomes. Combining the CAT
model with the use of amino acid sequences instead of
DNA, which should reduce saturation biases, under a
Bayesian framework produced the most satisfactory
results. The topologies resulting from the analyses with
different methods are discussed further on.

Holometabola phylogeny and the Strepsiptera problem
In our dataset for the Holometabola we included one
strepsipteran and taxa of the Hymenoptera usually
removed from mitochondrial analyses because of their
long branches. We observed strong discrepancies among
the methodologies used, ML-AA (Figure 2A), BI-DNA
(Figure 2B) and BI-AA-CAT (Figure 2C) (see methods for
details), confirming the difficulties introduced by such
groups. The Strepsiptera species Xenos vesparum [64]
appeared within Hymenoptera in the ML-AA tree, being
completely trapped by the longest branches of the hyme-
nopterans. The same happened with BI-DNA, although in
that case, Xenos appeared in a more basal position within
the hymenopterans, apparently slightly reducing the LBA
effect. Finally when applying the BI-AA with the CAT
model the LBA was suppressed, revealing completely dif-
ferent positions for the very long branches of Hymenop-
tera clade and the Strepsiptera (Figure 2C). The topology
obtained in this case indicated a sister group relationship
between Strepsiptera and Coleoptera (the composite clade
being known as Coleopterida), and supported Diptera +
Lepidoptera (Mecopterida), which represents the first evi-
dence that mitochondrial data supports these groups.

Since their discovery, Strepsiptera has been associated
with Diptera, Siphonaptera, Odonata, Ephemerida, Hyme-
noptera and Lepidoptera [65]. More recently, four differ-
ent placements have been suggested as possibilities:
membership in the Coleoptera [66], sister group to the
Coleoptera [67,68], outside the Holometabola [2] and sis-
ter to Diptera [4,69]. Based on molecular studies of 18S
rDNA, Whiting et al [4] proposed the grouping of Diptera
+ Strepsiptera under the name Halteria. Chalwatzis et al
[70,71] reached similar conclusions about the relationships
between Diptera and Strepsiptera using a larger dataset of
18S rDNA sequences. Later, other authors [72-74] attribu-
ted that grouping to an artefact due to LBA, becoming
one of the best examples of LBA ever, called “the Strepsip-
tera problem”.

Further phylogenetic evidence using other nuclear data
contradicted the Halteria hypothesis, and supported asso-
ciations between Strepsiptera and Coleoptera. Rokas et al
(1999) [75] pointed to an intron insertion in en class
homeoboxes of Diptera and Lepidoptera but not in
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Figure 1 Phylogenetic strategies tested. Current knowledge on main holometabolan (two competing hypotheses) and paraneopteran
relationships, based on nuclear and morphological data. Topologies obtained with the phylogenetic strategies tested are represented below
(relationships matching the currently accepted hypotheses are highlighted in black)

Strepsiptera, Coleoptera or Hymenoptera, arguing that an  the USP/RXR hormone receptors, which showed a strong
intron loss is an improbable event. Based on a different  acceleration of evolutionary rate in Diptera and Lepidop-
approach, Hayward et al (2005) [76] used the structure of  tera, to reject the Halteria clade and to provide strong
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Figure 2 Holometabola phylogenies. Holometabola phylogeny using A) ML-AA (2731 positions), B) BI-DNA (9536 positions) and C) BI-AA-CAT
(2731 positions). Values at nodes show bootstrap or posterior probabilities, and scale bar represents substitutions/site.

evidence for Mecopterida. Bonneton et al (2003, 2006)  However, these two studies were not able to define clear
[77,78], confirmed the USP/RXR approach of Hayward et  associations for Strepsiptera. Misof et al (2007) [10] pub-
al and added the ecdysone receptor (ECR; NR1H1) to the lished a large phylogeny of Hexapoda using 18S rDNA
analysis, confirming a Mecopterida monophyletic group. and applying mixed DNA/RNA substitution models.
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Although they recovered well-supported hexapod basal
relationships, they obtained very low resolution and
unclear relationships within Holometabola.

Recent molecular studies using extensive nuclear data
seemed to contradict the Halteria hypothesis again, reco-
vering a close relationship between Coleoptera and Strep-
siptera [11,13,14]. First, Wiegmann et al (2009) [11] used a
complete dataset of six nuclear protein coding genes
including all holometabolan orders. They recovered
Coleopterida and provided statistical evidence discarding
LBA effects. They found some conflicting signal using
individual genes like cad, which recovered Halteria, a
result that was attributed to LBA because this is a rapidly
evolving locus. Longhorn et al (2010) [13] used a total of
27 ribosomal proteins and tested several nucleotide-coding
schemes for 22 holometabolan taxa, including two strep-
sipteran species, where a majority of the schemes tested
recovered Coleopterida. McKenna and Farrell (2010) [14]
raised identical conclusions using a total of 9 nuclear
genes for 34 holometabolan taxa. Also, the Coleopterida
have been recently recovered when using large morpholo-
gical datasets [79,80]. Thus, evidence supporting Coleop-
terida has grown in recent years, suggesting that the
phylogenetic placement of Strepsiptera has been definitely
identified.

In summary, classical and most recent morphological
and molecular studies based on nuclear data support the
Mecopterida and Coleopterida hypotheses. Until now no
mitochondrial evidence backed these hypotheses and our
results are the first to fully agree with the most generally
accepted point of view.

The Hymenoptera position and the basal splitting events
of Holometabola
Depending on algorithm conditions, we observed inconsis-
tencies among analyses in the Hymenoptera position
(Figure 2). For example, the fact of using six gamma rate
categories instead of four in ML-AA, or simply performing
5000000 instead of 1000000 runs (each with chain stability
checked with Tracer) for BI-DNA, or assigning different
partitions for DNA, tRNA and rRNA produced alternative
results, either ((Diptera + Lepidoptera) Hymenoptera)
Coleoptera) or (Diptera + Lepidoptera) + (Coleoptera +
Hymenoptera) (not shown). Similar problems when using
mitochondrial data have been previously described by Cas-
tro and Dowton (2005, 2007) [81,82] regarding this ques-
tion, namely inconsistencies depending on the ingroup
and outgroup selection and the analytical model. Overall,
they described a tendency in their analyses to group
Hymenoptera as sister taxa to Mecopterida, but they also
found Hymenoptera or Hymenoptera + Coleoptera as the
most basal lineages in some of their trees.

When using the BI-AA-CAT method our mitochondrial
overview suggests a sister relationship of Hymenoptera
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with Mecopterida, placing Coleopterida outside a clade
comprising the other examined holometabolan insects.
This result coincides with one of the classical morphologi-
cal points of view [3,83,84], some nuclear evidence [77],
and with morphological and nuclear combined analyses
[4,5] that recovered Coleoptera at the base of Holometa-
bola (but not Strepsiptera). A phylogeny inferred from 356
anatomical characters by Beutel et al (2010) [80] placed
Hymenoptera as the basal holometabolous insects and
recovered a paraphyletic Mecopterida, although these
groups were not strongly resolved. A morphological study
based on characters of the thorax contributed by Friedrich
and Beutel (2010) [79] offered two scenarios depending on
the phylogenetic algorithm used: Coleopterida as the most
basal group in the Bayesian analysis, but Hymeoptera as
the most basal when using parsimony. Several hypotheses
based on morphology situate hymenopterans as sister to
Mecopterida [85,86], grouping coleopterans with the basal
Endopterygota [see references in [87]], or with Neuroptera
(not present in our dataset) [2,3,5,84-90]. Also, based on
the analysis of wing characters, Kukalova-Peck & Lawr-
ence (1993) [68] proposed an alternative phylogenetic
hypothesis consisting in a most basal position for the
Hymenoptera. Such discrepancies enhance the view that
morphological characters are rather useless in order to
determine the phylogenetic position of Hymenoptera
within the Holometabola [69].

Our results do not support the most recent molecular
studies based on nuclear data, all of them reporting Hyme-
noptera as the most basal holometabolan insects, for exam-
ple, the phylogenomic results contributed by Savard et al
(2006) [9] using a total of 185 nuclear genes. Since these
authors were using emerging genome projects to assemble
and analyze all the genes, they only were able to use 8 taxa
with 4 orders of holometabolan insects represented (Dip-
tera, Lepidoptera, Coleoptera and Hymenoptera). Their
phylogeny resulted in a supported Coleoptera sister to
Mecopterida clade, leaving Hymenoptera at the base.
Zdobnov and Boork (2007) [8] obtained the same conclu-
sions in another phylogenomic approach, using 2302 single
copy orthologous genes for 12 genomes representing the
same 4 holometabolous insect groups. Based on a dataset
with similarly limited taxon sampling, and using the gain
of introns close to older pre-existing ones as phylogenetic
markers, Krauss et al (2008) [12] arrived to the same con-
clusion identifying 22 shared derived intron positions of
Coleoptera with Mecopterida, in contrast to none of
Hymenoptera with Mecopterida. Additionally, phylogenies
with a large number of markers and a complete taxon sam-
pling also gave rise to the same conclusions [11,13,14].
Therefore, mitochondrial data under the CAT model
avoids obviously wrong relationships caused by LBA and
recovers one of the two main current hypotheses.
This hypothesis has been proposed mostly based on
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morphological evidence and differs from most recent
nuclear and genomic results. This issue remains thus an
open question deserving deeper study.

Paraneoptera phylogeny and the position of Phthiraptera
For Paraneoptera we observed once more an array of
topological changes depending on the method used. In
ML-AA (Figure 3A), Sternorrhyncha was recovered as
paraphyletic with respect to Phthiraptera and Thysanop-
tera, which evidences the tendency of the method to join
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lineages according to relative branch length. Indeed, the
white flies clade (Sternorrhyncha: Aleyrodoidea) displays
a faster substitution rate than their relatives Daktulo-
sphaira vitifoliae, Schizapis graminum and Pachypsylla
venusta, and it seems to attract other long-branched
clades: Phthiraptera and Thysanoptera. Using BI-DNA
(Figure 3B), the topology improved and grouped all Ster-
norrhyncha representatives, although a paraphyletic
Hemiptera remained. Only when using BI-AA-CAT
(Figure 3C) a topology with most long-branched taxa not
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clustered and with a monophyletic Hemiptera was
recovered.

Classically, Hemiptera is divided in two suborders:
Homoptera and Heteroptera. Homoptera includes Ster-
norrhyncha and Auchenorrhyncha (Cicadomorpha +
Fulgoromorpha). However, according to inferred phylo-
genies from 18S rDNA, Euhemiptera (Heteropterodea
(Heteroptera + Coleorrhyncha) + Auchenorrhyncha)
were proposed as sister group of Sternorrhyncha, leaving
Homoptera as paraphyletic [91-93], which is currently
the most accepted hypothesis. Our mitochondrial ana-
lyses with BI-AA-CAT produced the same conclusions as
18S rDNA datasets. Thus, Euhemiptera was recovered as
a robust clade formed by Cicadomorpha plus Fulgoro-
morpha (a group known as Auchenorrhyncha) plus Het-
eropterodea, while Homoptera (Sternorrhyncha +
Cicadomorpha + Coleorrhyncha) was paraphyletic with
respect to the heteropteran Triatoma dimidiata, which
appeared in all the tested methods as sister to Cicado-
morpha with high support. In this study we were not able
to test the Auchenorrhyncha paraphyly due to the lack of
a Fulgoromorpha genome when the analyses were
performed.

A sistergroup relationship between the Hemiptera and
Thysanoptera, jointly known as Condylognatha [94,95],
has been proposed based on morphological characters
and supported by 18S rDNA data [96]. Moreover, the
closest relatives of this group seem to be the Psocodea (=
‘Psocoptera’ + Phthiraptera). Although Homoptera para-
phyly is fully accepted, at molecular level it has just been
tested with nuclear single-gene phylogenies and the full
Paraneoptera has never been studied with mitochondrial
genomes. There is a broad acceptance that Paraneoptera
is a monophyletic group of hemimetabolous insects,
comprising the Hemiptera, Thysanoptera, and Psocodea,
but the basal relationships within this group are quite
controversial. The Condylognatha proposal (Hemiptera +
Thysanoptera) was supported by several studies
[83,97-102], although spermatological characters [2],
fossil studies [103,104] and combined molecular and
morphological data [4] suggested an alternative sister-
group relationship between Psocodea and Thysanoptera.
Psocodea, however, is a fully accepted clade, even if the
two orders included have been proposed to be mutually
paraphyletic [96,105].

In our results, even using the AA-BI-CAT, which
seemed to eliminate LBA artefacts for other clades, the
basal Paraneoptera relationships were in contradiction
with the generally accepted hypotheses. Psocodea was not
monophyletic because Thysanoptera was recovered as the
closest to Phthiraptera, and consequently Condylognatha
is not supported. In fact, Thrips imaginis and the Phthir-
aptera genomes, were recovered as sister with high sup-
port in most of the methods tested. This result, although
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unexpected, cannot be readily dismissed as wrong and
deserves more scrutiny (see for example [106]).

Eumetabola: Assessing the limits of the

mitogenomic data

To try to understand what are the informative limits of the
insect mitochondrial genomes, we raised the global diver-
gence in our dataset by joining Paraneoptera and Holome-
tabola genomes. With ML-AA and BI-DNA, all long
branches grouped, a result obviously produced by LBA.
Although resolution improved when the BI-AA-CAT was
used, this method was not able to deal with the increased
divergence and the result was not satisfactory (Figure 4). A
tree with similar problems resulted when using the model
CAT-BP, optimized to reduce the effects of compositional
heterogeneity. Mainly, the hymenopterans remained
within the long-branched cluster, although successfully
including the short-branched Hymenoptera Perga condei
with their relatives. Generally, although some signal was
detected, this must be lower than the noise and consider-
able systematically erroneous relationships were recovered.

Given the observed inconsistencies when the diver-
gence is increased in insects, we should question the uti-
lity of the Arthropoda mitogenomes to recover supra-
ordinal phylogenetic information because of mutational
saturation, at least with the current methodological
offer.

Mitogenomic data have been used to successfully
address several phylogenetic questions within mammals
[107,108] and birds [53]. In both cases, however, rela-
tionships at the root level were not fully resolved, like
the basal relationships between paleognaths and neog-
naths in birds, and Theria (marsupials plus placentals)
versus Marsupionta (monotremes plus marsupials)
hypotheses in mammals. In an ecdysozoan mito-
genomics study testing the affinities of the three Panar-
thropoda phyla and the Mandibulata vs. Myriochelata
hypothesis, Rota-Stabelli et al (2010) [60] also described
difficulties caused by LBA. They obtained reasonable
results only by removing rapidly evolving lineages and
appyling the CAT model. Within Arthropoda, Nardi et
al (2003) [22] presented an unexpected result based on
a mitogenomic phylogeny: the paraphyly of the hexa-
pods. They found crustaceans as sister to Insecta, and
Collembola as sister to both. This result was discarded
by Delsuc et al (2003) [23], who tried to avoid saturation
and composition heterogeneity by recoding nucleotides
as purines (R) and pyrimidines (Y), recovering then a
monophyletic Hexapoda. Later, Cameron et al (2004)
[21] performed a detailed battery of analysis including
the major arthropod groups to test the hexapod mono-
phyly. They removed hymenopteran and paraneopteran
genomes from the analysis due to their extreme diver-
gences. Even so, they could not obtain a conclusion
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about the relationships due to the strong topological
instability of the trees.

Cook et al (2005) [24] assessed the same question con-
cluding that Crustacea and Hexapoda were mutually
paraphyletic, although not including unstable lineages
like Hymenoptera, the wallaby louse (Heterodoxus macro-
pus) and others with long branches. Removing some
important lineages, may strongly affect the general topol-
ogy and the inferred evolutionary history. Carapelli et al
(2007) [25] obtained the same conclusions by Cook et al
(2005) [24] when including several additional genomes in
the analysis and using a new model of amino acid repla-
cement for Pancustracea, MtPan. They presented two
large phylogenies based on DNA and protein alignments
that supported a non-monophyletic Hexapoda, both
obtaining a higher likelihood score under MtPan than
when using MtArt or MtRev. However Carapelli et al did
not test as many strategies and combinations like others
did, in which case they would have probably arrived to
similar contradicting conclusions. Some of the relation-
ships within the Insecta they recovered were in strong
disagreement with previous morphological and molecular

evidence. For example: 1) They recovered a supported
association between Strepsiptera and the Crustacean
Armillifer armillatus (Pentastomida), two problematic
yet clearly not related organisms sharing exceptional
rates of evolution. 2) Diptera was included in the poly-
neopteran insect lineage when using BI-DNA and as an
independent lineage from all the rest of the Insecta class
when using BI-AA with MtPan model. 3) The positions
of the orthropterans Gryllotalpa orientalis and Locusta
migratoria remained unclear in their analysis. 4) The ple-
copteran Pteronarcys was recovered outside the poly-
neopterans, clustering with the Diptera. All of these cases
were strongly supported by Bayesian posterior probabil-
ities, but it is known that biases in deep phylogenies
might increase supports of incorrect relationships. They
attributed the non-monophyletic clade of Holometabola
to a biased sampling, lacking orders like Mecoptera,
Siphonaptera, Trichoptera or Neuroptera, but once more
they removed the Hymenoptera from the analyses. Tim-
mermans et al (2007) [26] re-evaluated the Collembola
position using ribosomal protein gene sequences, which
resulted in the supported monophyly of Hexapoda for all
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methodologies used (MP, ML and BI). They also found
the inconsistency between nuclear and mitochondrial
data when analyzing pancustracean relationships and
clearly claimed that “caution is needed when applying
mitochondrial markers in deep phylogeny”.

The limitations of the mitochondrial genome as phylo-
genetic marker were already pointed out by Curole and
Kocher (1999) [109], when an increasing number of
mitogenomes were sequenced and resulting phylogenies
conflicted with morphological and nuclear hypotheses in
the deep relationships of tetrapods and arthropods, as
well as in mammals [110]. Within Insecta, more than one
hundred mitogenomes are available now in GenBank/
DDBJ/EMBL and they have been used to successfully
resolve intra-ordinal relationships, such as in Diptera
[28], Hymenoptera [29], Orthoptera [30] and Nepomor-
pha (Heteroptera) [31]. We report the difficulties to work
on inter-ordinal relationships within Insecta, although
showing that they can be generally avoided by using the
BI-AA under the site-heterogeneous mixture model
(CAT). However, we conclude that divergences in mito-
chondrial sequences above super-order levels represent
an insurmountable problem for current methods. This
result is at least valid for Arthropoda mitochondrial gen-
omes, but difficult to extrapolate to other groups of
organisms. We must remember some exceptional charac-
teristics of the Insecta and Arthropoda in general, like
high AT-content, the parasitic life-styles present in some
groups or explosive radiation events in others. It is thus
possible that a more relaxed evolutionary process in
other metazoans allows for slightly deeper studies, and
the limits of each dataset should be independently
assessed.

Mitochondrial single genes reliability

Gene exclusion is one of the commonly used strategies to
improve phylogenies and we tried to better understand
the contribution of each mitochondrial gene to the phylo-
geny. Indeed, we found important variability in the phylo-
genetic signal of the different genes (Table 1). Five of the
thirteen genes were especially informative in the topology
resolution: cox1, nadl, cytb, nad2 and nad4. On the con-
trary atp6, atp8, cox2, cox3 and nad4L datasets produced
the most different topologies. According to scale-factor
values, nadl, nad3, nad4, nad5 and atp6 were the genes
with a global divergence closest to the whole mitochon-
drial genome. nad?2, nadé6, coxl, atp8 and cytb were the
outliers in this case, giving the most deviated values. For
both parameters, only nadl and nad4 were among the
best genes. Interestingly, some of the genes, for example
cox1, performed very well regarding topology, but strongly
deviated in divergence. The opposite applies to atp6. The
unusually fast substitution rate of cox! compared to the
mitochondrial mean (scale-factor = 2.0732) should be
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Table 1 Scale-factor and Robinson-Foulds distances for
individual mitochondrial genes

Scale-factor Robinson-Foulds

nad1 1.1089 4
nad2 0.7142 5
nad3 0.9596 7
nad4 0.9771 6
nad5 0.9095 8
nadé 0.7075 8
nad4l 0.7822 10
cox1 20732 2
cox2 0.8565 8
cox3 1.1510 8
atp6 1.0279 9
atp8 0.6826 11
cytb 13414 4

The best values for each parameter and the five best-scored genes for
Robinson-Foulds are highlighted in bold.

highlighted because this is the most common mitochon-
drial marker in single gene studies of insects and it is
broadly used to infer molecular clocks in evolutionary
time-based studies. According to this result, cox1 seems to
be a highly variable gene in insects, which makes it very
suitable for the study of recent relationships and for DNA
barcoding studies of this group of organisms.

Considering topology resolution as a priority in systema-
tic studies, we selected the five best-scored genes for
further comparisons with the whole genome. The phylo-
geny that resulted from their combined use reproduced a
very similar topology to that of the entire dataset in several
cases (Table 2). Thus, the resolution of the five gene com-
binations is comparable to that of a full genome, a result
that could be explained by the inclusion of noise by the
less informative genes. In conclusion, we suggest that the
use of a selection of the most suitable genes is a valid (and
simpler) strategy that produces results equivalent to the
use of the entire genome. In order to apply this strategy in
insect mitochondrial studies, we identify cox1, nadl, cytb,
nad2 and nad4 as the best genes for topology, and nadl,
nad3, nad4, nad5 and atp6 for branch lengths. We
emphasize the importance of deciding what aspect of the
mitogenome we want to estimate using a subset of genes,
whether topology or branch length, because some of these
genes (notoriously cox1) perform very well in one regard
and poorly in the other.

Conclusions

Although several innovative phylogenetic methods have
been developed to improve mitochondrial phylogenetic
trees in some groups of organisms, results have been
controversial in insects, leading to different conclusions
that most often disagree with more generally accepted
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Table 2 Scale-factor and Robinson-Foulds distance when
comparing five concatenated genes versus whole
genome in different datasets

Scale-factor Robinson-Foulds

Paraneoptera 1.19471 1
Paraneoptera 1.03562 1
(long-branched taxa excluded)

Holometabola 1.26578 7
Holometabola 0.58196 2
(long-branched taxa excluded)

Eumetabola 0.79679 13
Eumetabola 1.10733 4

(long-branched taxa excluded)

relationships obtained from nuclear and morphological
data. Thus, insects constitute a perfect model to test dif-
ferent methodologies and to better understand phyloge-
netic inference behaviour. Here we tested a battery of
those strategies with three datasets of complete mito-
chondrial genomes of Insecta, including problematic taxa
usually excluded from the analyses, and we compared the
results with the current nuclear and morphological state
of knowledge. The results suggested that the use of
amino acid sequences instead of DNA is more appro-
priated at the inter-ordinal level and that the use of the
site-heterogeneous mixture model (CAT) under a Baye-
sian framework, currently implemented in the software
PhyloBayes, substantially avoids LBA artefacts. We show
that inferring phylogenies above the super-order level
constitutes the limit of the phylogenetic signal contained
in insect mitochondrial genomes for currently available
phylogenetic methods. For many of the relationships stu-
died, we demonstrate for the first time that, with the
proper methodology, mitochondrial data supports the
most generally accepted hypotheses based on nuclear and
morphological data. Thus, we confirm the non-mono-
phyly of Homoptera within Paraneoptera, and recover
Strepsiptera as a sister order to Coleoptera. In the basal
splitting events in Holometabola we recover the Hyme-
noptera-Mecopterida association, and Coleoptera +
Strepsiptera form a clade sister to the rest of Holometa-
bola, which coincides with one of the two most accepted
hypotheses. Recovered basal relationships in Paraneop-
tera differ from the currently accepted hypothesis in the
position of Phthiraptera, which is recovered as sister to
Thysanoptera, resulting in a paraphyletic Psocodea. By
comparing single-gene to whole genome tree topologies,
we select the five genes best performing for deep Insect
phylogenetic inference. The combined used of these five
genes (coxl, nadl, cytb, nad2 and nad4) produces results
comparable to those of mitogenomes, and we recom-
mend the prioritary use of these markers in future
studies.
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Methods

Alignments

A total of 55 complete or almost complete Eumetabola
mitochondrial genomes (17 of Paraneoptera and 38 of
Holometabola) were downloaded from GenBank (Addi-
tional file 1: Table S1). Analyses were conducted using 3
datasets; 1) Holometabola, 2) Paraneoptera and 3) Eume-
tabola (Paraneoptera + Holometabola) in order to assess
phylogenetic behaviour in a higher divergence level.

Every gene was translated to protein according to the
arthropod mitochondrial genetic code and individually
aligned using Mafft 5.861 [111]. To produce the DNA
alignments, gaps generated in the protein alignment
were transferred to the non-aligned DNA sequences
using PutGaps software [112]. The resulting DNA and
protein alignments for each gene were concatenated
after removing problematic regions using Gblocks 0.91
[113] under a relaxed approach [15] with the next set of
parameters: “Minimum Number Of Sequences For A
Conserved Position” = 9, “Minimum Number Of
Sequences For A Flank Position” = 13, “Maximum
Number Of Contiguous Nonconserved Positions” = 8,
“Minimum Lenght Of A Block” = 10, “Allowed Gap
Positions” = “With Half”, and the kind of data was “by
codons” for DNA and “Protein” for the aminoacids.

tRNA and rRNA sequences were individually aligned
using ProbconsRNA 1.1 [114] and ambiguously aligned
regions removed with Gblocks with the same parameters
used for DNA. For the Paraneoptera dataset, both tRNA-
Leu sequences from Aleurodicus dugesii were removed
because they were extremely long in comparison to the
rest and affected the alignment mechanism. For the
Holometabola dataset, the large subunit ribosomal RNA
sequence from Anophophora glabripennis, the tRNA-Met
from Ostrinia nubilalis and Ostrinia furnacalis, and the
tRNA-Trp from Cysitomia duplonata were unusually
short and were not included. All these fragments were
excluded from the Eumetabola dataset as well. Sequences
were concatenated, and gaps were used instead of the
removed RNAs and the few lacking coding genes.

Strategies for phylogenetic analysis

We tested several strategies for phylogenetic analyses on
the three datasets. These differed in the phylogenetic
algorithm, the treatment of saturation, and the use of dif-
ferent models of replacement: 1) Maximum likelihood on
protein alignments under the MtRev and MtArt models
(ML-AA); 2) Maximum likelihood on protein alignments
under Empirical profile mixture models (20 and 60 pro-
files) (ML-AA-CAT) [38,115] 3) Bayesian inference on
protein alignments under the MtRev model; 4) Bayesian
inference on DNA alignments including only first and
second codon positions for the 13 coding genes under
the GTR+I+G model (BI-DNA); 5) Bayesian inference on
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DNA alignments including first and second codon posi-
tions of the 13 coding genes, plus 22 tRNA and 2 rRNA
[35] and under the GTR+I+G model; 6) Bayesian infer-
ence with a site specific rate model for all DNA + RNA
positions [35] 7) Bayesian inference under the CAT
model on DNA alignments including only first and sec-
ond codon positions of the 13 coding genes; 8) Bayesian
inference under the CAT model of protein alignments
from the 13 coding genes (BI-AA-CAT) (Additional file
1: Table S2).

For maximum likelihood analyses, the software PhyML
2.4.4 [116] with the empirical MtRev model and six
gamma rate categories was used. PhyML-CAT applying
mixture models (C20 and C60) [115] was used when test-
ing an alternative to empirical rate matrices in ML. For
Bayesian inference, we used MrBayes v. 3.1.2 [117] and
PhyloBayes 2.3 [38]. For MrBayes calculations in DNA
alignments we used two partitions (first and second posi-
tion of every codon), the GTR+I+G model, and four
chains of 5.000.000 trees, sampling every 5000 generations.
When including coding genes + tRNA + rRNA, sequences
were partitioned in three independent partitions, one for
each sequence type. For MrBayes analyses on protein
alignments we used the MtRev model and four chains of
1.000.000 trees, sampling every 1000 generations, and
applied a burn-in of 10% generations. For PhyloBayes ana-
lyses we used the site-heterogeneous mixture model CAT
model for aminoacid sequences and the GTR-CAT model
for the nucleotide sequences, and we run two independent
chains of 5000 cycles, removing the first 1000 and sam-
pling one point every five. For the site-specific rate model,
characters were divided into six discrete rate categories
using TreePuzzle [118] and partitioned in MrBayes from
fastest to slowest, following a similar approach than in
Kjer & Honeycutt [35]. Convergence of independent runs
was checked with the software Tracer v1.4.

For the whole Eumetabola dataset, the CAT-BP model
was tested, using the software nhPhylobayes v.023
[119,120]. This model is supposed to better account for
amino-acid compositional heterogeneity, because it allows
breakpoints along the branches of the phylogeny at which
the amino acid composition can change. The number of
components in the mixture were fixed to 120, according
to the previous CAT-based phylogeny for Eumetabola.
Four independent chains were run, and only two of them
converged after highly demanding computation. Taking
every tenth sampled tree, a 50% majority rule conseus tree
was computed using the converged chains.

To statistically compare the CAT model with the star-
dard site-homogeneus models, cross validation statistics
with PhyloBayes 3.3b were performed between the amino
acid models (MtRev and CAT), as described in Philippe
et al (2011) [121].
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Mitochondrial single genes reliability

In order to explore the contribution of each individual
gene to the concatenated tree, 13 single-gene phylogenies
from the Paraneoptera dataset were reconstructed with
BI-DNA excluding third codon positions. We scored
each single-gene resulting phylogeny based on Robinson-
Foulds distances and relative scale-factor values [122]
using the complete mitochondrial tree as reference. The
5 best-scored genes were selected according to Robin-
son-Foulds distances and they were used to infer Para-
neoptera, Holometabola and Eumetabola 5-gene
phylogenies. Again, Robinson-Foulds distances and rela-
tive scale-factor values were calculated. In the same way,
we also tested 5-gene performance when following a
common practice in mitochondrial phylogenies of
insects: the removal of rapidly evolving lineages with
branch lengths deviating from the mean of the reference
tree. To do that, taxa with a divergence to the root of the
tree higher than 0.5 substitutions/position for Paraneop-
tera and Holometabola datasets and higher than 0.6 sub-
stitutions/position for the Eumetabola were removed.
Thus, a total of 6 datasets were scored for the Robinson-
Foulds distance and the scale-factor.

Additional material

Additional file 1: Additional Text, Figures and Tables. a) Table S1. List
of mitochondrial genomes used in the study. b) Table S2. Number of
characters in the final alignments for each phylogenetic reconstruction
method tested. ¢) Simulations methods. d) Simulations results and
discussion. d) Figure S1. Simulations. e) References.
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