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Abstract

Objective

Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neuro-

physiological mechanisms in recent years. In this study, six MSPE measures were pro-

posed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on

the real-time EEG recordings. The performance of these measures in describing the tran-

sient characters of simulated neural populations and clinical anesthesia EEG were evalu-

ated and compared.

Methods

Six MSPE algorithms—derived from Shannon permutation entropy (SPE), Renyi permuta-

tion entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition

procedures of coarse-graining (CG) method and moving average (MA) analysis—were

studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free

EEG under anesthesia to quantitatively assess the robustness of each MSPE measure

against noise. Then, the clinical anesthesia EEG recordings from 20 patients were ana-

lyzed with these measures. To validate their effectiveness, the ability of six measures were

compared in terms of tracking the dynamical changes in EEG data and the performance in

state discrimination. The Pearson correlation coefficient (R) was used to assess the rela-

tionship among MSPE measures.

Results

CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG

analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient

changes of EEG recordings and statistically distinguish the awake state, unconsciousness

and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE
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and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in

this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of

unconsciousness.

Conclusions

MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG

analysis with its simple computation and sensitivity to drug effect changes. CG-based multi-

scale permutation entropies may fail to describe the characteristics of EEG at high decom-

position scales.

1. Introduction

Since biological systems are highly integrated systems functioning at multiple time scales, bio-
signals often exhibit the characteristics of multiple scales [1]. Multiscale entropy (MSE) analy-
sis has been developed to detect the dynamic changes of multiscaled signals to analyze the
correlations of time series over multiple temporal scales, which could offer extra information
than single scale [2–6].

To describe the multiscale property of neural signals, many attempts have beenmade to
developMSE algorithms. Typically, Costa et al. proposed a MSE based on the consecutive
coarse-graining (CG) procedure combined with approximate entropy (AE) [7] to assess the
complexity of time series [2, 4, 8, 9]. Li et al proposed the multiscale permutation entropy
(MSPE) based on CG to track the effect of sevoflurane anesthesia on the central nervous system.
The results showed that MSPE measures process the capability to describe the subtle transition
from light anesthesia to deep anesthesia accurately, whereas sing-scale permutation entropy
cannot distinguish the two states apparently [10]. Meanwhile, MSE based on CG procedure has
been used to analyze the dynamic of physiological time series in many other studies as well [5,
10–12]. However, this coarse-grainingprocess reduces the length of a time series as the decom-
position scale increases.When applied to a short-term time series in high decomposition scale,
it may yield an imprecise entropy index [13]. To overcome this shortcoming,Wu proposed the
moving-averaging (MA) procedure to reduce the decomposition impact on the data length [13]
and evaluated the effectiveness of CG and MA by synthetic noise signal analysis.

However, the existingMSE methods are designed for off-line analysis. There is a lack of on-
line MSE methods to provide real-time depth of anesthesia (DoA) information during surgery.
At present, there are several commercializedDoAmonitors used in clinic, such as the bispec-
tral index, entropy module, Nacrotrend, etc [14]. These methods are based on frequency
domain information and analyze EEG signal on single scale, thus they cannot provide compre-
hensive information from narcosis patients as MSE methods can. So there will be potential
risks in estimating the state of patients with these indexes in general anesthesia. It is of great
significance to investigate the use of on-line MSE methods for analyzing EEG data during
surgery.

In terms of entropy applied in MSE, Shannon entropy (ShEn) [15], sample entropy (Sam-
pEn) [16], permutation entropy (PE) [17] and some other entropies are usually considered.
Actually, permutation entropy measures have been proven to have a better performance in
anesthesia EEG analysis [10, 18]. Especially, Pil-Jong Kim et al. found that PE seem to be a use-
ful indictor of DoA in children and have a comparable performance to BIS index [19]. Notably,
the classic definition of PE is based on Shannon information theory, which is a short-range and
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extensive concept [18]. Considering that the neural system usually processes in long term over
multiscale, to tackle this issue, two generalized forms of permutation entropy were proposed:
Renyi permutation entropy (RPE) [18, 20] and Tsallis permutation entropy (TPE) [21]. In our
previous study, it has been proved that three PE measures (Shannon PE (SPE), RPE and TPE)
outperform the other entropy indexes and RPE has the best performance [18]. Herein, the SPE,
RPE and TPE were chosen for MSE measures construction.

In this paper, we combined two decompositionmethods CG and MA with SPE, RPE and
TPE measures to construct six MSPE methods, i.e. CG-SPE, CG-RPE, CG-TPE,MA-SPE,
MA-RPE and MA-TPE. In previous studies, MSEs are designed for data analysis after data col-
lection, while, in this paper the MSPEs were tested for on-line data analysis to find a possible
index indicating the depth of anesthesia during surgery. The on-line EEG recorded from
patients was processed with moving-windowmethod before MSPE analysis, thus the required
data length is much smaller than off-line analysis.

To validate the effectiveness of the proposedmethods, a thalamo-cortical neural mass
model (TCNMM) based on neurophysiological mechanisms is adapted to generate neural pop-
ulations and simulate anesthesia EEG signal [22]. The model can be used to simulate the neural
signal to discover the mechanisms of brain activity and the relationship between different brain
regions and it has been used to simulate brain rhythms during sleep in [22]. Anesthesia is char-
acterizedwith unconsciousness, decrease in global cerebral metabolism [23] and high-voltage
low frequency EEG [24, 25], which are also the characteristic features of non-rapid eye move-
ment (NREM) sleep. Especially, both propofol anesthesia and NREM sleep can cause spindles
in EEG [26, 27]. The apparent similarities of anesthesia and sleep in both behaviors and EEG
signals show the possibility that the model could simulate anesthesia signals. It should be noted
that the EEG signal produced by this model is pure signal without noise, it can be utilized to
assess the anti-noise capability of different EEG processing methods by adding different inten-
sity of noise to the produced noise-free signals. The produced signal offers an effective test plat-
form for EEG signal processing methods before applied to the clinical analysis.

In this paper, the thalamo cortical neural mass model was introduced to generate noise-free
EEG data consisting awake state and unconscious state. Then, white noises of different intensi-
ties were added to the generated signals to evaluate the anti-noise ability of MSPE methods.
The MSPE measures were evaluated with clinical EEG in quantifying the anesthetic drug effect
as well. Further, correlation analysis between all the MSPEs was computed to assess their
relationship.

2. Methods

MSPE measures were used to detect the dynamic changes of on-line anesthesia EEG. In this
paper, six MSPEs were constituted by three permutation entropies, i.e. SPE, RPE and TPE
merged with two decompositionmethods CG and MA.

2.1 Multiscale decomposition methods

2.1.1 Coarse-grainingprocedure. Given a one-dimensional discrete time series
{x1, x2, . . .xi, . . ., xN}, construct a set of consecutive coarse-grained time series {y(s)}, where s is
the scale factor. As shown in Fig 1(A), each coarse-grained time series is obtained according to
the following equation,

yðsÞ ¼
1

s

Xjs

i¼ðj� 1Þsþ1
xi; 1 � j � N=s ð1Þ
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The length of time series processed by coarse-graining equals to N/s, where N is the length
of the original time series and s is the decomposition scale [10].

2.1.2 Moving average procedure. Similar to the coarse-graining procedure, each element
of a moving average time series is defined as follows [13],

zðsÞj ¼
1

s

Xjþs� 1

i¼j
xi; 1 � j � N � sþ 1 ð2Þ

The detail of moving average procedure is shown in Fig 1(B). Compared to the CG proce-
dure, the moving average procedure has little impact on the length of the new time series. The
length of the moving-averaged time series is (N−s+1). And this makes moving average proce-
dure more reliable than CG procedure for short-term time series analysis.

2.2 Permutation entropy

Permutation entropy was originally proposed by Bandt and Pompe [17, 28]. It reveals the
order information of signals by reconstructing the given time series into ordinal patterns. It has
been used to analyze neural signals successfully [29–31]. There are three types of PE measures
considered in this study, including SPE, RPE and TPE.

Suppose the length of the given signal is K. Divide the signal into several vectors consisting
of N consecutive data taken from the signal by moving-windowmethod. Express the new vec-
tor as {x(i): 1� i�N}. First, reconstruct the vector into Xt = [xt, xt+τ, � � �, xt+(m−1)τ] with the
embedding dimensionm and lag τ. Then, rearrange Xt in an increasing order. The vector Xt

consists of m different values, so there will be m! possible patterns πi, which is also known as
permutations. Each vector necessarily belongs to 1 of m! possible patterns. Adopt a symbolic
representation on the basis of the data level within the vector. For each pattern πi, f(πi) denotes
its frequency of occurrence in the vector. The relative frequency is pðpiÞ ¼

f ðpiÞ

N� ðm� 1Þt
, where N is

the length of the vector. The normalized Shannon permutation entropy is defined as

SPE ¼
�

Xm!

i¼1
pðpiÞlnpðpiÞ

lnðm!Þ
ð3Þ

Fig 1. Illustrations of multiscale decomposition procedures. (a) Coarse-graining procedure for scale = 2.

The window size is the scale level s. (b) Moving average procedure for scale = 2. The window size is the scale

level s, and overlap size is s − 1.

doi:10.1371/journal.pone.0164104.g001
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Based on the Renyi entropy and permutation probability distribution p(πi), the normalized
RPE measure is proposed and defined as:

RPEn ¼

log
Xm!

j¼1
pðpiÞ

a

ð1 � aÞ � lnðm!Þ
ð4Þ

Zunino et al proposed the normalized TPE based on the definition of Tsallis entropy [32]:

TPEn ¼
1

1 � m!1� q
Sm!

j� 1
ðpðpiÞ � pðpiÞ

q
Þ ð5Þ

In this way, each vector is given a symbolic value from 0 to 1, which represents the ordering
information of the vector. Therefore, the normalized PEs range from 0 to 1. The maximum
value is 1, which means that all patterns have equal probability. The smallest value is 0, which
implies that the time series are extremely regular. The value of SPE is reversely proportional to
the regularity level of the time series [10].

Obviously, m, τ and N are the main parameters in SPE computation. The dimensionm
must satisfy (m)!<N. However, if m is too small, there are very few patterns and the computa-
tion will be nonsense. And if m is too large, the computation of the phase space reconstruction
will also grow exponentially. For the time delay τ, it is adequate to select a common value of τ =
1 to extract most of the information in the EEG [29, 33, 34]. The details of the parameters selec-
tion have already been discussed before [18]. Since the EEG dataset was different with previous
study in this paper, the selection of computation parameters were discussed in the appendix. It
is suggested that m = 6 and τ = 1 are suitable for SPE, m = 6, τ = 1 and a = 2 are selected for
RPE, m = 6, τ = 1 and q = 0.1 have a better performance in TPE calculation.

2.3 Multiscale permutation entropy measures

Six MSPE measures, namely: CG-SPE, CG-RPE, CG-TPE,MA-SPE, MA-RPE, MA-TPE, were
formed by means of combining three PE measures with two multiscale decompositionmeth-
ods, respectively. In terms of the decomposition level, five decomposition scales from 1 to 5
were chosen. For scale 1, the MSPEs are simply the original PEs. The MSPEs were compared
with PEs to verify their effectiveness.

In this paper, the MSPEs were designed for on-line DoAmonitoring. The data was pro-
cessed with moving-windowmethod before MSPE analysis. The calculation depends on the
length of windowN and the embedding dimension m. It should be noted that there is a neces-
sary condition (m)!<N [34]. According to the introduction in 2.2, if m is set to 6, the length
of chosen epoch needs to be bigger than 720 at each scale. The length of time series analyzed by
MA just has a little change and makes no difference in the epoch length, while the length of
time series analyzed by CG is N/s, which violates the rule (m)!<N at N = 1000 in case of s� 2.
This requirement can be solved by two ways: extending N and decreasingm to the second-best
option m = 3. For CG-basedMSPEs, the selection process of N and m will be discussedwith
the simulated EEG signals in the next section.

3. Simulation and Results

3.1 Thalamo-cortical neural mass model

In this paper, a TCNMM [24, 25] consisting of two thalamic populations and four cortical pop-
ulations was introduced. The two thalamic populations are thalamo-cortical relay cell popula-
tion (TCR) and thalamic reticular nucleus population (TRN). The cortical populations are
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made up of pyramidal neurons, excitatory interneurons, inhibitory interneurons with slow and
fast kinetics. The model helps understand the dynamic characteristics under different physio-
logical or pathological conditions. The construction of the model is presented in the appendix,
while more details can be found in [22]. As the produced EEG signal is noise free, it could be
utilized to test the anti-noise ability of the six measures and select the appropriate computation
parameters of MSPEs.

This model has been used for the simulation of brain rhythms during sleep [22]. In this
paper, it is utilized to mimic the progressive changes between awake, anesthesia and RoC
(Recovery of Consciousness) states, by choosing proper modulatory inputs. This is done keep-
ing in mind that sleep and anesthesia are both characterized by the loss of consciousness,
behavioral immobility and little recall of environmental events [35]. And it has been verified
that the anesthetic effectmay also be mediated through the brain nuclei that control sleep-
wake states [36, 37]. Especially for the GABAergic (GABA = gamma-amino-butyric acid) anes-
thetic drugs, the EEG effect shows regular oscillation changes with the deepening of anesthesia.
The anesthetics change characteristics of the EEG signal from high frequency-low amplitude to
low frequency-high amplitude, and these waves are related to the anesthetic drug concentra-
tions. First, during normal resting stages the spectral distribution of the EEG shows a strong
suppression of alpha and beta power bands, and a dominance of slow wave delta/theta power
bands [38]. Then, the EEG power in the high-frequency range is decreased, and the EEG sig-
nals mainly lie in theta and delta power bands as the anesthetic concentration increases.
Finally, deep anesthesia may rise to the burst suppression pattern [39].

To produce the anesthesia EEG data, three modulatory inputs, namely inputs reaching the
TCR (IM,T), the TRN (IM,R) and the pyramidal (IM,P) populations, are modulated to switch
between different states. The modulations are provided to make sure the power spectrumof
the produced signal meets the power spectrumof clinical EEG in different states.

3.2 Results

To mimic the gradual transition during anesthesia, three modulatory inputs were turned pro-
gressively as displayed in the Fig 2(A) (normalized) and the values in different states were sum-
marized in Table 1. The process is divided into four phases: awake state, transition,
unconsciousness and RoC state. The average membrane potential of pyramidal neurons, i.e.
the approximation of cortical EEG, is shown in Fig 2(B). Fig 2(C) shows the power spectral
densities during each phase that corresponds to the general EEG features during clinical anes-
thesia [24, 25]. The patients had normal and active EEG before anesthesia. With the deepening
of anesthesia, there was a decrease in beta activity and an increase in theta and delta activity.
During the RoC state, the EEG patterns acted in approximately reverse order form anesthesia
to awake state [40].

Parameter selection of CG-basedMSPEs computation was carried out to find proper
parameters. Two sets of EEG data, referring to awake state and unconsciousness, were picked
up from the simulated EEG and down sampled to 100 Hz. The selection criteria was based on
the performance in distinguishing awake and anesthetic states. Two parameter groups
N = 1000, m = 3 and N = 4000, m = 6 were designed for comparison. Other parameters were
set as τ = 1, a = 2 and q = 0.1 according to the selection result in the appendix [18]. Fig 3 shows
the changes of CG-SPE, CG-RPE and CG-TPE at five scales based on two sets of parameters in
different states. All the indexes monotonously decreased in anesthesia state. It is obvious that
in the N = 4000, m = 6 group, the differences between two states were more significant and this
indicated that the second group of parameters had better ability in distinguishing awake and
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Fig 2. Simulated EEG signal generated by tuning three modulatory inputs and the corresponding MSPE indexes. (A)

Three normalized modulatory inputs changed with time. IM,T, IM,R and IM,P represent the inputs to TCR, TRN and pyramidal cells,

respectively. (B) The simulated EEG signal obtained from the TCNMM model. (C) The power spectral densities of the signal in

different anesthesia states. (D) The CG-SPE, CG-RPE and CG-TPE indexes computed from the generated signal. (E) The

MA-SPE, MA-RPE, MA-TPE indexes computed from the generated signal. In (D-E), the MSPE indexes were delimited by

Multiscale Permutation Entropy in Depth of Anesthesia Monitoring

PLOS ONE | DOI:10.1371/journal.pone.0164104 October 10, 2016 7 / 22



anesthesia state. Therefore, N = 4000, m = 6, τ = 1, a = 2 and q = 0.1 were selected for CG-
basedMSPEs and N = 1000, m = 6, τ = 1, a = 2 and q = 0.1 for MA-based MSPE.

In order to assess the robustness of each entropy measure against noise, white Gaussian
noise with different intensities were added to the selected signal used in the parameter selection
part. The noise level was set so that SNR linearly increases from 0 to 30 dB. As shown in Fig 4,
six MSPE measures were applied to these 31 sets of noise-added signals with a moving-window
technique [41]. The SNR thresholds, below whichMSPEs cannot separate awake state and
unconsciousness, are summarized in Table 2. Lower SNR threshold represents better anti-
noise ability.

Overall, CG-basedMSPE measures had lower SNR thresholds indicating better anti-noise
ability than MA-based MSPEs. The thresholds decreasedwith the increase of scales, except
CG-basedmeasures at scale = 4,5. Compared to single-scale PEs, higher decomposition scale
can increase the robustness against white Gaussian noise. CG-basedmeasures at scale = 4,5
clashed with the conclusion, since the length of the signal had been shortened too much, lead-
ing to signal distortion. In the horizontal comparison, the results showed that RPE-based
MSPEs outperformed others in anti-noise ability with smallest SNR threshold.

Taking advantage of the selected parameters, the correspondingMSPEs of the produced
anesthesia signal were computed and shown in Fig 2(D) and 2(E). It was obvious that all the
indexes decreased in the unconsciousness and increased during the RoC state, which corre-
sponds to the assumption that the MSPE values in the awake state will be maximum, minimum
in the unconsciousness. It verified that the produced signal generated by the TCNMMmodel
could be used for MSPEs computation and MSPEs could track the dynamic features of anesthe-
sia EEG signal.

4. Application to Clinical Anesthesia EEG Recording

4.1 EEG data recording and preprocessing

In this study, the EEG recordings were obtained from 20 patients aged from 20 to 65, who were
classified as American Society of Anesthesiologists (ASA) physical status I or II. No special eti-
ologies and detectable underlying structural abnormality had been found. Written informed
consents were obtained for each participant according to the study protocol approved by the
ethics committee of second artillery general hospital of Chinese people’s liberation army.

Before surgery, patients were given midazolam and sufentainil for sedation. Then midazo-
lam, sufentainil, remifentanil and cisatracuriumwere injected for anesthesia induce. During
the surgery, remifentanil, propofol and dexmedetomidine hydrochloride injection were
adjusted to maintain anesthesia.

The EEG data was recorded by the Bio-Acquisition Systems (Bio-AMP8, Kangpu Medical,
Huzhou, Zhejiang) and consisted of pre-operation, operation and RoC state. The electrodes

vertical bars into four states: awake state, transition, unconsciousness and RoC state. IM,T, IM,R and IM,P represent modulatory

inputs for the TCR, TRN and the pyramidal population, respectively.

doi:10.1371/journal.pone.0164104.g002

Table 1. Modulatory inputs for TCNMM.

Awake state Unconsciousness RoC state

IM,T 4.5 2 4

IM,R -5.5 -5 -5.5

IM,P 130 50 90

doi:10.1371/journal.pone.0164104.t001
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were placed at the position of Fpz, Fp1 and F8 according to the 10–20 international standard
system and F8 was the ground electrode.

The sampling rate of EEG recording was 1000 Hz. First the low frequency baseline drift and
head movement noise were removed. Then, the data points with the absolute amplitude values
exceeding 300 μV were removed as the outliers. The signals were further preprocessed by a sta-
tistical threshold, which was set as mean±2SD. Then the main 50 Hz linear noise was removed
by a classical adaptive notch canceling method. Inverse filtering was used to remove EMG and
other high-amplitude transient artifacts [42]. The filter was adjusted by the least-mean-square
adaptive algorithm [43].

4.2 Results

First six MSPE measurements (CG-SPE, CG-RPE, CG-TPE,MA-SPE, MA-RPE, MA-TPE) at
five scales were calculated on anesthesia EEG signals recorded from 20 patients. CG-based
measures were computed over a window of 40 s with an overlap of 20 s and MA-based mea-
sures were computed over a window of 10 s with an overlap of 5 s. Fig 5(A) shows the EEG
recording of one patient and the whole process is divided into four parts: awake state, induc-
tion, unconsciousness and RoC state. Fig 5(B) shows the spectrogramof the EEG signal and it

Fig 3. The CG-SPE, CG-RPE and CG-TPE indexes with different parameters in awake and anesthesia states. (A-C)

The mean and standard deviation of three indexes with parameters: N = 1000, m = 6, τ = 1, a = 2 and q = 0.1 (D-F) The mean

and standard deviation of three indexes with parameters: N = 4000, m = 6, τ = 1, a = 2 and q = 0.1.

doi:10.1371/journal.pone.0164104.g003
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clearly presents the frequency changes in awake state, unconsciousness and RoC state. During
the transition from awake state to unconsciousness, the EEG lost power in high frequencies,
meanwhile, delta and alpha waves increased. The corresponding EEGmeasures at five scales
were shown in Fig 5(C)–5(H).

To display the variation trend plainly, the median values of all the indexes from 20 patients
in three states were plotted together for comparison in Fig 6. It is obvious that CG-SPE,
CG-RPE and CG-TPE at scale 1 and 2 had the same trend, i.e. decrease in the anesthesia state
and increase in the RoC state, while at scale 3, 4 and 5 the indexes rose in the anesthesia state

Fig 4. The values of six MSPEs versus signal to noise rate (SNR) in awake state (lines without circle) and unconsciousness (lines with

circle). Different colors represent different scales. Colored triangle symbols pointed out the SNR value where the indexes could tell awake state and

anesthesia state apart.

doi:10.1371/journal.pone.0164104.g004
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Table 2. The thresholds of SNR.

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5

CG-SPE 15 11 10 10 13

CG-RPE 14 11 10 10 13

CG-TPE 16 11 10 13 14

MA-SPE 21 18 16 13 10

MA-RPE 19 17 12 11 9

MA-TPE 20 18 16 15 11

doi:10.1371/journal.pone.0164104.t002

Fig 5. An EEG recording from one patient, its spectrogram and corresponding MSPE indexes. (A) The EEG recording. The EEG recordings are

divided into four states: awake state, induction, unconsciousness and RoC states. (B) The spectrogram of the EEG signal. (C-H) The corresponding

CG-SPE, CG-RPE, CG-TPE, MA-SPE, MA-RPE and MA-TPE indexes of the signal at five decomposition scales. Different colors represent different

decomposition scales.

doi:10.1371/journal.pone.0164104.g005
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and rose again in the RoC state, which violated the rule that PEs decrease in unconsciousness
coupled with large amplitude, low-frequencywaves. Therefore, the CG-basedMSPEs lost effi-
cacy at scale 3, 4 and 5 and this phenomenon may be related to shorten data length caused by
CG decompositionmethod at high scales. In terms of MA-SPE, MA-RPE and MA-TPE, all
scales had the same trends: drop in the anesthesia state and rise in the RoC state. Therefore,
only CG-basedMSPEs at scale = 1,2 and MA-based MSPEs can be used to track anesthesia sig-
nals. And only these methods were discussed in the following.

Six MSPE measures at scale 1 equal the corresponding PEs. The performance of the MSPEs
was compared with PEs to discover the advantages of MSPEs. In order to compare the ability
of the six measures in distinguishing different states, i.e., awake state, unconsciousness and
RoC state, two box plots of CG-based and MA-based MSPE measures were given in Figs 7 and
8, respectively. The Kolmogorov-Smirnov test showed that all the indexes in different states
were not normally distributed. The Kruskal-Wallis test and Multiple comparison test were
adopted to estimate the significant difference among three states. All the significant differences

Fig 6. The median values of six MSPE indexes in awake state (I), unconsciousness (II) and RoC state (III). The circles symbolize

the median values and different colors represent different decomposition scales.

doi:10.1371/journal.pone.0164104.g006
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of the six indexes were smaller than 0.001 (Kruskal-Wallis test and Multiple comparison test),
and this illustrated that all the indexes can significantly distinguish awake state, unconscious-
ness and RoC state.

As can be seen from Figs 7 and 8, CG-basedMSPEs at scale 2 had small variation between
different states than at scale 1, whileMA-based MSPEs had bigger variation range than CG
group. The difference values between different states of MA-based MSPEs were summarized in
Table 3. The sing-scale PEs had the biggest difference between unconsciousness and awake
state (difference = −0.16, −0.19, −0.15), while the difference betweenRoC and unconsciousness
state increasedwith decomposition scales. This verified that PEs can make a better distinction
between unconsciousness and awake state, but MSPEs have better distinction ability between
RoC and unconsciousness state. In terms of different PEs, SPE-basedMSPEs had smallest
range of variation. The differences betweenMA-SPE, MA-RPE, MA-TPE were negligible.

Fig 9 shows the absolute slope of changes for six MSPEs during the transition from awake
state to unconsciousness. As shown in the Fig 9, the absolute slopes of MSPEs at scale = 2,3
were smaller than PEs. MA-SPE and MA-RPE at scale = 4,5 had bigger absolute slope values
than PEs, suggesting that MA-SPE and MA-RPE at scale = 4,5 could respond faster to the
changes of DoA, especially at scale 5. Small differences were observed in tracking speed
betweenMA-SPE and MA-RPE. MA-TPE had bigger absolute slopes than other indexes at the
same decomposition level. Among the five scales of MA-TPE, single scaleMS-TPE had the rap-
idest speed to the changes of DoA. The tracking speed increasedwith the increasing of decom-
position scales for MA-TPE at scale 2–5.

To further evaluate the relationship between the indexes, the correlation coefficientsR were
calculated and shown in Fig 10. Notably, the correlation coefficient between five scales of
MA-SPE, MA-RPE and MA-TPE were all higher than 0.91, indicating that theses indexes cor-
related closely with each other. It can be seen from the figures that CG-basedMSPEs at scale 1

Fig 7. The statistical box plots of CG-SPE, CG-RPE and CG-TPE at scale 1 and 2 in awake state (I), unconsciousness (II) and RoC state (III).

S1, S2 represent scale 1 and 2, respectively.

doi:10.1371/journal.pone.0164104.g007
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Fig 8. The statistical box plots of MA-SPE, MA-RPE and MA-TPE at scale 1–5 in awake state (I), unconsciousness (II) and

RoC state (III). S1-S5 represent scale 1–5, respectively.

doi:10.1371/journal.pone.0164104.g008
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and 2 had high correlation coefficient (Rmin = 0.68) with other indexes, while CG-based
MSPEs at scale 3–5 had low correlation coefficientswith other indexes, which also indicates
that they failed to track the features of anesthesia signals.

5. Conclusion and Discussions

Multiscale permutation entropy provides a new perspective in neural population analysis. In
this study, six MSPE constructed by three kinds of permutation entropy measures (SPE, RPE
and TPE) and two multiscale decomposition procedures CG and MA, were analyzed. In previ-
ous study, MSE measures were used for off-line EEG analysis and the results turned out that
MSE measures could reflect the drug effect on the central nervous system [11]. In this paper,
MSPE were designed for on-line DoAmonitoring. Single-scale PEs were used as a test-bed to
verify the significance of the newmethods.

As we know, there are many other methods applied for DoAmonitoring, such as: spectral
edge frequency [44], median frequency [45–47], spectral entropy [48, 49], the bispectral index

Table 3. The value difference of MA-based MSPEs between different states.

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5

MA-SPE (-0.16, 0.19)a (-0.13, 0.20) (-0.12, 0.22) (-0.13, 0.28) (-0.13, 0.28)

MA-RPE (-0.19, 0.25) (-0.13, 0.25) (-0.10, 0.27) (-0.08, 0.31) (-0.06, 0.33)

MA-TPE (-0.15, 0.22) (-0.11, 0.23) (-0.10, 0.26) (-0.11, 0.31) (-0.11, 0.32)

a: (IndexUnconsciousness−IndexAwake, IndexRecovery−IndexUnconsciousness).

doi:10.1371/journal.pone.0164104.t003

Fig 9. Statistical analysis of the absolute slope for six MSPE indexes at five scales. The numbers

represent the mean values of absolute slope (*100) for each measure. The bar height indicates the mean

value, and the lower and upper lines are the standard deviation of the measures.

doi:10.1371/journal.pone.0164104.g009
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(BIS) [50–58], and the wavelet based index (WAV CNS) [59]. Among these methods, BIS is the
most commonly usedDoA index. However, previous studies found that the spectral feature
indexes do not correlate with all anesthetic drugs in dose—response relation [60], and the BIS
index is sensitive to artifacts, failed to regain its baseline value [61, 62]. Jin-Oh et al has verified
that WAV CNS exhibits linear time-invariant dynamics. On the other hand, methods based on
nonlinear dynamics and information theory have been proposed to estimate DoA, including
response entropy (RE) and state entropy (SE) [63], approximate entropy (AE) [64], sample
entropy (SampEn) [16], fuzzy entropy (FuzzyEn) [65], permutation entropy (PE) [17, 66],
Shannon wavelet entropy (SWE) [67], Hilbert-Huang spectral entropy (HHSE) [68], detrended

Fig 10. Correlation coefficient among six MSPE measures at five scales over 20 patients.

doi:10.1371/journal.pone.0164104.g010
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fluctuation analysis (DFA) [69] and so on. In [18], the capability of 12 entropy indexes and
DFA in DoAmonitoring were compared and the result showed that three PE measures were
superior than other entropies with less baseline variability, higher coefficient of determination
and prediction probability [18]. This motivates us to explore the feasibility of PE-basedMSE in
DoAmonitoring.

Except CG and MA procedures, there still exist other decompositionmethods, such as
wavelet transform (WT) and empirical mode decomposition (EMD). The intrinsic properties
of these two procedures are time-frequencydecomposition. They decompose the nonlinear
neural oscillation signal into different frequency bands regularly and provide excellent perfor-
mance in time-frequencydomain analysis [70–72]. However, PE is based on the computation
of symbolic dynamic of time series. ChoosingWT and EMD as the decompositionmethod to
constructMSE with PEs may induce lose effectiveness. Therefore, only CG and MA procedures
were considered as decompositionmethods in this study.

CG and MA procedures are typical morphologymethods and both of them have advantages
and disadvantages. The CG procedure reduces the length of a time series with the increase of
scales. It is superior in long-term time series analysis but may yield an imprecise estimation of
entropy in short-term time series [13]. In on-line signal analysis, since the length of the data
gathered may be limited, CG-basedMSPEs have poor performance in tracking characteristic
features. MAmethod solves this problem, but brings computing redundancy.

In this paper, a TCNMMmodel was introduced to produce noise-free EEG and test the
anti-noise ability of the six measures. Assuming the interactions among neural populations,
and incorporating the bursting mode into the thalamic populations, the TCNMMmodel was
constructed and we generated surrogate data of different anesthesia states fairly well by acting
on the modulatory inputs. The power spectrumcharacters of different states were similar with
the clinical EEG.

Through the simulated EEG and clinical EEG analysis, the performance of six MSPEs in
anti-noise ability, tracking the strength changes of neural oscillations and distinguishing the
different mental states were evaluated and concluded as follows:

1. In the aspect of anti-noise ability, CG-basedMSPE measures had better anti-noise ability
than MA-based MSPEs at the same decomposition level. In general, the increase of decom-
position scale can enhance the robustness against white Gaussian noise, which verified that
MSPEs outperformed PEs in this respect. Among SPE, RPE and TPE, RPE-basedMSPEs
had stronger noise resistance than others.

2. All the proposedMSPEs can significantly distinguish awake state, unconsciousness and
RoC states during anesthesia. The influence of decomposition scales on discrimination abil-
ity was negligible.

3. Considering the opposite tracking trend of CG-basedmeasures at scale = 3,4,5, CG-based
MSPEs were not suitable for on-line anesthesia EEG analysis, but they had advantage in
anti-noise in long-term data analysis. All the MA-based MSPE measures could track the
strength changes of neural oscillations.

4. In terms of the tracking speed, the tracking speed increasedwith the increasing of decompo-
sition scale from scale 2 to 5 for MA-based indexes. MA-SPE and MA-RPE at scale = 4,5
had faster response to DoA changes than PEs. MA-TPE has faster tracking speed than other
MSPEs at the same decomposition level and MA-TPE at scale 1 has the biggest absolute
slope among all the MSPEs.
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5. ComparingMA-SPE, MA-RPE and MA-TPE, they have equal competence in distinguishing
different anesthesia states, whileMA-RPE has better anti-noise ability than the other two
methods and MA-TPE can reveal the loss of consciousness faster.

In conclusion, we give an in-depth comparison of six MSPE measures and the results veri-
fied that MSPEs were superior to single-scale PEs with better robustness and faster tracking
speed in online DoAmonitoring. Synthesizing all the aspects, different MSPEs could be
selected for clinical anesthesia EEG analysis according to their particular features.

However, the following issues should be addressed and need to be further explored. Firstly,
the performance of different measures was only assessed with the TCNMMmodel and anes-
thesia EEG data sets. In consideration of the complexity of neural populations, the conclusion
may not be suitable for all neurophysiological signals. Second, since MSPEs have different
advantages in terms of different PEs and decomposition scales, in future study we could inte-
grate into a composite index, which may better reflect the inner characteristics of the nonlinear
signals. Further study is needed before incorporating the MSPE indexes into clinical DoAmon-
itoring system.
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S1 Fig. The changes of SPE with different parameters in different anesthesia states. I-IV
represent the combination of (m, τ) as (3, 1), (3, 2), (6, 1) and (6, 2), respectively. The red and
green color represent the awake state and anesthesia state, respectively.
(TIF)

S2 Fig. The changes of RPE and TPE with different parameters in different anesthesia
states. (A): The changes of RPE with 0< a< 1 and a> 1, a = 2 has the best discrimination
ability. (B) The changes of TPE with 0< q < 1 and q > 1, q = 0.1 has the best discrimination
ability. The red and green color represent the awake state and anesthesia state, respectively.
(TIF)

S1 File. The parameter selection of SPE, RPE and TPE; A thalamo-corticalneural mass
model for the simulation of anesthesia.
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