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Abstract

Owing to the development of computerized vision technology, object detection based on

convolutional neural networks is being widely used in the field of bridge crack detection.

However, these networks have limited utility in bridge crack detection because of low preci-

sion and poor real-time performance. In this study, an improved single-shot multi-

box detector (SSD) called ISSD is proposed, which seamlessly combines the depth separa-

ble deformation convolution module (DSDCM), inception module (IM), and feature recalibra-

tion module (FRM) in a tightly coupled manner to tackle the challenges of bridge crack

detection. Specifically, DSDCM was utilized for extracting the characteristic information of

irregularly shaped bridge cracks. IM was designed to expand the width of the network,

reduce network calculations, and improve network computing speed. The FRM was

employed to determine the importance of each feature channel through learning, enhance

the useful features according to their importance, and suppress the features that are insig-

nificant for bridge crack detection. The experimental results demonstrated that ISSD is

effective in bridge crack detection tasks and offers competitive performance compared to

state-of-the-art networks.

1. Introduction

As a fundamental component of the transportation system, the bridge not only takes responsi-

bility for transporting items but also ensures the safety of the transport personnel. However,

bridges are prone to various types of damage owing to natural or human factors. Among

them, deck cracks are a common problem in bridge services. Cracks in a bridge accelerate the

speed of corrosion of the armature, resulting in deterioration of the bridge structure [1]. Fur-

thermore, the presence of cracks affects the integrity, durability, and seismic performance of a

bridge and considerably reduces its quality [2, 3]. To maintain the healthy state of bridges, it is

important for the engineering community, national government administrative services, and

bridge construction companies to detect and repair cracks in a timely manner.

The development of bridge crack-detection methods has been relatively slow. Traditional

manual detection is not only time-consuming and laborious but also has many unsafe factors.

The bridge inspection vehicle is a special vehicle that can provide a working platform for
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bridge inspection personnel during the inspection process and is equipped with bridge inspec-

tion instruments for flow inspection and/or maintenance operations. However, its utility is

limited by its high production cost and complex manufacturing process.

Non-destructive testing technology has been widely used in the field of bridge crack detec-

tion. Common non-destructive testing methods include optical fiber sensing [4], ultrasonic

detection [5], and acoustic emission detection [6]. However, these non-destructive methods

have some limitations. Optical fiber sensing technology requires the laying of optical fibers,

which is expensive. Acoustic detection technology is only suitable for detecting cracks in a sin-

gle direction of a bridge deck with a small detection range. Acoustic emission detection tech-

nology can only detect cracks that are being generated at present and cannot detect cracks that

have previously formed. Therefore, the high detection cost, limited working conditions, and

inefficient detection speed limit the traditional detection methods based on manual detection

or instrument information characteristic analysis, and it is important to devise a new technical

means to carry out real-time and efficient bridge crack detection.

Computer vision technology has improved rapidly with the rapid development of computer

automation. As an important research topic in the field of computer vision, the main task of

object detection is to locate a target of interest in an image and accurately judge the specific

category and location of the target. In recent years, object detection has been widely used in

intelligent video surveillance, fault detection, medical treatment, and other fields. Many schol-

ars have proposed different types of object detection models for crack detection. Li et al. [7]

presented a model based on a support vector machine (SVM) to detect bridge cracks. Nishi-

kawa et al. [8] used several simple image filters to design a multi-sequential image filter. Wang

et al. [9] presented a model based on mathematical morphology for detecting cracks in steel.

Cha et al. [10] combined the Hough transform with an SVM to detect cracks. These methods

mainly use manually extracted features to detect cracks. Compared with the traditional crack

detection technology, it improves the detection accuracy and speed. However, the results of

these methods are affected by human subjective factors in feature processing, such as people’s

professional ability, grasp of standards, and other complex factors.

In recent years, convolutional neural networks (CNN) have made significant progress in

object detection [11–14]. Many researchers have applied CNN to crack detection. Chen et al.

[15] presented a network called NB-CNN, which combines a CNN with naïve Bayes data

fusion to detect cracks. This algorithm can only recognize the location of cracks with a low

detection accuracy. To achieve higher detection accuracy, Cha et al. [16] proposed a network

based on faster R-CNN [17]; however, a large number of parameters affect the network detec-

tion speed. Dung et al. [18] proposed a crack model based on a fully convolutional network

(FCN) for crack detection because the complex environmental noise that influences detection

accuracy is not high. Various algorithms have been applied to crack detection, but the data

samples used for model training are often collected in an ideal environment and manually

modified in the labeling process. During the actual detection of the model, the interference of

the environment (such as illumination, occlusion, jitter, etc.) will cause the domain offset of

the input image, reduce the model to extract useful crack features, and increase the difficulty

of the model feature processing. The output results are mixed with too many irrelevant fea-

tures, limiting the model’s detection accuracy. Therefore, most models have achieved good

results in the ideal environment, but the performance of the interference model of environ-

mental factors is significantly depressed in the actual detection. Given the limitations of tradi-

tional detection methods and the shortcomings of current deep learning detection algorithms,

to improve the detection accuracy, detection speed, and the robustness of detection methods,

this paper designs a new, efficient, and anti-interference bridge crack detection network based

on the theoretical knowledge of deep learning.
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The main contributions of this study are as follows:

• A deep separable deformation convolution operation is used to replace the conventional

convolution operation, which optimizes the fitting ability of the prediction box and

improves the feature extraction ability of the model.

• An inception module is introduced to expand the network width while controlling the

increase in the number of parameters, which reduces the calculations required for detection,

recognition, and classification and improves the detection speed of the model.

• The feature recalibration module, which combines the channel attention mechanism and

spatial mechanism, is applied to improve the detection accuracy of the network by suppress-

ing unimportant features while enhancing important features in space and channels.

The remainder of this paper is organized as follows. In the second section, we introduce

related studies. In the third section, we introduce the details of the proposed method. In the

fourth section, the details of the experiments on the proposed network and their results are

presented. Finally, in fifth section, a brief conclusion is presented.

2. Preliminaries and related work

Currently, object detection is widely used for intelligent video surveillance, fault detection,

medical treatment, and other fields. Many scholars have proposed different types of object

detection models based on convolutional neural networks, which can be roughly divided into

two types. The first type is a candidate region-based object detection model, represented by a

regional convolutional neural network (R-CNN) and a real-time regional recommendation

convolutional neural network (Faster R-CNN), which divides the detection process into two

steps. In the first step, feature information is extracted from the input image according to can-

didate region selection algorithms (such as selection search [19] and edge search [20], etc.).

The second step is to classify and adjust the position of the feature information obtained from

the candidate region and finally output the object detection results. Although these models

have high accuracy, the detection speed is slow, and it is difficult to meet the real-time require-

ments of bridge crack detection.

The second type is a regression-based object detection model represented by a single-shot

multi-box detector (SSD) [21] and unified real-time object detection (YOLO) [22]. Compared

to object detection models based on candidate regions, regression-based object detection mod-

els have a faster detection speed.

Fig 1 shows the structure of the SSD, which is divided into three parts: the main layer based

on VGG16(very deep convolutional networks for large-scale image recognition) [23], the

Fig 1. Structure of SSD.

https://doi.org/10.1371/journal.pone.0275538.g001
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feature extraction layer, and the classification layer. The VGG16 network structure in the main

layer was optimized. First, the sixth and seventh convolution layers, Conv6 and Conv7, are

used to replace FC6 and FC7 (fully connected layers) in the original structure of VGG16 to

avoid the interference of the full connection layer with the detection object features and posi-

tion information. Second, the feature mapping relationships of conv4_3, conv7_2, conv8_2,

conv9_2, conv10_2, and conv11 are combined to form a multiscale feature extraction layer in

the SSD. Finally, a 3×3 convolution is used to calculate the output feature graphs of the detec-

tion layer one by one to obtain the confidence required for detection target classification in the

target detection task, and another 3×3 convolution is used to obtain the position information

required for detection target regression in the object detection task. SSD adopts the method of

multiscale object detection and applies an end-to-end learning model for bridge crack detec-

tion. Bridge cracks and pavement cracks are equal to concrete surface cracks. Based on the

engineering application prospect of the crack detection method, this paper analyzes some rep-

resentative crack detection networks based on SSD. Yan et al. [24] designed a pavement crack

detection network based on SSD network by integrating the idea of deformation convolution,

which improved the accuracy of network crack detection. Yang et al. [25] embedded the recep-

tive field enhancement module into the SSD network to enhance its ability for crack feature

extraction and improve the crack detection accuracy of the network. Feng et al. [26] also pro-

posed an accurate bridge crack-detection algorithm based on an SSD. These algorithms can

achieve good detection results under the conditions of a simple background and no interfer-

ence but cannot meet the accuracy and speed requirements of bridge crack detection under

complex conditions. Therefore, the original SSD model was optimized in this study to improve

the detection accuracy and speed.

3. Methodology

The overall architecture of our proposed ISSD is shown in Fig 2, which introduces a composite

structure with the DSDCM (Depth-Separable Deformation Convolution Module) and the IM

(Inception Module) as the main components to extract features efficiently, and the FRM (Fea-

ture Recalibration Module) used to enhance the weight of effective features. Specially, given an

image x with size 300×300×3 and generate feature maps with sizes of 38×38×512, 19×19×1024,

10×10×512, 5×5×256, 3×3×256 and 1×1×256 respectively after different stages of DSDCM and

composite structure processing. Then FRM is introduced to calibrate the characteristic rela-

tionship between channels and suppress interference information for the above characteristic

maps of different scales to lay a solid foundation for the fusion of subsequent multi-scale char-

acteristic maps. Finally, the fused characteristic map outputs the final detection results under

the action of NMS (Non-Maximum Suppression). More implementation details regarding

DSDCM, IM, and FRM are described in the following subsections.

3.1 Depth separable deformation convolution module (DSDCM)

3.1.1 Deformation convolution. Conventional convolution kernels are usually of fixed

size (e.g., 3×3, 5×5, and 7×7), whereas the adaptability of the model to the geometric deforma-

tion of objects is almost entirely due to the diversity of the data [27]. In the bridge crack detec-

tion task, the conventional convolution has an insufficient fitting ability for narrow and long-

strip bridge cracks, which leads to a low accuracy of the detection results. Therefore, we

adopted the convolutional kernel distribution form, which offsets the position of each sam-

pling point in the conventional convolution kernel to shift the position of the sampling point,

realizing arbitrary deformation of the convolution, aiming to enhance the feature extraction

PLOS ONE Bridge crack detection based on improved single shot multi-box detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0275538 October 4, 2022 4 / 21

https://doi.org/10.1371/journal.pone.0275538


ability of the model for bridge cracks. Typical cases of deformable convolutions are shown in

Fig 3.

The conventional convolution operation is divided into two steps [28]. In the first step,

region R, which corresponds to the receptive field of the convolution kernel, is sampled on the

input feature map. The second step is to successively sum the values of each sampling point

and the weights of the corresponding convolution kernel positions. Region R defines the size

of the receptive field, as shown in Eq 1.

R ¼ fð� 1; 1Þ; ð� 1; 0Þ; � � � ð0; 1Þ; ð1; 1Þg ð1Þ

A point is convoluted in the output characteristic graph y:

yðp0Þ ¼
X

pn2R

oðpnÞ � xðp0 þ pnÞ ð2Þ

where pn represents the elements in the receptive field and x is the input feature graph.

The deformed convolution kernel is obtained by shifting each element in the conventional

convolution receptive field R.

yðp0Þ ¼
X

pn2R

oðpnÞ � xðp0 þ pn þ4pnÞ ð3Þ

The offsets are {4pn|n = 1,2,3� � �,N} and N is the number of elements in the receptive field

R.

Because the offsets are not integers, deviations exist between the location of the sampling

points and the actual pixel points of the feature map after the deformation operation of the

Fig 2. Structure of ISSD.

https://doi.org/10.1371/journal.pone.0275538.g002
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convolution kernel. In this case, a bilinear interpolation method was used for processing.

xðpÞ ¼
X

q

Gðq; pÞ � xðqÞ; ð4Þ

xðpÞ ¼
X

q

gðqx; pxÞ � gðqy; pyÞ � xðqÞ; ð5Þ

xðpÞ ¼
X

q

maxð0; 1 � jqx � pxjÞ �maxð0; 1 � jqy � pyjÞ � xðqÞ; ð6Þ

where p = (p0+pn+4pn), q enumerates the positions of all integral spaces in the feature graph,

and G(.,.) represents the bilinear interpolation kernel.

3.1.2 Depth separable convolution. Conventional convolution operations combine chan-

nel and dimensional mappings. Depth separable convolution [29] deals not only with the spa-

tial dimension but also with the relationship between the depth dimension and channel.

Fig 3. Three typical cases of convolution kernel shifting of conventional convolution. Group A is the conventional

distribution, Group B is the distribution after arbitrary migration, Group C is the distribution after scaling

transformation and Group D is the distribution after rotational transformation.

https://doi.org/10.1371/journal.pone.0275538.g003
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Conventional convolution performs convolution operations on all channels in the input image

areas. Depth separable convolution uses different convolution kernels on different channels to

perform convolution operations. The operation processes of deep separable convolution are

divided into two steps. The first step is a channel-by-channel convolution operation, in which

three feature images are generated by the deep convolution operation. The second step is a

point-by-point convolution operation, in which the three feature images generated by channel

convolution are weighted in the depth direction, and a new feature map is generated. The

deep-separable convolution processes are illustrated in Fig 4.

The number of parameters and amount of computation in the convolution affect the detec-

tion speed of the model. Compared with conventional convolution kernels, deep separable

convolution kernels significantly reduce the number of parameters and the amount of

computation.

Assuming that the input image is Dk•Dk•M, the size of the convolution kernel is Df•Df•M
and its number is N.

The number of parameters of conventional convolution is then calculated by

Zr ¼ Dk � Dk � Df � Df �M � N ð7Þ

The number of parameters of deep convolution is calculated by

Zd ¼ Dk � Dk � Df � Df �M ð8Þ

The number of parameters of point-by-point convolution is calculated by

Zp ¼ Dk � Dk �M � N ð9Þ

The number of parameters of deep separable convolution is calculated by

ZD ¼ Dk � Dk �MðDf � Df þ NÞ ð10Þ

By comparing Formula 7 with Formula 10, it can be seen that depth separable convolution

can greatly reduce the number of model parameters and improve the efficiency of model oper-

ation by decoupling spatial and depth information.

3.1.3 Depth separable deformable convolution. A deformable convolutional network is

a variant of a convolutional neural network that is very effective for solving complex visual

Fig 4. Schematic diagram of depth separable convolution.

https://doi.org/10.1371/journal.pone.0275538.g004
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tasks and learning dense spatial changes. Depth separable convolution mainly achieves model

acceleration by decoupling spatial and depth information, which can further reduce the detec-

tion time of the model in practical applications. In this study, deep separable convolution is

mainly integrated into the process of deformable convolution, and a deep separable deform-

able convolution module is proposed, which can further enhance the feature extraction ability,

reduce the number of parameters, reduce the size, and improve the running speed of the net-

work model. The entire process of deep-separation deformable convolution was divided into

three steps, as shown in Fig 5. First, deep separation deformable convolution was used to sam-

ple the input feature maps to obtain the offset of each pixel point. Subsequently, a bilinear

interpolation algorithm was used to obtain the pixel amount of each pixel point offset, which is

equivalent to generating deformation on the convolution kernel to achieve the purpose of sam-

pling the variable shape. Finally, the deformable convolution operation was performed with

the convolution kernel with an offset on the input feature maps. Deep separation deformable

convolution reduces the number of network parameters, and hence not only improves the

speed of network operation but also improves the degree of network sparseness and enhances

the ability of network feature extraction.

3.2 Inception module (IM)

The most direct way to improve the deep neural network is to increase the scale of the net-

work. It includes increasing the depth and width of the network. Considering that the edge fea-

ture is the main feature of the cracks, the deepening of the network will lead to the decline of

shallow feature learning ability, which is not conducive to detecting the cracks. Therefore, we

choose to increase the size of filter banks in each layer, increase the width of the network, and

then improve the network’s performance. However, this method has two shortcomings: 1) A

larger size usually means more parameters, and it is easier to cause overfitting of the network,

especially in the case of insufficient samples. 2) Even if the size of each layer of the network is

increased evenly, the total amount of computation will be increased sharply. Moreover, many

operations will be wasted when the network capacity is underutilized. Inspired by reference

[30], we adopted a sparse processing method in the feature dimension to alleviate the

Fig 5. Schematic diagram of the depth separable deformable convolution.

https://doi.org/10.1371/journal.pone.0275538.g005

PLOS ONE Bridge crack detection based on improved single shot multi-box detector

PLOS ONE | https://doi.org/10.1371/journal.pone.0275538 October 4, 2022 8 / 21

https://doi.org/10.1371/journal.pone.0275538.g005
https://doi.org/10.1371/journal.pone.0275538


shortcomings caused by increasing the network width. Specially, an inception module in an

SSD network was introduced to increase the network parallel computing ability and reduce

the number of parameters. In addition, considering the limitation of computing resources of

the field crack detection platform, we optimize it based on the original inception module. Spe-

cifically, we used 1×1 convolution as a reduced layer to reduce the number of channels and the

amount of calculation. Further, we employed two 3×3 convolution to replace the 5×5 convolu-

tion in the original structure to achieve less parameter calculation under the premise of the

same receptive field [31]. Compared with the original structure, the optimized structure not

only reduces the number of module parameters, improves the reasoning speed of the whole

network, but also increases the adjustment performance of the module to the dimension of the

feature map, realizes cross-channel information combination, and is conducive to the

enhancement of the overall detection performance of the network. The structure comparison

of inception module is shown in Fig 6.

The introduction of inception modules in the feature extraction stage of the optimized

model improved the feature fusion capabilities in the hidden layers of the model and fully

broadened the channels of contextual information sharing. This method was helpful in

improving the feature extraction efficiency of the bridge crack model. Although the optimized

model increased the structural redundancy and the number of parameters, the changes in the

parameters in the feature layers were controlled in a small range, and the feature extraction

results were normalized in batches before entering the recognition layer. Thus, the increases in

calculation were not obvious, and the detection speed of the model was improved.

3.3 Feature recalibration module (FRM)

To make the network pay more attention to channel features with effective information, sup-

press irrelevant features, and calibrate the feature relationship between channels, FRM was

introduced into the network. The FRM adopted the design idea of squeeze-and-excitation

Fig 6. Schematic diagram of the inception structure. Group A represents the structure of the original inception and Group B represents the structure of the

improved inception.

https://doi.org/10.1371/journal.pone.0275538.g006
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networks (SENet) [32], and its structure is shown in Fig 7. The FRM process can be divided

into three steps. First, the input feature maps were compressed to obtain global information,

and the specific formula is as follows:

zc ¼ FsqðucÞ ¼
1

H �W

XH

i¼1

XW

j¼1

ucði; jÞ; ð11Þ

where H and W represent the height and width of the characteristic graph, respectively. uc rep-

resents the c-th channel of the characteristic graph; uc(i, j) represents the pixels of the i-th row

and j-th column in the c-th channel; and zc represents the output after the compression

operation.

Second, the channel features obtained by the compression operation are activated to gener-

ate the weight of each channel. The specific formula is as follows:

s ¼ Fexðz;wÞ ¼ s½w2φðw1zÞ�; ð12Þ

where w1 and w2 represent the fully connected operation, s represents the weight generated, φ
represents the ReLU activation function, and σ represents the sigmoid function.

Finally, the weight generated in the activation operation is assigned to different channels,

and the specific formula is as follows:

yc ¼ Fscaleðuc; scÞ ¼ sc � uc; ð13Þ

where yc represents the output matrix of the c-th channel.

FRM automatically obtained the importance of each feature channel through learning,

improved the useful features according to their importance, and suppressed the features that

were not useful for the current task; thus, the weight of the effective feature map was large, and

the weight of the invalid or small effect feature map was small, which improved the detection

of bridge cracks.

3.4 Loss function

The loss function of the entire network is composed primarily of position loss (Lloc) and confi-

dence loss (Lconf). The position loss uses the SmoothL1 loss function to calculate the error

between the ground truth box and the prediction box, and the confidence loss uses the Softmax

loss function to calculate the correct detection probability. The total loss function of network

includes classification loss function and regression loss function. The specific formula of the

total loss function of the network is as follows:

Lðx; c; l; gÞ ¼
1

N
Lconf ðx; cÞ þ aLlocðx; l; gÞ
h i

; ð14Þ

Fig 7. Structure of the feature recalibration module.

https://doi.org/10.1371/journal.pone.0275538.g007
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where L(x,c,l,g) denotes the total loss function, c represents the degree of confidence, l repre-

sents the prediction box, g represents the ground truth box, N represents the number of

matches between the ground truth box and the prediction box, α represents the weight coeffi-

cient, and x = {0,1}. When the IOU (intersection over union) is greater than the threshold (set

to 0.5 in this study), x = 1. Otherwise, x = 0.

The specific formula of the position loss function is as follows:

Llocðx; l; gÞ ¼
XN

j

XN

i2P

X

m2fox ;oy ;w;hg

xkijSmoothL1ðlmi �
_
gmj Þ; ð15Þ

SmoothL1 ¼
0:5x2 jxj < 1

jxj � 0:5 jxj � 1
;

(

ð16Þ

where i2P represents the i-th prediction box area as a positive sample, ox and oy represent the

offsets in the x and y directions between the center of the prediction box or the ground truth

box and the default box, respectively; w and h represent the deviation between the width and

height of the prediction box or the ground truth box and the default box, respectively; xkij 2
f0; 1g (when the i-th prediction box matches the j-th ground truth box, xij = 1, otherwise xij =

0),
_
gmj is the position parameter of the ground truth box after encoding, and lmi is the position

parameter of the prediction box.

The specific formula of the confidence loss function is as follows:

Lconf ðx; cÞ ¼ �
XN1

j

XN1

i2P

xpijlogðĉ
p
i Þ �

X

i2N1

logðĉ0

i Þ; ð17Þ

ĉpi ¼ expðcpi Þ=
X

p

expðcpi Þ; ð18Þ

where i2N1 represents the i-th prediction box area as a negative sample, ĉ0
i is the probability

that the prediction box is the background, and ĉpi represents the probability calculated by the

Softmax function.

4. Experiment and results

The bridge crack dataset used for model training and testing was introduced, and the effective-

ness of each method was verified separately. The proposed network was then compared with

FCN [33], SSD, U-Net [34], CrackDFANet [35], LDCC-Net [36], FPHBN [37], and (ABCNet)

Network in reference [38]. Finally, conclusions were drawn by analyzing the experimental

results.

4.1 Experimental dataset and computer environment

In this study, two crack datasets were used as samples: the SDNET [39] and CCIC datasets

[40]. The images in the SDNET dataset were collected from walls, roads, and bridge surfaces.

The entire dataset contained more than 56000 images which were divided into those with and

without cracks. The CCIC dataset collected 40000 images of cracks and noncracks. The inher-

ent data hunger of deep learning network makes the network training need massive data as

support. This paper analyzes the characteristics of data samples in SDNET and CCIC, and con-

structs a new dataset according to the data fusion principle of similar label merging. To better
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train the network, this paper adopts 300×300 fixed size nonoverlapping clipping windows to

randomly selected 16000 images from the SDNET dataset and 14000 images from CCIC to

combine into a larger crack dataset called the WCD dataset. Samples from the WCD dataset

were proportionally divided into a training set and a test set. The number of different samples

in the WCD dataset is listed in Table 1.

The bridge crack-detection model proposed in this study is a program environment built in

the TensorFlow framework. The experimental hardware was a Dell Precision T3630 worksta-

tion; the specific parameters of the workstation are listed in Table 2.

4.2 Evaluation indicators

There are various object detection models based on the convolutional neural network, and the

principles of object detection are different for different detection models. To quantitatively

evaluate the detection performance of the models, we must establish a corresponding reference

standard to evaluate the detection performance of all models comprehensively and objectively.

The commonly used evaluation indexes of object detection include the mean accuracy and

number of images processed per second (FPS) [41].

The confusion matrix is the most basic and intuitive method for measuring an object detec-

tion model [42]. The confusion matrix includes the following four indicators:① The true

value is positive, and the model considers it to be positive (true positive = TP).② The true

value is positive, but the model considers it to be negative (false negative = FN).③ The true

value is negative, but the model considers it positive (false positive = FP).④ The true value is

negative, and the model considers it to be negative (true negative = TN). False negatives are

statistical errors of the first type, and false positives are statistical errors of the second type.

Because the indicators in the confusion matrix count the number of samples, it is difficult

to accurately evaluate the model using only the number of samples when processing a large

amount of data. Four secondary indicators were extended from the basic statistical results of

the confusion matrix: accuracy, accuracy rate, and recall rate.

Accuracy is the proportion of all correctly judged results in the model to the total observed

values, and its formula is shown in Eq (18).

Acc ¼
ðTP þ TNÞ

ðTP þ TN þ FPþ FNÞ
ð19Þ

Table 1. Number of different samples in the WCD dataset.

Type SDNET CCIC

Crack Non-crack Crack Non-crack

Train 6000 6000 5000 5000

Test 2000 2000 2000 2000

https://doi.org/10.1371/journal.pone.0275538.t001

Table 2. Specific index parameters of the workstation.

Hardware/Software Specification/Parameters/Version

CPU Intel Core i5 8 Generation

GPU NVIDIA GeForce GTX1060/6GB

RAM 8GB

Anaconda 3–5.1.0

Python 2.7.5

TensorFlow 1.10

https://doi.org/10.1371/journal.pone.0275538.t002
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Accuracy rate refers to the proportion of all results in which the model prediction is positive

and correct. Its formula is shown in (19).

Pre ¼
ðTPÞ

ðTP þ FPÞ
ð20Þ

The recall rate refers to the proportion of all results whose true values are positive and cor-

rectly predicted by the model. Its formula is shown in (20).

Rec ¼
ðTPÞ

ðTP þ FNÞ
ð21Þ

Since precision and recall are a pair of contradictory indicators, in general, when the preci-

sion value is high the recall value is often low, and when the recall value is high the precision

value is often low. In order to comprehensively consider the influence of these two indicators,

F−measure (weighted harmonic mean of Precision and Recall) is proposed, and its formula is

expressed as shown in (21).

F � measure ¼ 2
ðPre� RecÞ
ðPreþ RecÞ

ð22Þ

F−measure not only improves the precision and recall rates but also ensures that the gap

between them is narrowed as much as possible to measure the detection efficiency of the

model more comprehensively.

In the statistical analysis of the model test results, the recall rate value is typically used as the

abscissa, and the precision rate value is used as the ordinate to draw the P–R curve. By observ-

ing the fluctuation of the P–R curve, the precision rate can be negatively correlated with the

recall rate value. IOU [43] reflects the correlation between the predicted value detected by the

model and the real value of the objects. IOU was calculated as follows:

IOU ¼
areaðBdet \ BgtÞ

areaðBdet [ BgtÞ
; ð23Þ

where Bdet represents the size of the detection box, Bgt represents the size of the calibration

box of the detection target, area(Bdet\Bgt) represents the coincidence area of the two boxes,

and area(Bdet[Bgt) represents the total area of the two boxes combined.

The higher the correlation, the higher is the IOU. In the model training process, thresholds

of different IOU should be set to measure the detection accuracy of the model. Experimental

results in [36] show that it is appropriate to set the threshold value of IOU as 0.5 in the bridge

crack detection task. The accuracy of model detection is usually described by a precision–recall

curve (PR curve). The PR curve takes the recall rate as the vertical axis and accuracy as the hor-

izontal axis. The accuracy curve of the recall rate is commonly used to measure the detection

performance of the models. The curve generally showed that the recall rate was low when the

accuracy was high, and when the recall rate was high, the accuracy was low.

4.3 Network training

Learning rate is a key parameter in network training. An unreasonable learning rate will lead

to the problem of gradient explosion or gradient disappearance of the network and failure to

complete the training. A reasonable learning rate will promote network convergence. The rela-

tionship between the loss function value and number of epochs at different learning rates in

the network training process is shown in Fig 8. The curve variation trend indicated that when

the learning rate was 0.0001, the loss function curve declined slowly, and a long time was
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required to reach convergence. When the learning rate was 0.001, the loss function curve

decreased rapidly and converged within a short time. When the learning rate was 0.1, the loss

function curve decreased rapidly in the early stages and gradually in the later stages. When the

learning rate was 1.0, a gradient explosion occurred in the training stage of the network, and

the network could not complete the training. Therefore, the learning rate was set as 0.001. Fur-

thermore, this paper compares three commonly used gradient descent methods, namely batch

gradient descent method (BGD), random gradient descent method (SGD), and small-batch

gradient descent method (MBGD). BGD sacrifices speed while pursuing accuracy. Too slow

convergence speed can not meet the timeliness requirements of detection. On the contrary,

SGD adopts the strategy of reducing iterative samples to improve the update speed of each

round of parameters. However, it isn’t easy to ensure detection accuracy. Considering the

small scale of bridge crack samples and the large sample size of the data set, we use MBGD

with a batch size of 32 and weight attenuation of 0.0001 to balance speed and accuracy.

Epoch refers to sending all training samples to the network to complete forwarding calcula-

tion and backpropagation. With the increase in the number of epochs, the number of weight

update iterations increases, and the network’s performance also changes. A reasonable number

of iterations is the key to practical training the network to achieve the best state. Fig 9 shows

the results under the different epochs. When the number of iterations is small (100 epochs),

the network is in the state of fitting, and the detection effect is poor, resulting in the loss of 6

parts in the results. As the number of iterations increases to 160 epochs, the detection perfor-

mance of the network is gradually improved, the detection accuracy of the network is

improved, and the missing detection part is reduced to 4. When the number of iterations

reaches about 220, the detection performance of the network comes the best. However, due to

the crack scale, there is still a lack of some detailed features. When the number of iterations is

Fig 8. Curves of training loss with different learning epochs.

https://doi.org/10.1371/journal.pone.0275538.g008
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280 epochs, the number of detected errors will be increased from the area of no cracks to the

size of no cracks. This shows that the network has the trend of overfitting. With the increase of

training times to 340 times, the network presents the state of overfitting, the area of false detec-

tion object increases to 7, and the area of incorrect detection area will not expand. Therefore,

we set the number of iterations to 220, maintaining the convergence consistency of network

training loss under different learning rates.

In addition, other specific training parameters were set during the training process, as listed

in Table 3.

4.4 Effectiveness of network structure

To evaluate the effectiveness of the components of the proposed ISSD, ablation experiments

were performed on the WCD dataset. SSD(VGG-16) was used for comparison with the same

parameter settings, and the experimental results are presented in Table 4.

Several conclusions can be drawn from the results. First, the proposed network ISSD can

achieve superior performance compared to other networks (Precision: 0.9053, Re: 0.9116, F-

measure: 0.9084, FPS: 75). Second, the components of the proposed ISSD can improve the

detection accuracy and speed of the network. Comparing the results of SSD with and without

the proposed components, it can be seen that the DSDCM improved the F-measure by 4%, the

IM enhanced the FPS of the network by 21%, and the FRM increased the F-measure by 5%.

Third, different components optimize the network to different degrees. In particular,

Fig 9. Comparison of output results at different epochs. The green boxes locate the missing detection parts of the detection results and the red boxes locate

the false detection parts of the detection results.

https://doi.org/10.1371/journal.pone.0275538.g009

Table 3. Network parameter setting.

Type Parameter Value

training Initial learning rate 0.001

Momentum 0.9

Weight decay 0.0001

testing Initial learning rate 0.001

Momentum 0.9

Weight decay 0.0001

https://doi.org/10.1371/journal.pone.0275538.t003
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comparing the results of SSD + FRM and SSD + DSDCM, it can be seen that the accuracy of

the former has a 1% advantage over the latter, which shows that FRM reduces the impact of

negative samples on network accuracy and is conducive to the improvement of network accu-

racy. Comparing the results of SSD + DSDCM and SSD + IM, it can be seen that the detection

speed of the latter is 60 FPS, which is higher than that of the former at 52FPS. The superior

performance is due to IM improving the network parallel computing ability and reducing the

number of parameters. Based on the comprehensive analysis of the above experimental results,

the bridge crack detection network ISSD designed in this paper has dramatically improved the

detection accuracy and detection speed compared with the original network (the accuracy

advantage is about 13%, and the speed advantage is about 28%). The superior performance

shows that the SSD algorithm has enough room for improvement in solving practical engi-

neering problems and effectively promotes the application of SSD algorithm-based detection

networks in the field of bridge cracks.

4.5 Comparison with state-of-the-art bridge crack detection networks

4.5.1 Overall performance analysis. To prove that the ISSD was more competitive than

the other bridge crack networks, the proposed network was compared with the FCN, SSD,

U-Net, CrackDFANet, LDCC-Net, FPHBN and ABCNet. All the networks were trained and

tested on the same hardware platform using the same dataset. Table 5 shows a series of quanti-

tative experimental results. On the whole, the F-measure of all networks is more than 0.8.

which indicates that all networks have certain detection performance. Specifically, the F-mea-

sure of FCN is lower than 0.8, the F-measure of FPHBN and ABCNet are close to 0.87, and

that of the remaining networks is about 0.89. The F-measure of ISSD is the most prominent,

reaching 0.912, which shows that ISSD is good at capturing local details, which are often rich

in texture features, and are very important in bridge crack detection.

Further, we compared the computational efficiency and computational complexity of all

networks, as shown in Table 6. In the experiment, all networks run the same number of itera-

tions under the same hardware platform and experimental settings. The results show that in all

models, the floating-point computation of ISSD and LDCC is the lowest, far lower than that of

Table 4. Validation results of components in the ISSD.

Network Accuracy Precision Recall F-measure FPS

SSD 0.7835 0.7795 0.7846 0.7820 53

SSD+DSDCM 0.8321 0.8249 0.8297 0.8273 52

SSD+IM 0.8153 0.8048 0.8131 0.8089 60

SSD+FRM 0.8415 0.8357 0.8386 0.8371 54

ISSD 0.9153 0.9053 0.9116 0.9084 75

https://doi.org/10.1371/journal.pone.0275538.t004

Table 5. The results of different networks on the WCD dataset.

Network Precision Recall F-measure

FCN 0.801 0.791 0.796

U-Net 0.887 0.873 0.880

CrackDFANet 0.895 0.881 0.888

LDCC-Net 0.896 0.883 0.889

FPHBN 0.851 0.849 0.850

ABCNet 0.869 0.857 0.863

ISSD 0.901 0.917 0.912

https://doi.org/10.1371/journal.pone.0275538.t005
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other networks. In addition, ISSD and LDCC net’s reasoning speed is outstanding, exceeding

73 FPS. Although LDCC is close to ISSD in terms of computational efficiency and computa-

tional resource complexity, based on Table 5, ISSD achieves the best detection effect with the

highest computational efficiency and the lowest computational resource complexity.

To intuitively analyze and compare the detection performance of the network, we selected

four kinds of crack samples for depth visual feature analysis. Fig 10 shows the detection results

of the networks: single shape sample (row 1), composite shape sample (row 2), regional inter-

ference sample (row 3), and robust interference sample (row 4). The single sample detection

results show that the all networks can describe the crack shape and its area to varying degrees.,

except for the interference of environmental noise. Specifically, the results of FCN, FPHBN,

and ABCNet are disturbed by the environment to varying degrees. LDCC-Net and ISSD are

more refined to extract crack texture features, which is conducive to detecting cracks. By ana-

lyzing the detection results of composite shape samples, it is found that the FCN network lags

behind other networks in the expression of crack detail information, which is due to the com-

plete convolutional structure of FCN. The detailed information is diluted in the progressive

pooling operation, which affects the expression of local features of the network. The robust fea-

ture extraction ability and excellent negative sample screening ability of the network ISSD

designed in this paper support its accurate expression of the crack shape of the composite

Table 6. The computational efficiency and computational complexity of different networks.

Network Epochs Flops FPS

FCN 220 15.4G 28

U-Net 220 5.21G 31

CrackDFANet 220 1.32G 73

LDCC-Net 220 1.29G 75

FPHBN 220 2.73G 58

ABCNet 220 1.36G 62

ISSD 220 1.28G 77

https://doi.org/10.1371/journal.pone.0275538.t006

Fig 10. Visualization of detection results of compared networks on the WCD dataset.

https://doi.org/10.1371/journal.pone.0275538.g010
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structure. The background of the other two types of samples is complex. There are different

degrees of interference. Compared with the detection performances of the first two samples,

the performance of FCN is weakened to the greatest extent, and other networks are also signifi-

cantly suppressed. U-net, CrackDFANet, and LDCC-Net cannot even wholly depict the shape

of cracks. Such results show that for the network based on visual feature detection, the interfer-

ence factors in the environment have a significant limit on the network performance. The

ISSD network designed in this paper only achieves relatively stable detection results and can-

not eliminate this limit.

4.5.2 Performance in real images. To further compare the anti-jamming capability of the

network, we select four kinds of crack samples for depth visual feature analysis. Fig 11 shows

the detection results of the network: the transverse crack sample under substantial interference

(row 1), the transverse crack sample under shadow interference (row 2), the cross-crack sam-

ple under large-area interference (row 3), and mesh crack sample under substantial interfer-

ence (line 4). The first set of experiments (row 1) shows substantial interference, which

undoubtedly poses a challenge to crack detection. Although ISSD improves the noise reduc-

tion ability to a certain extent, it is still not ideal. For the input image of the shadow interfer-

ence area (row 2), the detection results of all networks interfere to varying degrees. FCN and

FPHBN have seriously interfered. The rest of the networks can alleviate the interference of

shadow on the detection results to a certain extent, but ISSD can extract the crack texture fea-

tures more fully, which shows that ISSD still maintains a robust feature ability under certain

interference conditions. For the input image with extensive area interference (row 3), the opti-

mization strategy adopted by the network is challenging to deal with due to the prominent

visual characteristics of the background, and the detection results of the all networks are dis-

turbed. Unlike the last three experiments, the crack shape of the samples selected in the fourth

group is more complex, posing a new challenge to the network(row4). Due to the influence of

background interference, the ability of the network to extract network crack features is

reduced. In addition, the networks can not accurately predict the crack part’s shape, and the

detection effect is not ideal. From the processing results of the above four complex samples,

the network proposed in this paper has achieved relatively stable optimization results in

Fig 11. The visualization of detection results of compared networks in real images.

https://doi.org/10.1371/journal.pone.0275538.g011
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enhancing the target and reducing the interference. However, in terms of engineering practice,

it is a severe challenge to realize the ability of anti-interference and anti-noise.

5. Conclusion

This study proposes a bridge crack detection model ISSD, which combines DSDCM, IM, and

FRM closely and seamlessly. Specifically, DSDCM improves the crack feature extraction ability

of the model, IM improves the reasoning speed of the network, and FRM alleviates the inter-

ference of irrelevant channel features. Further, a series of experiments show that compared

with several existing crack detection networks, ISSD has better performance, reaching 0.912 F-

measure and 77 FPS. Although the proposed ISSD method can obtain more satisfactory per-

formance than other methods, the complexity of neural network structure and computing

power requirements are significant challenges for the current portable bridge crack detection

terminal. In addition, the anti-interference ability of the network is still difficult to overcome

all kinds of environmental noise in engineering applications. We will focus on these issues in

future research.
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