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Abstract: Mumps is a common childhood viral disease and children have been vaccinated throughout
the world since 1967. The incidence of mumps has increased with more than 300,000 young people
infected with mumps annually in mainland China since 2005. Therefore, we designed and analyzed
long-term mumps surveillance data in an SVEILR (susceptible–vaccinated–exposed–severely
infectious–mildly infectious–recovered) dynamic transmission model with optimized parameter
values to describe the dynamics of mumps infections in China. There were 18.02% of mumps
infected young adults seeking medical advice. The vaccine coverage has been insufficient in China.
Young adults with frequent contact and mild infection were identified as a major driver of mumps
epidemics. The reproduction number of mumps was determined 4.28 in China. Sensitivity analysis
of the basic reproduction number and the endemic equilibrium was conducted to evaluate the
effectiveness of mumps control measures. We propose to increase the vaccine coverage and make
two doses of MMR (Measles, mumps and rubella) vaccines freely available in China.

Keywords: basic reproductive number; global stability; sensitivity analysis; SVEILR mumps model;
vertical transmission

1. Introduction

Mumps is best known as a common childhood viral disease and is highly contagious to human
beings. Initial signs and symptoms often include fever, muscle pain and headache, then usually
followed by painful swelling of one or both parotid salivary glands [1]. The disease caused by the
mumps virus, the causative agent of mumps infection, is an enveloped RNA virus [2]. Since the disease
is generally benign and self-resolving, its mortality is rare, but aseptic meningitis can affect 10% of
case-patients [3]. Mumps is a significant cause of pediatric deafness, and up to 37% of post-pubertal
males develop orchitis, 13% of whom have impaired fertility [1].

Due to the lack of vaccines, most teenagers have been mainly infected by those patients aged
4–15 years. Transmission of the virus is by direct physical contact, droplet spread, or contaminated
fomites [4–6]. The incubation period is about 15 to 24 days (median is 19 days) [7]. Infected patients
become the most contagious in 1–2 days before onset of clinical symptoms and continue so for a few
days afterwards. Generally speaking, the infectious period is about eight days [8], and the patients
will recover between 10 to 14 days [9,10].
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Mumps has periodic outbreaks and no specific antiviral therapy, and treatment is just mostly
symptomatic and supportive [11]. In 1967, the attenuated mumps virus vaccine was licensed in
the United States [12]. In addition, mumps is preventable by two doses of the mumps vaccine in
many developed countries nowadays [13]. They includes it in their immunization programs, often in
combination with measles and the rubella vaccine [14,15]. Nowadays, children aged 18–24 months
just routinely receive one dose of the measles–mumps–rubella (MMR) vaccine free of charge in
China, and National Health and Family Planning Commission of the People’s Republic of China
(NHFPC) doesn’t emphasize inoculating the second dose of MMR. In recent years, there are more than
300,000 young people infected with mumps every year in China [16,17].

The number of mumps patients is just smaller than hand, foot and mouth disease in all pediatric
infectious diseases [16,17]. Compared with other usual vaccine-preventable diseases, such as measles
and pertussis, mumps is more common. Due to its less severe acute manifestation, mumps have been
somewhat neglected. Nevertheless, the UK and USA have been inspired a new interest in mumps by
some large outbreaks. In the UK, a large mumps epidemic began in 2004 and reached the peak in 2005
with about 56,000 reported cases [18,19]. Most of these cases were in young adults attending colleges
or universities [20]. In 2006, the USA underwent a multi-state outbreak involving 6584 reported cases,
with the highest attack rate among persons 18–24 years old, many of whom were college students [12].
In affected colleges, most case-patients had been inoculated with a second dose of the MMR vaccine
more than 10 years previously [21,22]. This was the first large-scale US mumps outbreak among the
population with two-dose vaccines. From then on, people realized that even the two doses of the
vaccine could not completely control mumps either.

Mathematical models have become vital tools in understanding the spread and control of
infectious diseases well. By setting up a suitable epidemic model, we can put forward a lot of
practical prevention and control measures to curb the epidemic of disease. So far, there have been a few
papers using dynamic models to study mumps [23,24]. Qu [23] proposed a non-autonomous SVEILHR
(susceptible–vaccinated–exposed–mild infectious–severe infectious–hospitalized–recovered) model
with a seasonal varying transmission rate to describe the epidemic of mumps, and suggested improving
vaccine coverage and providing two doses of MMR (Measles, mumps and rubella) vaccine by the
government in China. Liu [24] studied the effects of heterogeneity on mumps spread by constructing
a multi-group SVEIAR (susceptible–vaccinated–exposed –symptomatic–asymptomatic–recovered)
mumps model with asymptomatic infection, general vaccinated and exposed distributions and
established the threshold dynamics of the model.

The basic structures of this paper are as follows. In the next section, an SVEILR mumps model
is formulated, and we give the basic reproduction number R0 and the existence of equilibria.
Section 3 discusses the global stability of the model. In Section 4, we advance the optimal parameters,
simulation of the real data from 2009 to 2014, and the prediction results of 2014 and 2015.
Sensitivity analysis of the basic reproduction number R0 and endemic equilibrium P∗ are carried
out in Section 5. We conclude with some discussions in Section 6 about the role of vaccine and the
preventive measures on mumps. We close with a conclusions section.

2. The Mumps Model and Basic Reproduction Number R0

We propose a mathematical model to understand the transmission dynamics and prevalence
of mumps in mainland China. Since we will simulate real data for half a year, we think the total
population is constant in a short period of time. We assume that the birth rate equals the natural death
rate, denoted by µ. The model is constructed based on the characteristics of mumps transmission;
therefore, the population associated with mumps is divided into six epidemiological sub-classes:
the proportion susceptible to total population (S), the proportion of vaccinated to total population (V),
the proportion exposed to total population (E, infected but not infectious), the proportion severely
infectious to total population (I, severely infectious requiring medical attention), the proportion mildly
infectious to total population (L, mild infections, including both asymptomatic and those with mild
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symptoms and self-care), and the proportion recovered to total population (R), subject to the restriction
S+V + E+ I + L+ R = 1. The transmission dynamics associated with these sub-classes are illustrated
in Figure 1.

Considering the vertical transmission, we assume that a fraction ρ of the offspring from the
exposed parents is born into the exposed class E. Consequently, the birth flux into the exposed class
is given by ρµE and the birth flux into the susceptible class is given by µ− ρµE. The other defined
parameters in the model Equation (2) are listed below:

• β: transmission rate,
• λ: loss of vaccination rate,
• ε: vaccine coverage of the susceptible,
• ε1: vaccine coverage of the exposed,
• κ: invalid vaccination rate,
• α: rate moving from exposed to severe or mild infectious,
• γ: proportion of the severe infections seeking medical advice,
• δ1: rate moving from severe infectious to recovered,
• δ2: rate moving from mild infectious to recovered.

Figure 1. Flowchart of mumps transmission in a population.

To simplify the research, we don’t consider the spatial stratified heterogeneity of the population and
relevant determinants, and consider that the mumps model has homogeneous mixing, and an individual
has an equal chance of contacting any individual among the population. The SVEILR mumps model is
given by six ordinary differential equations:

dS
dt = µ− ρµE− βS(I + L) + λV − (ε + µ)S,
dV
dt = εS + ε1E− λV − κβV(I + L)− µV,
dE
dt = βS(I + L) + ρµE + κβV(I + L)− (α + ε1 + µ)E,
dI
dt = αγE− (δ1 + µ)I,
dL
dt = α(1− γ)E− (δ2 + µ)L,
dR
dt = δ1 I + δ2L− µR.

(1)

A person was infected with the virus and then fully recovered. After that, he is typically immune
for life [20]. The first five equations are independent of R in Equation (1), and then it suffices to study
the following sub-system:

dS
dt = µ− ρµE− βS(I + L) + λV − (ε + µ)S,
dV
dt = εS + ε1E− λV − κβV(I + L)− µV,
dE
dt = βS(I + L) + ρµE + κβV(I + L)− (α + ε1 + µ)E,
dI
dt = αγE− (δ1 + µ)I,
dL
dt = α(1− γ)E− (δ2 + µ)L.

(2)
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The biologically feasible region of Equation (2) is Ω = {(S, V, E, I, L) ∈ R5
+ : 0 ≤ S + V + E +

I + L ≤ 1}, which can be verified as positively invariant (i.e., given non-negative initial values in Ω,
all solutions to Equation (2) have non-negative components and stay in Ω for t ≥ 0) and globally
attracting in R5

+ with respect to Equation (2). Therefore, we restrict our attention to the dynamics of
Equation (2) in Ω.

It is easy to see that model Equation (2) always has a disease-free equilibrium P0 =

(S0, V0, 0, 0, 0), where

S0 =
λ + µ

ε + λ + µ
, V0 =

ε

ε + λ + µ
. (3)

According to the next generation matrix developed by van den Driessche and Watmough [25],
we define the basic reproduction number of model Equation (2) as

R0=
ρµ

ε1 + α + µ
+

βα(λ + µ + κε)

(ε1 + α + µ)(ε + λ + µ)
(

γ

δ1 + µ
+

1− γ

δ2 + µ
)

= RE +RI +RL,
(4)

whereRE = ρµ
ε1 + α+ µ ,RI =

βαγ(λ+ µ+ κε)
(ε1 + α+ µ)(ε+ λ+ µ)(δ1 + µ)

,RL = βα(1−γ)(λ+ µ+ κε)
(ε1 + α+ µ)(ε+ λ+ µ)(δ2 + µ)

, which represent
the average numbers of the infected individuals by a single exposed parents, severely infectious,
and mildly infectious individuals in a fully susceptible population, respectively.

The basic reproduction numberR0 represents for the average number of new infections brought
out by one infectious during the initial patient’s infectious (not sick) period [26]. If R0 > 1,
model Equation (2) has a unique endemic equilibrium P∗ = (S∗, V∗, E∗, I∗, L∗). Here, we do not
give the exact expression of P∗, the detailed analysis can be seen in the Appendix A. Then, we have
the following proposition:

Proposition 1. Model Equation (2) always has a disease-free equilibrium P0; and, ifR0 > 1, model Equation (2)
has a unique endemic equilibrium P∗.

3. Mathematical Analysis Results

Regarding the stability of the disease-free equilibrium P0 and endemic equilibrium P∗, we have
the following Theorems. The detailed proof process can be seen in the Appendix B.

Theorem 1. IfR0 < 1, then P0 is stable, and, ifR0 > 1, then P0 is unstable.

Theorem 2. The disease-free equilibrium P0 of model Equation (2) is globally asymptotically stable ifR0 ≤ 1.

The above results show that mumps will be eliminated from the community if the epidemiological
thresholdR0 can be brought to a value less than unity.

Theorem 3. If R0 > 1, for ρ = ε1 = 0, model Equation (2) has a unique endemic equilibrium
P∗ = (S∗, V∗, E∗, I∗, L∗), which is globally asymptotically stable.

When ρ 6= 0, ε1 6= 0, we do not testify the global stability of the model Equation (2).
Nevertheless, using parameter estimation in the next section, the values of ρ and ε1 are very small,
almost negligible. It shows that Theorem 3 still have great significance.

Mathematical analysis shows that the basic reproduction number R0 is a sharp threshold
completely determining the global dynamics of model Equation (2): if R0 ≤ 1, the disease-free
equilibrium P0 is globally asymptotically stable and the mumps dies out; if R0 > 1, the endemic
equilibrium P∗ is globally asymptotically stable, namely, the mumps persists at the endemic
equilibrium state if only it initially exists.
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4. Data and Parameter Estimation

4.1. Data Analysis

It was reported by the Ministry of Health of the People’s Republic of China that mumps included
made the list as a Category C Infectious Disease (Monitoring and Managing of Infectious Disease) in
1989 [27]. On the basis of the Chinese Center for Disease Control and Prevention (China’s CDC),
using month as the period does statistical work on the patients who were infected by mumps
(see Figure 2) [16,17]. China’s CDC publishes the surveillance data of mumps from each province in
mainland China except Hong Kong, Macao and Taiwan. From the network direct reporting surveillance
data, we can acquire a lot of detailed information from cases, such as the area code, gender, occupation,
date of birth, date of onset, date of diagnosis, address, and, especially, classification of disease, which is
labeled as clinically diagnosed cases.

According to the data of mumps analysis, it is not difficult to find that the epidemic of mumps has
certain regularity. Judging by larger number of mumps cases, we can find a peak between February
and September, another peak appears between September of this year to February of the next year,
and the trough appears in February and September each year [28]. In fact, it is associated with the
holiday scheme of the elementary and secondary schools in China. Every year in February, which is
just after the lunar New Year, all primary and secondary schools will end more than a month of winter
vacation. Similarly, every year in July to September, all schools have a summer vacation to rest for two
months. This time happens to be when the mumps go through the trough. On account of the patients
with mumps being mainly 4 to 15 years old, we can conclude that the main cause of the mumps
epidemic in China is close contact among the students in their schools. Considering Chinese summer
vacation and winter vacation, in order to facilitate the fitting, we therefore divide the reported data
of each year into two parts: one is the first half of the year (from February to September), denoted by
FHY (the first half of the year), and the other is the latter half of the year (from September of this year
to February of the next year), denoted by LHY (the latter half of the year). Therefore, the data of the
February and September are simulated twice.

Figure 2. The comparison chart of the data of mumps in China and simulation results by model
Equation (2).

4.2. Parameter Estimation

Next, the model parameters are estimated as follows:

(1) Assuming that the person’s natural death follows a uniform distribution, natural death rate is
then calculated as µ = 1/(74.83× 365) = 3.6613× 10−5 [17,29].

(2) Note that κ and ρ are relatively small and almost equal to 0 by simulation, and we choose
κ = ρ = 0. It shows that invalid vaccination and vertical transmission are not main factors
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for the mumps epidemic. The course of treatment for the infectious is about 12 days (range,
10–14) [9,10,16]. Then, setting δ1 = 1/12, we also assume δ2 = 1/12.

(3) By applying a chi-square test to fit annual data (six data points in FHY, eight data points in
LHY), at most six parameters (or initial values) every time can be fit into the first half of the year,
and at most four parameters (or initial values) every time can be fit into the latter half of the year.
We thus consider ε = ε1, E(0) = I(0) = R(0) = 0.

(4) The remaining parameters and initial values (β, λ, ε, γ, S(0) and V(0)) in model Equation (2) are
estimated through calculating the minimum sum of chi-square value (MSCV) [30].

(5) Assume that the population about mumps is 140,000 every month. Before fitting, one put the
real data reducing 140,000 times in the simulation as the proportion severely infectious seeking
medical advice to total population. In addition, after fitting, we can multiply by 140,000 to the
estimation valves.

The data presented in Figure 2 refers to the clinical data from China’s CDC, denoted by I,
and we can see the optimal parameter values and initial values of FHY and LHY from 2009 to 2014 in
Tables A1 and A2. In addition, the chi-square test of goodness of fit is shown in Appendix C. Here,
we also calculate the basic reproduction number, R0, the median and the arithmetic mean of the
optimal parameters, which are estimated by MSCV as shown in Table 1. The difference between the
same parameters is very small in FHY and LHY of different years. In addition,R0 of each year is stable
around 4, the range ofR0 is 2.6529–5.5563, the median ofR0 is 4.7497 and arithmetic mean ofR0 is
4.2806. This suggests that the endemic equilibrium of model Equation (2) is globally asymptotically
stable. It is said that, in this current situation, mumps will continue to spread.

As we know, the vaccination rate of the susceptible is ε= ηϕ, and the vaccination rate of the
exposed is ε1 = η1 ϕ1. Here, η and η1 are defined to be the percentage of the number of vaccinations,
and ϕ are ϕ1 to defined to be the rate of progression to the vaccinated. Unfortunately, we can’t get
the respective parameter values of η, η1, ϕ and ϕ1. We just obtain their products ε and ε1 in model
Equation (2) by MSCV.

Using model Equation (2) and the parameters from Tables A1 and A2, one carries on the data
fitting to the number of severely infectious seeking medical advice individuals, as shown in Figure 2,
and the numerical results are found to be a good match with the data of mumps from 2009 to 2014.
From 1960 to 1980, R0 in the Netherlands, England and Wales was 11–14, and in various states of
USA,R0 was 4–7 [9]. In recent years, the literature estimates the basic reproduction number of mumps
was about 6.5428 in China [23]. Edmunds [31] used the default matrix configuration to estimateR0

for mumps was about 3.6–4.5 in many European countries (England and Wales, the Netherlands,
Finland, Denmark, East Germany and Italy) from 1970–1990. Kanaan [32] used the matrix models
with individual heterogeneity to estimateR0 for mumps was 19.3 (95% credible region (CR) 4.0–31.5)
in UK in 1986, if heterogeneity is not considered, R0 was much smaller (about 4.44). In addition,
by our model, we estimate that the arithmetic mean ofR0 of mumps is about 4.2806. In the current
literature,R0 for mumps varies quite substantially between 3.6 and 19.3. This may be partly due to
different source populations and timing of the studies. As ourR0 was at the lower end of this variation,
we think that this was mostly due to a large proportion of once vaccinated (with partial immunity; i.e.,
asymptomatic or mild infection; hence, lower subsequent infections due to lower virus transmission).

Nowadays, mumps becomes a endemic disease in China and the number of cases tend to be stable
each year. There are some connections between the epidemic of mumps and the vacation in China
when it is summer and winter. Therefore, the fitting parameters and initial condition of the latter half
of year 2013 and the first half of year 2014 may be used to predict the number of clinical cases of the
latter half of year 2014 and the first half of year 2015. In fact, the prevalence status of mumps from the
last year can be used to predict the epidemic situation of next year.
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Table 1. Parameters values, initial values and the basic reproduction number, where, ε, ε1 and S(0) are
estimated through calculating the minimum sum of chi-square value (MSCV) in first half of the year
(FHY) and fixed in latter half of the year (LHY).

Parameter Parameter Interval Median Arithmetic Mean Reference

µ 1/(74.83× 365) - - [17]
ρ 0 - - Fixed
β 0.2933–0.6296 0.4580 0.4421 MSCV
λ 0.0043–0.0254 0.0121 0.0130 MSCV

ε = ε1 0.0010–0.0057 0.0010 0.0015 MSCV or Fixed
κ 0 - - Fixed
α 1/19 - - [7,33]
γ 0.0874–0.2933 0.1806 0.1802 MSCV
δ1 1/12 - - [9,10,16]
δ2 1/12 - - Fixed

S(0) 0.0000–0.5101 0.0027 0.0955 MSCV or Fixed
V(0) 0.4738–0.8629 0.7700 0.7738 MSCV
E(0) 0 - - Fixed
I(0) 0 - - Fixed
L(0) 0.0161–0.2387 0.1595 0.1307 Calculated
R0 2.6529–5.5563 4.7497 4.2806 Calculated

5. Sensitivity Analysis of the Basic Reproduction Number and Endemic Equilibrium

The beginning of a disease transmission is directly related to the basic reproduction number R0,
while disease prevalence is closely linked with the endemic equilibrium P∗ [34]. Sensitivity analysis is
conducted to identify how closely input parameters that are related to predictor parameter, and determine
level of change necessary for an input parameter to acquire the ideal value of a predictor parameter.
In order to study the effectiveness of mumps control strategies, we compute the sensitivity indices [34–36],
which intrinsically measure the relative changes in R0 or the state variables at P∗ with changes of
model parameters.

Definition 1. The normalized forward sensitivity index of a variable, u, depending differentiably on a parameter,
p, is defined as [34]: ∆u

p = p
u ×

∂u
∂p .

In view of that, it is impossible to control the values of µ, we only compute sensitivity indices
of R0 and P∗ with respect to the eight parameters pi(i = 1, 2, ..., 8): β, δ1, δ2, ε, ε1, λ, α, γ. Here,
we consider the parameters from the first half of 2014 (as shown in Table A1). By the way, we consider
δ1 = δ2 = 1/12, according to the Equation (4), it is obvious that γ has no influence onR0. Furthermore,
the sensitivity indices ofR0 to the seven parameters, ∆R0

pi are shown in Table 2.

Table 2. Sensitivity indices ofR0, ∆pi , and corresponding % changes in pi to decreaseR0 by 1%.

Parameter Sensitivity Indices of R0 Corresponding % Changes

β ∆β = +1.000000000 −1.000000000
δ2 ∆δ2 = −0.814240098 +1.228138976
ε ∆ε = −0.567908157 +1.760848101
λ ∆λ = +0.563084724 −1.775931680
δ1 ∆δ1 = −0.185318088 +5.396127333
α ∆α = +0.098286622 −10.17432464
ε1 ∆ε1 = −0.097655559 +10.24007246
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We can observe that β, λ and α (δ2, δ1, ε and ε1) have positive (negative) impacts onR0. The most
sensitive parameter forR0 is β followed by δ2, ε, λ, δ1, α, ε1, (e.g., in order to decrease the value ofR0

by 1%, it is necessary to decrease the value of β to 1.000000000%).
In addition, one computes the sensitivity indices of the P∗, which determines the relative impacts

of different parameters on disease prevalence. Using the parameters (as shown in Table A1) from the
first half of the year 2014 yields

P∗ = (0.146893606, 0.192406471, 0.000461376, 0.000054189, 0.000238137).

Then, the sensitivity indices of P∗ to the eight parameters are calculated in Table 3 with a similar
method to Samsuzzoha’s [35], where “+(−)” implies that there are positive (negative) impact on P∗.
Furthermore, some valuable information is obtained: the most sensitive parameter for S∗ is β followed
by δ2, δ1, α, ε1, ε, λ, γ; the most sensitive parameter for V∗ is ε followed by β, λ, δ2, δ1, α, ε1, γ; the most
sensitive parameter for E∗ is α followed by β, δ2, ε, λ, δ1, ε1, γ; the most sensitive parameter for I∗ is δ1

followed by γ, β, δ2, ε, λ, α, ε1; the most sensitive parameter for L∗ is δ2 followed by β, ε, λ, γ, δ1, α, ε1.

Table 3. Sensitivity indices of the endemic equilibrium.

Parameter S* V* E* I* L*

β −1.000150583 −1.002014918 +0.511842285 +0.510066303 +0.509971103
λ −0.000084504 −0.990736807 +0.287232934 +0.286236298 +0.286182874
ε +0.000085520 +1.002646670 −0.290685824 −0.289677207 −0.289623141
ε1 +0.097288474 +0.100618754 −0.050701731 −0.050525807 −0.050516377
α −0.097913587 −0.101242844 −0.948283835 +0.051536721 +0.051527102
γ −1.3× 10−17 −1.9× 10−17 0 +0.996530216 −0.226764324
δ1 +0.185318305 +0.185663748 −0.094839463 −1.094071232 −0.094492751
δ2 +0.814393053 +0.815911126 −0.416778042 −0.415331912 −1.414815234

6. Discussion

According to sensitivity analysis of R0 and P∗ with regard to parameters, several effective
measures for mumps’ control and prevention can be put forward and put into practice.

(1) Cut off transmission routes as soon as possible in order to restrain the disease spread among
the crowd (reduction β). β is the most sensitive parameter toR0. In addition, β is the most sensitive
parameter for S∗, the second sensitive parameter for V∗, E∗, L∗, and the third sensitive parameter for
I∗, respectively. Consequently, parents and teachers should frequently urge students to popularize
health knowledge and preserve good personal hygiene habits. Students should wash hands before
meals and, after using the toilet, minimize the possibility of getting in touch with other students.

(2) Increasing vaccine coverage (increasing ε= ηϕ). ε is the third sensitive toR0 and L∗, and the
most sensitive parameter for V∗. Nevertheless, it is difficult to separately obtain the mumps vaccination
rate η and the average vaccination time 1/ϕ. For most cities and provinces in China, according to
the National Immunization Schedule by National Health and Family Planning Commission of the
People’s Republic of China (NHFPC) [37], MMR is one of the vaccinations supplied for free by the
government, and children just get vaccinated by one dose.

However, as we know, the most common preventative measure against mumps is a vaccination
with two doses of the mumps vaccine, applying in many developed countries [22,23]. In the United
Kingdom, it is conventional to give children at age 13 months with another dose of vaccine at 3–5 years
(preschool). This confers immunity for life. The efficacy of the vaccine depends on the strain of the
vaccine, but it is usually around 80% [38]. The American Academy of Pediatrics proposes the routine
administration of MMR vaccine at ages 12–15 months and at 4–6 years old [39]. In Canada, provincial
governments and the Public Health Agency of Canada have all took part in awareness campaigns
to encourage students ranging from the kindergarten to college to get vaccinated. Thus, the Chinese
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Government, health departments across the country and hospitals should promote teenagers of the
right age to continue inoculating with the mumps vaccination.

Of course, if we want to explicate two doses of vaccine accurately, we will need to use pulse
model and so on, and this will be our future work.

(3) Recover as soon as possible (decreasing incubation 1/δ1 and 1/δ2). δ2 is the most sensitive
parameter to L∗, and the second sensitive toR0, S∗. δ1 is the most sensitive parameter for I∗, the third
sensitive parameter for S∗, respectively. Try to cut down the source of infection. Patients should be
treated actively so that they can recover early. Meanwhile, hospitals are supposed to enhance infection
control practices to avoid nosocomial cross infection.

(4) Since δ1 = δ2, γ has no influence on R0, but it is a sensitive parameter to I∗ and L∗. Thus,
we suggest that symptomatic patients should seek medical attention and take necessary precautions
to prevent further spread. Actually, 18.02% of persons infected with the mumps virus seek medical
attention (seeing Table 1, γ = 0.1802), therefore forming the group of severely infectious (I).
The vast majority, 81.98% of infected mumps patients, do not seek medical attention and form the
group (L). This group consisted of both mild infections and those completely asymptomatic. From [40],
20–40% of mumps infections may be asymptomatic. That is to say, about 60–80% infections have mild
(part of group L) or more severe symptoms (mostly in group I). From our results, the proportion of
patients seeking medical attention (γ) was not high. Therefore, a large proportion of mumps infections
are self-treated, thus promoting further spread of the disease.

Owing to the huge and high heterogeneity of the country, in fact, we should consider the spatial
stratified heterogeneity of the population and relevant determinants (e.g., climate, temperature,
humidity, longitude and latitude, even people’s behavior habits, and so on).

Taking different spatial stratifications, we have reconsidered a new multi-group model
Equation (5). The total population N is divided into n groups, and each subgroup represents different
areas. Some parameters in the model Equation (5) are listed below:

• βij: rate of disease transmission between susceptible individuals in group i and infectious
individuals in group j,

• σik: transfer rate move from the k-th susceptible group to i-th susceptible group,
• ζil : transfer rate move out the i-th susceptible group into l-th susceptible group,
• ϕik: transfer rate move from the k-th vaccinated group to i-th vaccinated group,
• υil : transfer rate move out the i-th vaccinated group into l-th vaccinated group,
• ωik: transfer rate move from the k-th recovered group to i-th recovered group,
• φil : transfer rate move out the i-th recovered group into l-th recovered group.

Other parameters of different subgroups are the same as model Equation (1). Due to the
incubation period and the duration of the mumps being shorter, we only consider that three categories’
compartments (S, V and R) have transfer of each other, and the multi-group model as follows:

dSi
dt = µi − ρiµiE− Si

n
∑

j=1
βij(Ii + Li) + λiVi − (εi + µi)Si +

n
∑

k=1
σikSk −

n
∑

l=1
ζilSi,

dVi
dt = εi(Si + Ei)− λiVi − κiVi

n
∑

j=1
βij(Ii + Li)− µiVi +

n
∑

k=1
ϕikVk −

n
∑

l=1
υilVi,

dEi
dt = Si

n
∑

j=1
βij(Ii + Li) + ρiµiEi + κiVi

n
∑

j=1
βij(Ii + Li)− (αi + εi + µi)Ei,

dIi
dt = αiγiEi − (δ1i + µi)Ii,
dLi
dt = αi(1− γi)Ei − (δ2i + µi)Li,

dRi
dt = δ1i Ii + δ2iLi − µiRi +

n
∑

k=1
ωikRk −

n
∑

l=1
φil Ri, i = 1, 2, · · · , n.

(5)

According to the clinical data from different provinces of China’s CDC [16,17], we can also
simulate the parameters of the model. From the analyses of the parameters and the basic reproduction
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number, we can obtain a lot more meaningful conclusions by studying the data of different spatial and
natural environment in different regions. The results of this study will appear in the later papers.

7. Conclusions

We have described here an improved autonomous model with a bilinear incidence rate. The model
has been developed both in practical and theoretical terms compared to our previous model [23].
The model was concise and we performed extensive sensitivity analysis. The model proved the
following theoretical results: (i) by Routh-Herwitz criteria, we proved that, ifR0 < 1, the disease-free
equilibrium is stable, andR0 > 1, the disease-free equilibrium is unstable; (ii) by LaSalle’s Invariance
Principle, we proved the disease-free equilibrium is globally asymptotically stable if R0 ≤ 1; and,
(iii) with the help of the Lyapunov function, we proved that, if R0 > 1, for ρ = ε1 = 0, the unique
endemic equilibrium is globally asymptotically stable. Therefore, we would propose the use of this
model for further studies.

Using the arithmetic mean of the parameters of model Equation (2), we can calculate RE = 0,
RI = 0.8326, and RL = 3.7879. Combining the parameter analysis, one can find that vertical
transmission is not the important factor that causes mumps’ sustained outbreaks (ρ was relatively
small and almost equal to 0 by our simulation), and young adults with frequent contacts and mild
infection were identified as a major driver of mumps epidemics. It can be concluded that a mild
infection that carries the virus but doesn’t receive medical attention plays an important part in leading
to the epidemic of mumps.

In this work, an SVEILR mumps model incorporating imperfect vaccination, vertical transmission,
and mild cases are formulated to describe the dynamics of mumps transmission. As far as we can,
we conduct statistical assessments on the sensitivity analysis ofR0 and the endemic equilibrium P∗

to parameters, and put forward several corresponding measures to control the spread of mumps.
Because of the huge and high heterogeneity of the country, it is important to consider the spatial
stratified heterogeneity of the population with relevant determinants (e.g., climate, temperature,
humidity, longitude and latitude, even people’s behavior habits, and so on) and choose certain strata
of the population. However, in such a huge population it is very difficult to make the strata compatible.
We will try to study this problem in the future.
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Appendix A.

The endemic equilibrium P∗ = (S∗, V∗, E∗, I∗, L∗) of model Equation (2) is determined
by equations: 

µ− ρµE− βS(I + L) + λV − (ε + µ)S = 0,
εS + ε1E− λV − κβV(I + L)− µV = 0,
βS(I + L) + ρµE + κβV(I + L)− (α + ε1 + µ)E = 0,
αγE− (δ1 + µ)I = 0,
α(1− γ)E− (δ2 + µ)L = 0.

(A1)
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From the last two equations in Equation (A1), we can obtain

E =
δ1 + µ

αγ
I, L =

(1− γ)(δ1 + µ)

γ(δ2 + µ)
I, (A2)

when I 6= 0, substituting Equation (A2) into the third equation in Equation (A1) gives

βS + κβV =
(ε1 + α + µ− ρµ)(δ1 + µ)(δ2 + µ)

(αγ(δ2 + µ) + α(1− γ)(δ1 + µ))
(A3)

=
(1−RE)(βS0 + κβV0)

(R0 −RE)
∆
= d, (A4)

obviously, 0 < d < β whenR0 > 1.
Substituting Equation (A4) into the first equation in Equation (A1) gives

S =
a1 + a2 I
a3 + a4 I

, (A5)

where

a1 =
λ + µ

κβ
d, a2 =

(δ1 + µ)(α + µ− ρµ)

αγ
,

a3 = ε +
λ + µ

κ
, a4 = β

(
1 +

(1− γ)(δ1 + µ)

γ(δ2 + µ)

)
.

Adding together the first, second and third equation in Equation (A1) and obtain

µ− µS− µV − (α + µ)E = 0. (A6)

Substituting Equation (A4) into Equation (A6) gives

V =

(
1

1− κ

)(
1− d

β
− (α + µ)(δ1 + µ)

αγµ
I
)

, (A7)

S =

(
1

1− κ

)(
d
β
− κ +

κ(α + µ)(δ1 + µ)

αγµ
I
)

. (A8)

Substituting Equations (A7) and (A8) into the second equation in Equation (A1) gives

a5 I2 + a6 I + a7
∆
= G(I) = 0, (A9)

where

a5 =
κβ(α + µ)(δ1 + µ)

αγµ

(
1 +

(1− γ)(δ1 + µ)

γ(δ2 + µ)

)
> 0,

a6 =
ε1(1− κ)(δ1 + µ)

αγ
− κβ

(
1 +

(1− γ)(δ1 + µ)

γ(δ2 + µ)

)(
1− d

β

)
+

(λ + µ + κε)(α + µ)(δ1 + µ)

αγµ
,

a7 = ε

(
d
β
− κ

)
− (λ + µ)

(
1− d

β

)
=

1
ε + λ + µ

(
(1−RE)(S0 + κV0)

R0 −RE
− S0 − κV0

)
.

If R0 > 1, then a7 < 0, so Equation (A9) has a unique positive solution I =
−a6 +

√
a6

2−4a5a7
2a5

(see Figure A1a), and if R0 ≤ 1, then a6 > 0, a7 ≥ 0, Equation (A9) has no positive solution (see
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Figure A1b). Then, from the Equation (A5), model Equation (2) has a unique positive solution S∗

when R0 > 1. Similarly, model Equation (2) has a unique positive solution E∗, L∗, when R0 > 1.
Furthermore, it follows from the second equation in Equation (A1) that V = εS+ ε1E

λ+ µ+ κβ(I + L) , and we
also obtain that model Equation (2) has only one positive solution V∗ whenR0 > 1.

Figure A1. (a) shows the graph of G(I) whenR0 > 1; (b) shows the graph of G(I) whenR0 ≤ 1.

Appendix B.

Proof of Theorem 1. The Jacobian matrix at P0 is

J(P0) =


−(ε + µ) λ −ρµ −βS0 −βS0

ε −(λ + µ) ε1 −κβV0 −κβV0

0 0 ρµ− ε1 − α− µ βS0 + κβV0 βS0 + κβV0

0 0 αγ −(δ1 + µ) 0
0 0 α(1− γ) 0 −(δ2 + µ)

 .

The characteristic equation is

Φ(ξ) := (ξ2 + (λ + ε + 2µ)ξ + εµ + λµ + µ2)(ξ3 + b1ξ2 + b2ξ + b3) = 0,

where,
b1 = ε1 + α + δ1 + δ2 + 3µ− ρµ > 0,

b2 = (ε1 + α + µ− ρµ)(δ1 + δ2 + 2µ) + (δ1 + µ)(δ2 + µ)− αβ(κV0 + S0),

b3 = (δ1 + µ)(δ2 + µ)(ε1 + α + µ− ρµ)− αβγ(δ2 + µ)(κV0 + S0)

− αβ(1− γ)(δ1 + µ)(κV0 + S0)

= (δ1 + µ)(δ2 + µ)(ε1 + α + µ)(1−R0).

Distinctly, there are two negative solutions of ξ2 + (λ + ε + 2µ)ξ + εµ + λµ + µ2, whileR0 < 1,
b3 > 0. In addition,

b1b2 − b3 = (δ1 + µ)(δ2 + µ)(δ1 + δ2 + 2µ)

+ (ε1 + α+δ1 + δ2 + 3µ− ρµ)(ε1 + α + µ− ρµ)(δ1 + δ2 + 2µ)

+ αβγ(ε1 + α+δ1 + 2µ− ρµ)(κV0 + S0)

+ αβ(1− γ)(ε1 + α+δ2 + 2µ− ρµ)(κV0 + S0) > 0.



Int. J. Environ. Res. Public Health 2018, 15, 33 13 of 17

Therefore, by Routh-Herwitz criteria, all roots of Φ(ξ) have negative real parts, so P0 is stable.
IfR0 > 1, then b3 < 0, and furthermore P0 is unstable.

Proof of Theorem 2. Consider the following Lyapunov function:

H = c1E + c2 I + c3L,

where
c1 = αγ(δ2 + µ) + α(1− γ)(δ1 + µ), c2 = (δ2 + µ)(ε1 + α + µ− ρµ)

c3 = (δ1 + µ)(ε1 + α + µ− ρµ).

The derivative of H along the solutions of model Equation (2), together with S ≤ S0 and V ≤
V0, yields

Ḣ = c1Ė + c2 İ + c3 L̇ =

= c1βSI + c1βSL− c1(ε1 + α + µ− ρµ)E + c1κβVI + c1κβVL

+ c2αγE− c2(δ1 + µ)I + c3α(1− γ)E− c3(δ2 + µ)L

≤ c1(κβV0 + βS0)I − c2(δ1 + µ)I + c1(κβV0 + βS0)L− c3(δ2 + µ)L

+ c2αγE− c1(ε1 + α + µ− ρµ)E + c3α(1− γ)E

= (ε1 + α + µ)(δ1 + µ)(δ2 + µ)(R0 − 1)(I + L).

Since all of the parameters are positive, it follows that Ḣ ≤ 0 forR0 ≤ 1. There exists a singleton
P0, as the maximal compact invariant set in the set {(S, V, E, I, L) ∈ Ω : Ḣ = 0}. Therefore, by LaSalle’s
Invariance Principle [41], every solution of model Equation (2), with initial conditions in Ω approaches
P0 as t→ ∞, wheneverR0 ≤ 1. This completes the proof.

Proof of Theorem 3. Let
x =

S
S∗

, y =
V
V∗

, z =
E
E∗

, u =
I
I∗

, v =
L
L∗

.

When ρ = ε1 = 0, the model Equation (2) is transformed into the following form:

dx
dt = x

(
µ
S∗ (

1
x − 1) + λV∗

S∗ ( y
x − 1)− βI∗(u− 1)− βL∗(v− 1)

)
,

dy
dt = y

(
εS∗
V∗ (

x
y − 1)− κβI∗(u− 1)− κβL∗(v− 1)

)
,

dz
dt = z

(
βS∗ I∗

E∗ ( xu
z − 1) + βS∗L∗

E∗ ( xv
z − 1) + κβV∗ I∗

E∗ ( yu
z − 1) + κβV∗L∗

E∗ ( yv
z − 1)

)
,

du
dt = u αγE∗

I∗
( z

u − 1
)

,
dv
dt = v α(1−γ)E∗

L∗
( z

v − 1
)

.

(A10)

It is easy to find that model Equation (A10) has a unique endemic equilibrium P1
∗(1, 1, 1, 1, 1),

and the global stability of P1
∗ is the same as that of P∗. Thus, we will investigate the global stability

P1
∗ instead of P∗.

Defining the Volterra-type Lyapunov function

H(x, y, z, u, v) = S∗(x− 1− ln x) + V∗(y− 1− ln y) + E∗(z− 1− ln z)

+
βI∗(S∗ + κV∗)

αγE∗
(u− 1− ln u) +

βL∗(S∗ + κV∗)
α(1− γ)E∗

(v− 1− ln v).
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For the equilibrium state P∗, we have the following equations:

µ + λV∗ = βS∗(I∗ + L∗) + (ε + µ)S∗,
εS∗ = (λ + µ)V∗ + κβV∗(I∗ + L∗),
βS∗(I∗ + L∗) + ρµE∗ + κβV∗(I∗ + L∗) = (α + µ)E∗,
αγE∗ = (δ1 + µ)I∗,
α(1− γ)E∗ = (δ2 + µ)L∗.

(A11)

Then, differentiating H with respect to t along solution curves of model Equation (A10) and
considering Equation (A11) gives

dH
dt

= S∗(x− 1)
ẋ
x
+ V∗(y− 1)

ẏ
y
+ E∗(z− 1)

ż
z
+

βI∗(S∗ + κV∗)
αγE∗

(u− 1)
u̇
u
+

βL∗(S∗ + κV∗)
α(1− γ)E∗

(v− 1)
v̇
v

= (x− 1)
(

µ(
1
x
− 1) + λV∗(

y
x
− 1)− βS∗ I∗(u− 1)− βS∗L∗(v− 1)

)
+ (y− 1)

(
εS∗(

x
y
− 1)− κβV∗ I∗(u− 1)− κβV∗L∗(v− 1)

)
+ (z− 1)

(
βS∗ I∗(

xu
z
− 1) + βS∗L∗(

xv
z
− 1) + κβV∗ I∗(

yu
z
− 1) + κβV∗L∗(

yv
z
− 1)

)
+ βI∗(S∗ + κV∗)(u− 1)

( z
u
− 1
)
+ βL∗(S∗ + κV∗)(v− 1)

( z
v
− 1
)

= 2µ + λV∗ + εS∗ + βI∗(S∗ + κV∗) + βL∗(S∗ + κV∗)

− µS∗x− µV∗y− µ
1
x
− λV∗

y
x
− εS∗

x
y
− βS∗ I∗

xu
z
− βS∗L∗

xv
z

− κβV∗ I∗
yu
z
− κβV∗L∗

yv
z
− (βS∗ I∗ + κβV∗ I∗)

z
u
− (βS∗L∗ + κβV∗L∗)

z
v

.

After some algebraic manipulations, we have

dH
dt

= µS∗(2− x− 1
x
) + λV∗(2− y

x
− x

y
) + µV∗(3− 1

x
− y− x

y
) + βS∗ I∗(3− 1

x
− xu

z
− z

u
)

+ βS∗L∗(3− 1
x
− xv

z
− z

v
) + κβV∗ I∗(4− 1

x
− x

y
− yu

z
− z

u
) + κβV∗L∗(4− 1

x
− x

y
− yv

z
− z

v
).

≤ 0

The equality dH
dt = 0 holds for x = y = 1, z = u = v , which corresponds to the set Ω =

{(S, V, E, I, L) : S = S∗, V = V∗, E
E∗ =

I
I∗ =

L
L∗ } ⊂ Ω. This means that P∗ is the maximum invariant

set of model Equation (2) in Ω, and then the endemic equilibrium P∗ is global asymptotic stability
in Ω.

For the full model, we guess that the endemic equilibrium P∗ is also globally stable as R0 > 1.
To prove this result, we may need new Lyapunov function or technique. This will be our future work.

Appendix C.

Appendix C.1. Parameter Estimation

We estimate parameters of system (1) by calculating the minimum sum of chi-square value
(MSCV) [30]:

J(θ) =
m

∑
i=1

(I(ti)− Î(ti))
2

Î(ti)
, m = 6 or 8,

with the MATLAB (The Mathworks, Inc., Natick, MA, USA) tool fminsearch, where I(ti) denotes
the actual data of the i month, and Î(ti) denotes the simulative results of severe infections requiring
medical attention of the i month. All optimal parameter values are obtained only when the results of
fminsearch are convergent. Those values are shown in Tables A1 and A2. Here, we also calculate the
basic reproduction number.
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Table A1. Estimation of parameters and the basic reproduction number of the first half of the year
(FHY, e.g., 09(2–9) stands for February to September of 2009, and MSCV stands for the minimum sum
of chi-square value.) from 2009 to 2014.

Parameter Interval and R0 Source 09(2–9) 10(2–9) 11(2–9) 12(2–9) 13(2–9) 14(2–9)

ρ Fixed 0 0 0 0 0 0
β ∈ [0.0001,50] MSCV 0.4630 0.5368 0.4580 0.3848 0.2933 0.6296
λ ∈ [0.0001,0.1] MSCV 0.0095 0.0073 0.0120 0.0150 0.0069 0.0043

ε1 = ε2 ∈ [0.001,1] MSCV 0.0010 0.0010 0.0014 0.0010 0.0019 0.0057
κ Fixed 0 0 0 0 0 0

α ∈ [1/15,1/24] Fixed 1/19 1/19 1/19 1/19 1/19 1/19
γ ∈ [0.01,1] MSCV 0.1967 0.1750 0.2664 0.2933 0.2172 0.1854

δ1 = δ2 ∈ [1/14,1/10] Fixed 1/12 1/12 1/12 1/12 1/12 1/12
S(0) MSCV 0.1680 0.1037 0.0000 0.0027 0.5101 0.2150
V(0) MSCV 0.7644 0.8548 0.8406 0.8356 0.4738 0.7646
E(0) Fixed 0 0 0 0 0 0
I(0) Fixed 0 0 0 0 0 0
L(0) Calculated 0.0677 0.0415 0.1595 0.1617 0.0161 0.0203
R(0) Fixed 0 0 0 0 0 0
R0 Calculated 4.9302 5.5563 4.8079 4.2449 2.6529 2.9525

Table A2. Estimation of parameters and the basic reproduction number of the latter half of the year
(LHY, e.g., 09(9)–10(2) stands for September of 2009 to February of 2010, and MSCV stands for the
minimum sum of chi-square value.) from 2009 to 2014.

Parameter Interval and R0 Source 09(9)–10(2) 10(9)–11(2) 11(9)–12(2) 12(9)–13(2) 13(9)–14(2)

ρ Fixed 0 0 0 0 0
β ∈ [0.0001,50] MSCV 0.4400 0.3062 0.4256 0.3758 0.5499
λ ∈ [0.0001,0.1] MSCV 0.0121 0.0254 0.0185 0.0169 0.0149

ε1 = ε2 ∈ [0.001,1] Fixed 0.0010 0.0010 0.0010 0.0010 0.0010
κ Fixed 0 0 0 0 0

α ∈ [1/15,1/24] Fixed 1/19 1/19 1/19 1/19 1/19
γ ∈ [0.01,1] MSCV 0.0928 0.1162 0.1708 0.1806 0.0874

δ1 = δ2 ∈ [1/14,1/10] Fixed 1/12 1/12 1/12 1/12 1/12
S(0) Fixed 0.0469 0.0025 0.0019 0.0000 0.0000
V(0) MSCV 0.7462 0.8629 0.8371 0.7613 0.7700
E(0) Fixed 0 0 0 0 0
I(0) Fixed 0 0 0 0 0
L(0) Calculated 0.2068 0.1345 0.1611 0.2387 0.2298
R(0) Fixed 0 0 0 0 0
R0 Calculated 4.7807 3.4661 4.7497 4.1738 4.7720

Table A3. Chi-square values and degrees of freedom for the first half of the year (FHY, e.g., 09(2–9)
stands for February to September of 2009, and υ denotes degrees of freedom and AV denotes the
accepting value at a 5% significant level with degrees of freedom 1).

09(2–9) 10(2–9) 11(2–9) 12(2–9) 13(2–9) 14(2–9)

chi-square value 0.0112 0.0031 0.0065 0.0084 0.0048 0.0031
υ 1 1 1 1 1 1

AV 3.841 3.841 3.841 3.841 3.841 3.841

Table A4. Chi-square values and degrees of freedom for the latter half of the year (LHY, e.g., 09(9)–10(2)
stands for September of 2009 to February of 2010, and υ denotes degrees of freedom and AV denotes
the accepting value at a 5% significant level with degrees of freedom 1).

09(9)–10(2) 10(9)–11(2) 11(9)–12(2) 12(9)–13(2) 13(9)–14(2)

chi-square value 0.0009 0.0010 0.0010 0.0016 1.0879× 10−6

υ 1 1 1 1 1
AV 3.841 3.841 3.841 3.841 3.841
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Appendix C.2. Chi-Square Test of Goodness of Fit

In order to test how well our model reflects the data actually, we consider the
following hypotheses:

Hypothesis A1 (HA1). Null hypothesis: the estimated parameters are equal to actual values.

Hypothesis A2 (HA2). Alternative hypothesis: the estimated parameters are not equal to actual values.

The chi-square values and degrees of freedom for each year are shown in Tables A3 and A4.
It is obvious that all chi-square values are much less than 3.841. Therefore, we can not reject the null
hypothesis at the 5% significant level by Pearson’s criterion of a chi-square test [42].
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