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Abstract: Cyanobacteria are photoautotrophic bacteria commonly found in the natural environment.
Due to the ecological benefits associated with the assimilation of carbon dioxide from the atmosphere
and utilization of light energy, they are attractive hosts in a growing number of biotechnological
processes. Biopolymer production is arguably one of the most critical areas where the transition
from fossil-derived chemistry to renewable chemistry is needed. Cyanobacteria can produce
several polymeric compounds with high applicability such as glycogen, polyhydroxyalkanoates, or
extracellular polymeric substances. These important biopolymers are synthesized using precursors
derived from central carbon metabolism, including the tricarboxylic acid cycle. Due to their unique
metabolic properties, i.e., light harvesting and carbon fixation, the molecular and genetic aspects of
polymer biosynthesis and their relationship with central carbon metabolism are somehow different
from those found in heterotrophic microorganisms. A greater understanding of the processes involved
in cyanobacterial metabolism is still required to produce these molecules more efficiently. This review
presents the current state of the art in the engineering of cyanobacterial metabolism for the efficient
production of these biopolymers.

Keywords: cyanobacteria; polymers; metabolism; polyhydroxyalkanoates; cellulose; extracellular
polymeric substances

1. Introduction

Cyanobacteria are single-celled or filamentous organisms belonging to the kingdom of Prokaryotes
that are capable of oxygenic photosynthesis. Model strains such as freshwater Synechococcus elongatus
PCC 7942 (S. elongatus PCC 7942), Synechocystis PCC 6803 (S. sp. PCC 6803), marine Synechococcus PCC
7002 (S. sp. PCC 7002), filamentous Nostoc sp. PCC 7120, and Anabaena sp. PCC 7120 [1,2] are the most
studied representatives of cyanobacteria. In recent years there is an increased interest in developing
other strains of cyanobacteria that are better suited to industrial applications thanks to their high
growth rate [3] or high-temperature resistance [4,5]. In the process of autotrophic growth, they consume
carbon dioxide, an important greenhouse gas, and contribute to reducing its level, which makes them
an attractive host for biotechnological processes. Cyanobacteria utilize light as an energy source
potentially resulting in relatively low financial outlays for their cultivation. However, ensuring uniform
access to light for cyanobacterial cultures is still a challenge, and therefore the cultivation process in
bioreactors is still being developed [6]. As a result of photosynthesis, the carbon is fixed and then
can be converted into useful biofuels or biochemical substances such as biochemicals or biomaterials.
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There are many potential applications of cyanobacteria, such as wastewater treatment, production of
fertilizers, vitamins, enzymes, pharmaceuticals, and hydrogen [1,7]. However, the widespread use
of cyanobacteria in industrial settings requires basic research and development of new, technically
applicable strains. Optimizing the conditions for reproduction of these bacteria requires a good
understanding of the conditions under which they produce the expected product with the greatest
efficiency, and often also modifying their metabolism. Examples of important issues related to the
industrial use of cyanobacteria are insufficient growth rate and instability of modified strains [8,9].
The doubling time of cyanobacteria is about 7 h in natural conditions. More recently, strains capable of
doubling in 2 h have been developed [8], which indicate that under favorable conditions, photosynthetic
microorganisms are capable of growth rates similar to those of heterotrophs. Genetic instability of
engineered strains may be overcome by e.g., reducing the natural rate of mutations by introduction of
exogenous polymerases, better control of the ploidy of the cyanobacterial cell factory and ensuring full
segregation across the population, and development of stringent expression control elements [9,10].
There are many metabolic pathways in cyanobacteria that could be exploited for the production of useful
biochemicals from carbon dioxide. The main source of energy for the production of these compounds
is photosynthesis, during which, ATP and reducing equivalents are produced that later empower the
carbon assimilation and biosynthetic processes. Modifying and controlling the regulatory factors and
pathways associated with the Calvin-Benson-Bassham cycle (CBB) can increase the efficiency of the
photosynthesis process, and thus contribute to the more efficient synthesis of carbon-rich compounds.
One of the pathways associated with CBB is the tricarboxylic acid (TCA) cycle. This cycle allows the cell
to generate twelve high-energy bonds from one acetyl-CoA molecule, provides reducing equivalents
and precursor compounds for the synthesis of valuable compounds such as polyhydroxyalkanoates,
succinic acid, or ethylene.

Biological production of useful metabolites in cyanobacteria is both active and attractive research
area [1,11]. However, due to growing demand for new materials synthesized in environmental-friendly
processes, biopolymers seem to be particularly interesting, and intensively studied in cyanobacteria.
In this paper, we focus on the production of biopolymers such as glycogen, PHB and extracellular
polysaccharides, which are already successfully used in various industries and with the transformation
of the world economy to less reliant of fossil carbon are expected to be even more prevalent in the near
future. A thorough understanding of the influence of environmental conditions such as the availability
of chemical elements, temperature, and lighting, as well as the regulation of gene expression and
enzymatic activities, facilitates the creation of commercially viable strains. Some of these polymers
can be already economically produced by heterotrophic microorganisms. Therefore the next step
in their sustainable production is to transfer their biosynthesis into photosynthetic microorganisms
such as cyanobacteria to directly connect the processes of carbon fixation and polymer synthesis
without the need for employing an intermediary carbohydrate platform [1,12]. In the following parts
of this article, an overview of the current state of the implementation and modification of carbon
compounds metabolism will be presented. Then, research aiming at the development of potentially
commercially profitable strains that produce glycogen, polyhydroxyalkanoates, and extracellular
polymeric substances will be discussed.

2. Photosynthesis: Generating Energy for Biopolymer Synthesis

One of the essential features of cyanobacteria distinguishing them from most other bacteria
groups is their ability to carry out photosynthesis. The process in cyanobacteria has two main phases.
The light-dependent phase is responsible for the transformation of energy, during which light energy
is absorbed, which is converted into energy of chemical bonds, and oxygen is released. During the
light phase in cyanobacteria, light is collected by phycobilisomes whose subunits are encoded by
core and antenna genes, characterized by decreased expression in the event of excess light. In the
light-independent phase, it is CBB, i.e., the substance transformation phase, when the energy of the
chemical bonds formed during the light phase, is used to synthesize organic compounds with the use of
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inorganic carbon. Light quanta during photosynthesis are assimilated by chlorophyll, which is found
in reaction centers and the inner membrane complexes and bound to the binding protein, which forms
the functional cores of photosystem I (PSI) and photosystem II (PSII) [13]. In S. sp. PCC 6803, around
80% of chlorophylls are bound to PSI [14,15]. A fundamental problem for the proper functioning
of cells is protection against the formation of reactive oxygen species caused by the excess of light
energy. During photosynthesis, the consumption of ATP and NADPH is related to the assimilation of
carbon with CO2, which is relatively stable in cyanobacteria. However, their production depends on
the availability of photons. When their intensity is too high, the resulting excessive reducing power
can cause stress and cell damage. The cyclic electron transfer chain is a mechanism that partially
solves this problem as it allows the production of ATP without forming NADPH. Another way is to
regulate the ratio of photosystems. The psbA gene, which encodes the photosystem II D1 protein, is
induced to increase the presence of PSII [16]. Also, for chlorophylls, if not bound or suppressed by
carotenoids, reactive oxygen species can be formed, especially under unfavorable conditions such as
excess light. For this reason, the expression of a number of genes related to chlorophyll biosynthesis,
such as chlB, chlL, chlN, chlP, hemA, hemF, ho1, por, and ycf59 (S. sp. PCC 6803), is reduced under
conditions of too much exposure to light [16]. Of the key importance is also the decrease in the synthesis
of 5-aminolevulinic acid, the precursor of tetrapyrroles, which form the active core of chlorophyll,
through transcriptional and post-translational regulations [17,18]. Reducing the amount of chlorophyll
is not the only way to defend against excess energy. To dissipate excess energy between unevenly
excited photosystems, some of it can be transferred from one photosystem to another. This can be done
via energy spillover between photosystems, or through state change, i.e., when the phycobilisome
dissociates from PSII and attaches to PSI. These changes last short periods of time, i.e., from seconds
to minutes [13]. Another photoprotecting process is non-photochemical quenching (NPQ), where
excess energy in PSII is dissipated as thermal energy. Mutant S. sp. PCC 6803 deprived of orange
carotenoid protein, on which this process depends in cyanobacteria, was more susceptible to damage
caused by excess light than the wild type (WT) [19]. An important mechanism is also the degradation
of the phycobilisome by the dimeric NblA protein, which marks this complex for the Clp protease.
This mechanism also occurs under nitrogen starvation conditions [4,16,20].

Carbon dioxide is the primary source of carbon for cyanobacteria, which makes it crucial both
for their metabolism and their use as cell factories. This photosynthetic phase consists of three
steps: carboxylation, reduction, and regeneration. CO2 is fixed by cyanobacteria by carboxylation of
ribulose-1,5-bisphosphate in the CCB cycle. Balancing the appropriate enzyme activity in the central
carbon metabolism enzymes that are connected with the CBB by, for example, overexpression of one of
four separate enzymes (fructose bisphosphate aldolase, sedoheptulose bisphosphatase, RuBisCO, or
transketolase) favored an increase in the carbon binding capacity in S. sp. PCC 6803 [21]. Modification
of the expression of these CBB-related enzymes increased the rate of heterologous ethanol production
by S. sp. PCC 6803 [22]. CCB in cyanobacterial cells is coordinated by the association and dissociation
of the Phosphoribulokinase/CP12/Glyceraldehyde-3-phosphate dehydrogenase (PRK/CP12/GAPDH)
complex. Creation of that complex results in the inactivation of the cycle in the absence of light.
This complex dissociates by exchanging NADP+ for NAD+. For the mutant cyanobacteria of S. elongatus
PCC 7942 in which the cp12 gene was disrupted (Sc∆CP12), the decrease in oxygen consumption during
the dark photoperiod was observed. There was also a 2.5-fold increase in ribulose 1,5-bisphosphate and
a 50% decrease in fructose 6-phosphate content in mutant strains under dark photoperiod conditions,
which was associated with an increase in PRK protein activity. However, the CP12 deletion strain
cultured in 12L:12D photoperiod, exhibited growth inhibition when compared to WT cells [23]. It was
observed that because of the existence of glycolytic shunts, the glycolytic pathways have a crucial
effect on CCB in cyanobacteria (Figure 1). Through a series of mutant strains of S. sp. PCC 6803, it was
shown that cyanobacteria with disturbed glycolytic pathways have impaired growth relative to the
WT. Strain ∆eda (sll0107::emR) with impaired Entner-Doudoroff (ED) pathway exhibited 18% growth
retardation with respect to the WT. An identical result of 18% of growth depletion was obtained for the
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∆zwf (slr1843::cmR) mutant with impaired oxidative pentose phosphate (OPP) pathway. For the ∆eda
∆pfk (sll0107::gmR, sll1196::kmR, sll0745::spR) mutant, which had impaired Embden-Meyerhof-Parnas
(EMP) and ED pathways, the growth was reduced by 37% compared to WT. In contrast, for the strain
∆eda ∆gnd (sll0107::gmR, sll0329::emR), which had impaired OPP and ED pathways, the growth was
reduced by 60%. Simultaneously the mutant ∆eda exhibited 145% increased glycogen levels. For
all these mutants, except for ∆pfk (sll1196::kmR, sll0745::spR), a decrease in glycogen degradation
was observed, the strongest for the mutants ∆zwf, ∆gnd. Moreover, in the mutants, ∆zwf, ∆gnd
(sll0329::emR), as well as ∆eda, a delay in the initiation of the CBB pathway was observed compared
to WT. That was evidenced by a decrease in photochemical fluorescence quenching of the system
in mutant strains. This was because the pathways are involved in providing extra carbohydrates to
complete the CBB cycle. The most significant decrease in photochemical quenching was observed for
the ∆eda mutant and the smallest for ∆zwf [1,24]. Another method of modifying the CBB cycle is the
infection of Prochlorococcus and Synechococcus cultures with cyanophages encoding the CP12 protein. It
was shown that for infected cells, the NADPH/NADP ratio increased two-fold, which was associated
with a decrease in the activity of the CBB cycle and enhancement of the OPP pathway [25].
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Figure 1. Relationship between the Calvin-Benson-Bassham (CBB) Cycle and Glycolytic Pathways in
cyanobacteria. Abbreviations: acetate kinase (ACK), acetyl-CoA synthetase (ACS), glucose-1-phosphatase
(AGP), KHG/KDPG aldolase (EDA), phosphogluconate dehydratase (EDD), enolase (ENO),
fructose-bisphosphate aldolase (FBA), fructose bisphosphatase (FBP), glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), 6-phosphogluconate dehydrogenase (GND), glycogen phosphorylase (GP),
glycogen synthetase (GS), hexokinase (HK), pyruvate dehydrogenase (PDH), phosphofructokinase
1 (PFK), phosphoglycerate mutase (PGAM), glucose-6-phosphate isomerase (PGI), phosphoglycerate
kinase (PGK), 6-phosphogluconolactonase (PGL), phosphoglycerate mutase (PGM), pyruvate kinase (PK),
phosphoribulokinase (PRK), phosphate acetyltransferase (PTA), ribulose-1,5-bis-p carboxylase/oxygenase
(RBC), ribulose-phosphate 3-epimerase (RPE), ribose-5-phosphate isomerase (RPI), transaldolase
(TAL), transketolase (TKT), triose-phosphate isomerase (TPI), xylulose-5-phosphate/fructose-6-phosphate
phosphoketolase (XFP), glucose-6-phosphate 1-dehydrogenase (ZWF).Violet is the Calvin-Benson Cycle;
Green is the Entner-Doudoroff shunt for CBB; Blue is the Oxidative Pentose Phosphate shunt for CBB;
Red is PGI shunt for CBB; Orange is the hypothetical model of phosphoketolase integration central
carbohydrate metabolism. Reproduced with permission from Makowka A. et al., Glycolytic Shunts
Replenish the Calvin–Benson–Bassham Cycle as Anaplerotic Reactions in Cyanobacteria; published by
Molecular Plant, 2020.
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Based on the above-mentioned studies, it can be concluded that the processes of photosynthesis
and the pathways in which biopolymers are formed, are closely related. The analysis and optimization
of these relationships are crucial for the development of a commercially optimal cyanobacterial
culture. Important advances in the understanding of molecular machinery responsible for circadian
cycle regulation in cyanobacterial cell done in the above-cited studies are still insufficient to gain
full control over efficient autotrophic production of biopolymer of choice. Some most significant
progress has been made thanks to the studies aimed at understanding the regulatory pathways
responsible for light protection [14,17]. If these fields of research are explored further, one can expect
some new cyanobacterial strains engineered in the direction of increased “photoresistance” in the
upcoming years. Autotrophism of a cyanobacterial cell impacts other metabolic pathways that are
well studied in heterotrophic bacteria. Photosynthetic production of the central metabolites is closely
connected to central carbon metabolism pathways (such as EMP, ED, OPP) and fuels the TCA cycle,
which in consequence, play different roles in cyanobacterial system than in heterotrophic bacteria.
This sometimes may cause misleading data interpretation, and one should be aware of these major
differences when constructing the strain.

3. Unusual TCA Cycle as a Source of Key Biopolymer Intermediates

In cyanobacteria, the tricarboxylic acid cycle (TCA), has a significant impact on the production
of biopolymers. Since the majority of cellular energy is generated in the process of photosynthesis,
its function is somehow different to one in heterotrophic organisms. The cycle supplies the essential
precursors for many biopolymers such as polyhydroxyalkanoate, or by indirect influence on synthesis
through interactions with other metabolic pathways, as is the case of glycogen or extracellular
polysaccharides. The Krebs cycle in cyanobacteria proceeds in an unconventional manner when
compared to heterotrophic organisms. There is no 2-oxoglutarate dehydrogenase (OGDH) encoded
in cyanobacterial genomes [26]. Due to the impact of the TCA cycle on the production of energy
intermediates in aerobic respiratory organisms, researchers have attempted to determine how the
lack of this enzyme is compensated for in photosynthetic cyanobacteria. Several metabolic pathways
exist to make up for this enzyme, and they rely on the shunt pathways involved in the metabolism of
γ-aminobutyric acid (GABA), succinic semialdehyde, or glyoxylate (Figure 2) [27,28]. S. sp. PCC 7002
produces 2-OG decarboxylase and succinic semialdehyde dehydrogenase in place of succinyl-CoA ligase
and 2-oxoglutarate dehydrogenase (Figure 2c) [29]. S. sp. PCC 6803 uses GABA shunt to compensate
for the lack of these enzymes (Figure 2b) [30,31]. Another variant of TCA in cyanobacteria depends
on the glyoxylate shut and is present in several strains of cyanobacteria, including Chlorogloeopsis
fritschii PCC 9212 (Figure 2d) [32]. Importantly, it has also been shown that having other enzymes:
fumarase, malate dehydrogenase, and succinate dehydrogenase is not necessary under both day
and night conditions. For this purpose, ∆fum, ∆me2, and ∆sucd mutants were created that lost the
function of these enzymes. These cyanobacteria were grown under constant lighting conditions or
alternating 12 h day-night cycles. Their growth was monitored and compared to the wild-type strain.
The colony area was measured, and it was shown that although the size of the mutants’ colony was
smaller than that of the WT, the viability of the mutants was stable, and the growth rates of both
strains were similar [28]. For cyanobacteria, the primary function of the TCA cycle is in the production
of precursor metabolites associated with oxaloacetate and 2-oxoglutarate, which is needed in the
process of nitrogen assimilation. Energy production in S. elongatus PCC 7942 is also associated with
the OPP, which during glycogen oxidation during the dark phase can create 24.4 mol ATP / mol
glucose [28]. However, whether the metabolism of compounds associated with the TCA pathway
will be more strongly associated with the OPP pathway or more focused on glycogen polymerization
depends on the availability of nitrogen, in the case of nitrogen starvation, a larger flux of carbon will be
involved in the synthesis of ADP-glucose, which is a precursor of glycogen in most cyanobacteria [33].
In thermophilic Thermosynechococcus strains, the unusual substrate specificity of sucrose synthase
and its preference towards ADP-glucose over UDP-glucose indicates a closer connection between
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glycogen and sucrose in extremophilic cyanobacteria [34]. Another function of the TCA pathway is the
recovery of fumarate as a product of the synthesis of arginine and nucleotides; however, S. elongatus
PCC 7942 can excrete fumarate into the medium [35]. Whereas in S. sp. PCC 6803 it has been shown
that the stream of metabolites from 2-oxoglutarate to succinate is weaker than in a typical TCA as it
is bypassed by a GABA shunt (Figure 2b) [27,28,36]. The pathway referred here as typical TCA is
presented in Figure 2a and relies on the presence of citrate synthase, aconitase, isocitrate dehydrogenase,
2-oxoglutarate dehydrogenase complex, succinyl CoA ligase, succinate dehydrogenase, fumarase,
and malate dehydrogenase [36].
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Figure 2. Modified tricarboxylic acid (TCA) pathway in cyanobacteria. (a) Typical bacterial TCA
cycle; (b) Bypass of the TCA with GABA shunt; (c) Pathway converting 2-oxoglutarate to succinic
semialdehyde; (d) Bypass of the TCA with glyoxylate shunt. Abbreviations: aconitase (ACO),
alanine aminotransferase (AlaAT), aspartate aminotransferase (AspAT), citrate synthase (CS), fumarase
(FUM), GABA aminotransferase (GABA-T), glutamate decarboxylase (GAD), isocitrate lyase (ICL),
isocitrate dehydrogenase (IDH), malate dehydrogenase (MDH), malic enzyme (ME), malate synthase
(MS), oxaloacetate decarboxylase (OADC), 2-oxoglutarate decarboxylase (OGDC), 2-oxoglutarate
dehydrogenase complex (OGDH), pyruvate dehydrogenase complex (PDC), phosphoenolpyruvate
carboxylase (PEPC), pyruvate kinase (PK), succinyl CoA ligase (SCS), succinate dehydrogenase (SDH),
succinic semialdehyde dehydrogenase (SSADH).

To sum up, advances in the understanding of the cyanobacterial metabolism revealed that
carbon-fixing Calvin-Benson-Bassham, and TCA cycles are fundamentally connected to the biosynthesis
of biopolymers. Notably, the CBB in cyanobacteria has a leading role in energy generation; therefore,
TCA is less critical for maintaining the cellular energy balance than it is in heterotrophic systems.
The exciting consequence of this fact is that a potentially more explicit genetic interference in this
pathway can be tolerated by cyanobacteria when compared with their heterotrophic counterparts [26].
Another vital aspect of TCA variations observed in different cyanobacterial strains is the resulting
diversity of metabolites available for the bioprocesses to be engineered. Having less of an impact
on energy supply, the TCA cycle in cyanobacteria acts, primarily, as a source of intermediates
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for biosynthesis of, among others, reserve material (like polyhydroxyalkanoates). Taking into
consideration ever-increasing abundance of genomic information of new cyanobacterial strains,
TCA cycle variability should be at the forefront of the description in the newly described strains to
evaluate its potential applicability.

4. Glycogen and Carbon Storage in Cyanobacteria

TCA cycle is the primary source of precursor molecules for cyanobacteria. Figure 3 presents the
relationship between central carbon metabolism pathways concerning the biosynthesis of some important
polymers and their building blocks. An example of such compound is glycogen. Glycogen is a branched
α-polyglucan, playing the role of a cellular carbon reservoir. Its metabolism has a key impact on bacterial
cell adaptation to various environmental conditions and its growth. Over the past decades, it has been
possible to characterize the metabolic pathways associated with the synthesis and catabolism of this
polymer [37,38]. Numerous studies are underway in which these pathways undergo genetic manipulation
to discover the effects of this polymer on the survival and functioning of cyanobacteria. One of those
modifications is the disruption or complete removal of glycogen synthesis. This is usually caused by the
desire to change the carbon flow in the cell to increase the production of other metabolites. It was shown,
however, that reduced levels of glycogen often results in significant impairment in cell homeostasis and
finally, the availability of carbon for other metabolites is limited too [1].

Glycogen synthesis begins with the transformation of the glucose-1-phosphate precursor by
ADP-glucose pyrophosphorylase (GlgC), resulting in the formation of ADP-glucose. Subsequently,
glycogen synthase (GlgA), polymerizes these monomers forming α-1,4-glycosidic bonds. The linear
chains of polyglucose are branched throughα-1,6-glycosidic bonds with the GlgB enzyme (Figure 3) [39].
In some cyanobacteria, including the S. sp. PCC 6803, there are two isoforms of GlgA proteins. The first
isoform participates in the synthesis of glycogen, creating mainly medium-length chains (8-18),
while the second isoform mainly participates in the synthesis of longer and shorter chains. In S. sp.
PCC 6803 mutants incapable of producing one isoform, the compensation effect from the other isoform
was observed [27,40].

To understand the effect of these enzymes on cell function, knock-outs and knock-downs of the
glgC or glgA genes have been constructed to block or limit glycogen synthesis in the cell. The first
study resulting in inhibition of glycogen production was carried out in S. sp. PCC 6803 deletion
mutant strain, in which the gene encoding GlgC was removed [41]. Inactivation of two copies of the
gene encoding GlgA protein has also been shown to have a similar effect, with the elimination of only
one copy of this gene having little effect on the S. sp. PCC 6803 strain. In addition, mutant strain
with no-GlgA suffered from impairments of the growth and phycobilisome degradation capacity [42].
However, for the S. sp. PCC 7002 strain, the effect of analogous elimination of a single gene has already
caused a 33–40% decrease in glycogen content [43]. Small amounts of glycogen have been reported
in S. sp. PCC 7002 strains with GlgA and GlgC proteins inhibition. These observations suggest that
some other, yet-to-be-identified enzymes may be involved in glycogen production [44]. An example
of a method aimed at limiting glycogen metabolism is the use of interference CRISPR-Cas9. In S. sp.
PCC 6803 and S. elongatus PCC 7942 strains, induced dCas9, and sgRNA-glgC gene expression was
used, which reduced the transcript level by 90% and accumulated only 25% of glycogen content typical
of the S. sp. PCC 6803 WT strain. An analogous study using S. elongatus PCC 7942 revealed 73.4–93.8%
lower transcript levels and glycogen accumulation at the level of 4.8% to 25.5% of the WT. Interestingly,
the strain responded with increased biosynthesis of succinate [45,46]. Another solution was to use a
tool based on the exogenous Hfq chaperone and the MicC scaffold (Hfq-MicC) to suppress the gene
coding for the GlgC protein. It caused mutant S. sp. PCC 6803 decrease in expression of that gene by
75% [47]. Theophylline-responsive riboswitch has also been used, this resulted in a 90% decrease in
glycogen accumulation in S. sp. PCC 6803 in the absence of theophylline, and the addition of 1100 µM
theophylline increased glycogen accumulation by 300% in S. elongatus PCC 7942 [48,49]. The effects
of disturbances in the glycogen synthesis pathway on cell growth depend on temperature and have
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practical importance for strain culturing. With respect to the WT, the mutant strain ∆glgAI-∆glgAII of S.
sp. PCC 7002 exhibited growth retardation at 38 ◦C, while at 30 ◦C growth rate was not changed [43,50].
Interestingly, S. sp. PCC 7002, in which the glgA genes had been deleted, was found to secrete about 30%
more sugars than the WT after increasing salinity. Whereas, for the ∆glgA mutant of S. elongatus PCC
7942, glycogen level was lower by more than 90% in conditions of increased salt content. Meanwhile,
for mutants ∆glgC, a decrease in tolerance to high salinity was noted. Interestingly, the inhibition of
the gene encoding the GlgC protein in S. elongatus PCC 7942 strain resulted in a reduction of GlgA
protein activity by 80%. However, for the same strain, the deletion of the glgA gene caused an increase
in the activity of the GlgC protein by half [39,43,51]. Examples of studies with mutant cyanobacterial
strains on glycogen are gathered in Table 1.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 28 

 

 

Figure 3. Impact of central carbon metabolism pathways in cyanobacteria on biopolymers production. 

Tricarboxylic acid cycle is gold, polyhydroxybutyrate (PHB) synthesis pathway is purple, Calvin-

Benson- Bassham cycle is green, oxidative pentose phosphate is orange, non-CBB glycolysis pathway 

is blue, glycogen metabolism is red, other pathways are yellow. Abbreviations: 4-hydroxybutyryl-

CoA transferase (CAT2), cellulose synthase (CS), sucrose transporte (CsbB), enolase (ENO), fructose-

bisphosphate aldolase(FBA), fructose bisphosphatase (FBP), glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH), 4-hydroxybutyrate dehydrogenase (GBD1), glucosylglycerol-phosphate 

phosphatase (GgpP), glucosylglycerol-phosphate synthase (GgpS), glycogen synthase (GlgA), 1,4-

alpha-glucan branching enzyme (GlgB), glucose-1-phosphate adenylyltransfe (GlgC), glycogen 

phosphorylase (GlgP), glycogen debranching enzyme (GlgX), 6-phosphogluconate dehydrogenase 

(GND), pyruvate dehydrogenase (PDH), phosphoglycerate mutase (PGAM), glucose-6-phosphate 

isomerase (PGI), phosphoglycerate kinase (PGK), 6-phosphogluconolactonase (PGL), 

phosphoglycerate mutase (PGM), acetyl-CoA acetyltransferase (PhaA), acetoacetyl-CoA reductase 

(PhaB), poly(R)-hydroxy alkanoic acid synthase (PhaEC), pyruvate kinase (PK), phosphoribulokinase 

(PRK), ribulose- 1,5-bis-p carboxylase/oxygenase (RBC), ribulose-phosphate 3-epimerase (RPE), 

ribose-5-phosphate isomerase (RPI), sucrose-phosphate phosphatase (SPP), sucrose-phosphate 

synthase (SPS), transaldolase (TAL), transketolase (TKT), glucose-1-phosphate uridylyltransferase 

(UDP-GP), glucose-6-phosphate 1-dehydrogenase (ZWF). 

Figure 3. Impact of central carbon metabolism pathways in cyanobacteria on biopolymers
production. Tricarboxylic acid cycle is gold, polyhydroxybutyrate (PHB) synthesis pathway
is purple, Calvin-Benson- Bassham cycle is green, oxidative pentose phosphate is orange,
non-CBB glycolysis pathway is blue, glycogen metabolism is red, other pathways are yellow.
Abbreviations: 4-hydroxybutyryl-CoA transferase (CAT2), cellulose synthase (CS), sucrose
transporte (CsbB), enolase (ENO), fructose-bisphosphate aldolase(FBA), fructose bisphosphatase
(FBP), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 4-hydroxybutyrate dehydrogenase
(GBD1), glucosylglycerol-phosphate phosphatase (GgpP), glucosylglycerol-phosphate synthase
(GgpS), glycogen synthase (GlgA), 1,4-alpha-glucan branching enzyme (GlgB), glucose-1-phosphate
adenylyltransfe (GlgC), glycogen phosphorylase (GlgP), glycogen debranching enzyme (GlgX),
6-phosphogluconate dehydrogenase (GND), pyruvate dehydrogenase (PDH), phosphoglycerate
mutase (PGAM), glucose-6-phosphate isomerase (PGI), phosphoglycerate kinase (PGK),
6-phosphogluconolactonase (PGL), phosphoglycerate mutase (PGM), acetyl-CoA acetyltransferase
(PhaA), acetoacetyl-CoA reductase (PhaB), poly(R)-hydroxy alkanoic acid synthase (PhaEC),
pyruvate kinase (PK), phosphoribulokinase (PRK), ribulose- 1,5-bis-p carboxylase/oxygenase (RBC),
ribulose-phosphate 3-epimerase (RPE), ribose-5-phosphate isomerase (RPI), sucrose-phosphate
phosphatase (SPP), sucrose-phosphate synthase (SPS), transaldolase (TAL), transketolase (TKT),
glucose-1-phosphate uridylyltransferase (UDP-GP), glucose-6-phosphate 1-dehydrogenase (ZWF).
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Table 1. Studies on glycogen in genetically modified cyanobacteria.

Species Modification Culture Conditions Change in Glycogen Content Phenotype Reference

S. sp. PCC 6803 ∆glgA1-∆glgA2 BG-11 without nitrogen Full inhibition of synthesis
Cell division and

phycobilisome degradation
capacity impairment

[42]

S. sp. PCC 6803 ∆glgA1 or ∆glgA1 BG-11 without nitrogen No impact No impact [42]

S. sp. PCC 7002 ∆glgAI-∆glgAII 38 ◦C 1% (v/v) CO2 4,2% WT 280% WT of sucrose 172% WT
of glucosylglycerate [43]

38 ◦C 1% (v/v) CO2,
hypersaline 4,4% WT 295% WT of sucrose 171% WT

of glucosylglycerate [43]

38 ◦C 1% (v/v) CO2,
N-limiting 7,2% WT 84% WT of sucrose 60% WT

of glucosylglycerate [43]

∆glgAI 38 ◦C 1% (v/v) CO2 65% WT 260% WT of sucrose 112% WT
of glucosylglycerate [43]

38 ◦C 1% (v/v) CO2,
N-limiting 67% WT 38% WT of sucrose 55% WT

of glucosylglycerate [43]

∆glgAII 38 ◦C 1% (v/v) CO2 60% WT 220% WT of sucrose 108% WT
of glucosylglycerate [43]

38 ◦C 1% (v/v) CO2,
N-limiting 60% WT 26% WT of sucrose 21% WT

of glucosylglycerate [43]

S. sp. PCC 7002 ∆glgAI-∆glgAII 30 ◦C <1% WT Slight reduction in
doubling time [50]

S. e. PCC 7942 ∆glgA 0.2 M NaCl Lowering > 90% Decrease of oxygen secretion
by 50% [51]

S. sp. PCC 6803 ∆glgC - Not compatible Not compatible [42,52,53]

S. sp. PCC 7002 ∆glgC - Not compatible Not compatible [44,54]

S. e. PCC 7942 ∆glgC - Not compatible Not compatible [35,55–57]

S. sp. PCC 6803 glgC-knockdown by CRISPRi 28 ◦C 1% (v/v) nitrogen
starvation Lowering by 75% Non-chlorosis [45]
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Table 1. Cont.

Species Modification Culture Conditions Change in Glycogen Content Phenotype Reference

S. e. PCC 7942 glgC-knockdown by CRISPRi BG-11 without nitrogen Lowering by 74.5-95.2% Non-chlorosis [46]

S. sp. PCC 6803 glgC-knockdown by small
RNA regulatory tools

BG-11, 30 ◦C, 50 µmol
photons m- 2 s- 1 Lowering by 75% Not reported [47]

S. sp. PCC 6803 glgC- riboswitch regulation Theophylline 0 µM Lowering by 60% No change in growth [49]

Theophylline 1100 µM Increase by 300% Slightly increased growth [49]

S. e. PCC 7942 glgC-knockdown by
riboswitch

30 ◦C 150 mM NaCl 1mM
IPTG Theophylline 0 µM Lowering by 90%

Slight decrease in cell growth,
decrease in sucrose

accumulation
[48]

S. sp. PCC 6803 ∆glgP1-∆glgP2 Constant light 2% CO225
◦C 107% WT No impact on chlorophyll

content [58]

S. sp. PCC 6803 ∆glgP1-∆glgP2 In light during 12 h cycles
2% CO2 25 ◦C Increase by 236% Decrease of chlorophyl

lcontent [58]

S. sp. PCC 6803 ∆glgP1-∆glgP2 In dark during 12 h cycles
2% CO2 25 ◦C Increase by 420% Decrease of chlorophyl

lcontent [58]

S. sp. PCC 7002 ∆glgP 1% v/v CO2 38 ◦C Not reported No effect on growth [59]

S. e. PCC 7942 OE-cscB, OE-sps, OE-glgC 30 ◦C 150 mM NaCl 1 mM
IPTG 160% WT Increase in the amount of

sucrose [48]
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An example of research that creates a mutant that produces glycogen with greater efficiency
than the wild type was the study in which the expression of glgC gene of S. elongatus PCC 7942 was
increased. The engineered strain, where the glgC gene was under the control of the strong cpcB1
promoter, exhibited a simultaneous increase of sucrose biosynthesis, whilst its glycogen content was
increased by 30–50% [48].

Changes in the level of expression of genes encoding proteins associated with the glycogen
synthesis pathway also have a major impact on cell survival. The glycogen biosynthesis prediction
in S. sp. PCC 6803’s, using the CycleSyn model, indicated that the increase to the highest glycogen
level in the cell occurs just before the end of the light photoperiod, followed by a decrease [60].
An important issue is, however, disturbance in the process of photosynthesis during the transition
from the dark photoperiod to daylight. During the final hours of the dark photoperiod, the rate of
glycogen degradation increases, most likely to provide the energy needed to initiate photosynthesis.
Hellweger et al. performed a simulation for Synechococcus, suggesting that the kaiABC clock genes
control the level of glycogen synthesis during the day [61,62]. Recently, using the mutated strain of S.
elongatus PCC 7942 ∆glgC, it was shown that glycogen undergoes catabolism to support the pentose
phosphate oxidative pathway, which is necessary to initiate photosynthesis during the beginning of
light photoperiod. At the same time, this process modulates NADPH levels, which are necessary for
photosynthesis, which is also confirmed by other studies [55,63]. These data coincide with the results of
differential RNA sequencing (dRNA-seq), which showed that in S. elongatus UTEX 2973, a close relative
of PCC 7942, an increase in the transcription of genes for glycogen catabolism during the dark phase
of the photoperiod, and a decrease in the expression of the glgC and glgA genes, with simultaneous
continuous oxidation of glucose from glycogen via pathways EMP or OPP [64]. Other studies also
showed that glycogen is needed for proper cell function during the light phase of the photoperiod.
The knock-out of the gene encoding the GlgC protein in the S. sp. PCC 6803 strain resulted in a 25%
reduction in oxygen evolution during the light phase of the photoperiod [41]. Simultaneously, in the
S. elongatus PCC 7942 strain; the oxygen evolution decreased by 50% for ∆glgA and ∆glgC mutants.
However, the level of Chl did not change, and the phycocyanin concentration increased with respect
to the WT. This was probably due to the low efficiency of energy transfer to the reaction center from
pigments [51].

One of the most important osmoprotective compounds for cyanobacteria is glucosylglycerol,
which requires ADP-glucose, i.e., the product of the enzyme GlgC, for its biosynthesis. The lack of this
enzyme cannot be compensated by the increased synthesis of other compounds like sucrose, since
they do not provide sufficient osmoprotection, which results in impaired cell function. However,
also in the case of mutations in the glgAI and glgAII genes that led to an increase in glucosylglycerol
and sucrose biosynthesis, oxygen secretion rates decreased and the doubling time increased by
15% [41,43,44,51]. In the case of nitrogen starvation, cyanobacteria can undergo the bleaching process;
however, the mutant strain S. sp. PCC 6803, which lost its ability to synthesize glycogen, retained
its green color, even though the wild strain showed signs of bleaching. However, unlike the wild
type, the mutant growth rate was strongly reduced [42]. It was also established that during nitrogen
deficiency, 6S RNA, which is a global transcription riboregulator, plays an important role. In the
mutant ∆ssaA (6S RNA deletion) S. sp. PCC 6803, delays in adaptation to changes in nitrogen levels,
due to, among others, a decrease in glycogen breakdown has been reported [65].

Lowering the glycogen content in the cell is also achieved by engineering its catabolism. Glycogen
degradation is catalyzed by GlgX proteins, which hydrolyze α-1,6-glycosidic bonds, and GlgP glycogen
phosphorylase, which hydrolyzes the α-1,4-glycosidic terminal bonds, thereby forming glucose
monophosphate [39]. In S. sp. PCC 6803, this catabolism is controlled by two GlgX isoforms (GlgX1
and GlgX2) and two GlgP isoforms (GlgP1 and GlgP2) [27]. The gene encoding the GlgP protein was
overexpressed in Escherichia coli, resulting in a decrease in glycogen content [66]. This may suggest that
increasing the level of this protein can cause a decrease in the amount of glycogen in cyanobacteria.
Another strategy is to reduce or eliminate the production of this enzyme to achieve the opposite
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effect. In one study in the S. sp. PCC 6803 strain, a mutant lacking GlgP was created that led to 420%
of WT glycogen content in biomass [58]. Knock out of the glgX gene in the Cyanothece 51142 strain
cyanobacterium resulted in faster growth and a higher rate of nitrogen fixation [67]. DNA methylation
has recently been shown to influence the activity of genes associated with glycogen catabolism. Based
on the study on S. sp. PCC 6803 mutants with inactivated genes of type I restriction methylation system
which showed increased activity of GlgP, methylation of DNA may be a regulatory pathway controlling
activity of its gene [68]. Interestingly in the study of Li and co-workers from 2014, in mutated strains of
S. elongatus PCC 7942 with glycogen deficiency, the biosynthesis of a non-native product, isobutanol,
served as an alternative carbon “sink”, boosting cell growth. This suggests that when optimizing the
production of other carbon storage compounds, the similar effect could be achieved [69].

Glycogen, being important metabolite for keeping cellular homeostasis should not be treated
as a cellular “cargo” which can be eliminated from the engineered strains. Numerous inefficient
efforts to increase the metabolic flux towards the product of choice production via elimination of
glycogen synthesis stands for this conclusion. In cyanobacteria, carbon fixation seems to be closely
related to pathways gathering storage compounds. Therefore, redirecting glycogen carbon flux into
other desirable products has led to insufficient productivity of the engineered strains. More systemic
approaches, aiming at cellular homeostasis protection, should compile desired product production
with both circadian clock regulatory machinery and glycogen storage pathways.

5. Production of PHA in Cyanobacteria

Another important polymer that is influenced by central carbon metabolism is
polyhydroxyalkanoate (PHA). The ability to conduct sugar catabolism effectively affects the availability
of PHA precursors [70]. PHA is a class of compounds consisting of hydroxy acid units. Biosynthesis
of PHA occurs using PHA synthases, which determine what type of polymer will be synthesized
by catalyzing the enantioselective polymerization reaction of (N)-hydroxyacyl-CoA thioesters to
polyesters, where N is an alkyl or functional group. The most commonly produced PHA polymer in
cyanobacteria is polyhydroxybutyrate (PHB). Its synthesis consumes acetyl-CoA, which is converted
by PhaA to acetoacetyl-CoA. This compound is transformed into 3-hydroxy-butyryl-CoA, which is
polymerized by PhaEC to PHB with the help of PhaB and with the participation of NADPH [71].
Depending on the size of the polymer, there are three classes of Short-Chain Length-PHA (SCL-PHA),
consisting of 3 to 5 units, Medium Chain Length-PHA (MCL-PHA), consisting of 6 to 14 units,
and Long-Chain-Length-PHA (LCL-PHA) consisting of more than 15 units. An important protein is
PhaP, which is involved in controlling the upper size of PHB granules [72,73]. S. elongatus PCC 7942.
in which the PHB operon gene from R. eutropha was inserted, was capable of a PHB yield of 25% dry
matter [74]. Table 2 presents examples of studies on mutant strains of cyanobacteria producing PHB.
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Table 2. Recent studies with mutant strains of cyanobacteria producing polyhydroxybutyrate (PHB).

Name of Species Modification Culture Conditions % PHA (dry cell weight) Time [d] Phenotype Reference

S. sp. PCC 6803 OE pha AB Nitrogen deficiency 26 % 9 Slower growth [75]

OE pha AB Nitrogen deficiency + 0.4%
acetate 35% Slower growth [75]

S. sp. PCC 6803 WT Nitrogen deficiency ∼15% 14 90 µg/108 cells of glycogen [71]

∆ glgP1 17% 90 µg/108 cells of glycogen [71]

∆ glgP2 2% 125 µg/108 cells of glycogen [71]

∆ glgP1/2 2% 110 µg/108 cells of glycogen [71]

∆ pfk1/2 2.6% 110 µg/108 cells of glycogen [71]

∆ gnd 7% 105 µg/108 cells of glycogen [71]

∆ pfk1 11% 105 µg/108 cells of glycogen [71]

∆ pfk2 12,5% 110 µg/108 cells of glycogen [71]

∆ eda 17% 120 µg/108 cells of glycogen [71]

∆ glgA1 6% 103 µg/108 cells of glycogen [71]

∆ glgA2 17% 110 µg/108 of glycogen cells [71]

∆ glgC 18% Lack of glycogen [71]

S. sp. PCC 6803 OE xfpk 2% CO2 5% 25 Accumulation before
nitrogen depletion [76]

OE xfpk pta and ach
knock out. 12% 32 Accumulation before

nitrogen depletion [76]

S. sp. PCC 6803 WT Light + nitrogen deficiency 12% 13 Not reported [77]

Light limitation + nitrogen
deficiency 17% [77]

∆ zfk Light + nitrogen deficiency 13% [77]

Light limitation + nitrogen
deficiency 19% [77]

∆ pfk Light + nitrogen deficiency 6% [77]
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Table 2. Cont.

Name of Species Modification Culture Conditions % PHA (dry cell weight) Time [d] Phenotype Reference

Light limitation + nitrogen
deficiency 2% [77]

S. sp. PCC 6803 WT Nitrogen deficiency 9.5% 7 3% fatty acid content under
N deprivation [78]

∆ phaB 0% 2,8% fatty acid content
under N deprivation [78]

OV pfabG + ∆phaB 3% 2,5% fatty acid content
under N deprivation [78]

S. sp. PCC 6714 WT Nitrogen and phosphorus
deficiency 6% 7 [79]

Random mutatons To 29% Not compatible [79]

S. sp. PCC 7002 ∆A0171-PHB Light + CO2 ∼4.5% P(3HB-co-4HV) Increase of total cell dry
weight [80]
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Methods that are used to increase the amount of PHB produced by cyanobacteria are, among
others, those based on the use of dicyclohexylcarbodiimide metabolic inhibitors, 1,1-dimethyl urea,
and carbonyl cyanide-m-chlorophenyl hydrazone. Their use in S. sp. PCC 6803 affected the
NADPH/NADP+ ratio, which contributed to the increase in PHB production. However, the effect of
this ratio on PHB production was characteristic of impaired metabolism conditions, such as nitrogen
starvation. Also, the C:N ratio can significantly affect the amount of PHB produced [73,81–83].
PHB production efficiency is also affected by phosphorus and sulfur starvation, as well as the addition
of other carbon sources. In the study of Hirai and co-workers, it was shown that sulfur starvation
resulted in the production of PHB in S. sp. PCC 6803 at 0.9% dry cell weight (DCW), and for N
starvation conditions this level was 3% DCW. In the case of phosphorus starvation, accumulation
only occurred after prolonged exposure to starvation and amounted to 2%. For Scytonema geitleri,
the highest PHB production of 7.12% was obtained under acetate supplementation [77,83].

It has been shown that glycogen availability is important under nitrogen starvation, especially for
the mutant strains S. sp. PCC 6803 with the glgP2 knock-out [71]. During nitrogen starvation, in the
case of mutant S. sp. PCC 6803 strains lacking both Pfk isoforms participating in the glycolysis pathway
(EMP), lower PHB production than in the wild type was observed under both the continuous light phase
of the photoperiod and the alternating light and dark phases of the photoperiod. For mutants with
impaired OPP pathway by gnd gene knock-out, the PHB level was slightly higher than the phk mutant
but lower than the WT, while for the mutant that does not produce Eda, from the Entner-Doudoroff (ED)
pathway, the production of PHB was not impaired [71]. Using the mutant ∆ phaEC S. sp. PCC 6803, it
was proven that the production of PHB did not affect the growth rate of cyanobacteria, also under
nitrogen starvation [77]. Overexpression of the gene encoding FabG protein increases PHB production
by redirecting carbon from fatty acids towards PHB synthesis [78]. Regulators that control catabolic
processes in cyanobacteria, such as SigE RNA polymerase, sigma factor, and Rre37 response regulator
also have an effect on PHA biosynthesis. Strains overexpressing each of these genes have shown
improved accumulation of PHA in S. sp. PCC 6803, especially during nitrogen starvation. The reason
for this was that these regulators increase the metabolic flow from glycogen (and, in the case of SigE, also
from TCA and pentose phosphate pathways) to PHB. It was also shown that for S. sp. PCC 6803 strains
with double overexpression of rre37 and sigE genes, the transcription level of phaA and phaB genes
increased 4-fold, while phaC and phaD genes increased 3-fold [70,84–86]. In another study, disruption
of PHB synthesis in ∆GCAX-∆BK strains, knocking out the PHB pathway and overexpressing the
glgC/glgA genes, increased the glycogen content from 25% for WT to 54% after addition of 3 mM H2O2

to the mutant culture [87]. The addition of 0.4% acetate to the culture medium of S. sp. PCC 6803
mutant overexpressing the phaAB genes, resulted in an increase of accumulated PHB from 26% to 35%
under nitrogen starvation conditions [75]. It has also recently been shown that in S. sp. PCC 6803, there
exists the Slr0058 protein that belongs to the transcription unit TU2718. This protein is similar to the
PhaF protein from Pseudomonas putida, which is a regulatory phytase involved in PHB metabolism, but
it does not contain any DNA binding domain. The lack of the Slr0058 protein has been shown to result
in a weakening of growth with a simultaneous increase in PHB production [88]. Also, another protein
from the TU2718 unit: Slr0060 may be involved in PHB depolymerization, as the mutant that did not
produce the Slr0060 protein produced more PHB, and no significant difference in growth rate versus
WT was observed. Under conditions of alternating light and dark phases of photoperiod, the PHB
level increased [88].

Understanding the role of polyhydroxyalkanoates and their relationship with other central
cyanobacterial metabolic pathways is far from complete. On the one hand, there are apparent
interrelations between these pathways, especially glycogen biosynthesis and breakdown; on the
other hand, complete elimination of the PHB production pathway does not seem to affect the cellular
fitness [76]. The complexity of this relationship, combined with the need for developing sustainable
alternatives to traditional plastics, is likely to drive further research in the efficient production of
polyhydroxyalkanoates in cyanobacteria. For the time being, the approaches based on utilization of
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genetic elements from unrelated organisms e.g., Ralstonia euthropha and synthetic gene circuits is likely
to provide high, albeit batch, productivities of these biopolymers in cyanobacteria.

6. EPS Produced by Cyanobacteria

Cyanobacteria produce outer cell membrane that combines the characteristics of both
gram-negative and gram-positive bacteria [89]. Arguably the most biotechnologically important
components of these structures are extracellular polymeric substances (EPS), i.e., natural polymers,
which, unlike released polymer substances (RPS), are permanently attached to the outer layers of the
cell. The polymeric substances bound to the cell surface may have the following forms: capsules,
sheaths, and slime. Among natural functions of EPS there are protection against environmental factors,
such as drying or UV radiation, colonies creation, and spreading on surfaces [90]. The EPS produced
by cyanobacteria are more complex than those produced by other types of bacteria. They usually
contain from 6 to 13 different monosaccharides, as well as ester, acetyl sulfate, and peptide groups [89].
They are potentially applicable in e.g., the bioremediation of environments contaminated with heavy
metals or reclamation of desert soils. EPS produced by cyanobacteria has been shown to increase
soil moisture [91,92]. Production of EPS in a cyanobacterial cell is complex. Typically, most of the
enzymatic steps in exopolysaccharide precursor biosynthesis occur inside the cell, while polymerization
and secretion are localized in the cell envelope. However, there are also examples of extracellularly
synthesized polysaccharides such as, e.g., dextran or levan. Their biosynthesis is mediated by
glycosyltransferases (GT), which are secreted and covalently bound to the cell surface [93,94]. There are
three main routes to EPS formation [95], presented in Figure 4.
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from Singh S., Cyanobacteria; published by Academic Press, 2019.

In cyanobacteria genes involved in the biosynthesis of polysaccharides are concentrated in smaller
units or are dispersed in the genome, a feature unusual for most other EPS-producing bacteria [96].
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A positive relationship has been demonstrated between genome size, distribution, and number of
protein-coding genes involved in EPS production. This is likely due to gene duplication events
during evolution. However, this relationship is much less visible when the distribution and number
of genes are analyzed in terms of cell morphology and type of habitat. Interestingly, unlike most
other cyanobacterial strains for unicellular strains of Synechococcus and Prochlorococcus, it has been
shown that they have lost most of the proteins associated with EPS production during adaptation
to the marine environment [89]. EPS is produced by adding monosaccharides to the polymer chain.
Monomers are obtained by cleaving from di- or tri-saccharides, with many specialized enzymes
involved [95,97–99]. Brief description of each of the three mechanisms of secretion and polymerization
of EPS in cyanobacteria is presented in Figure 4.

The first of the EPS polymerization mechanism is dependent on the Wzx/Wzy proteins [95].
Most of the polysaccharides produced by this pathway are heteropolymers. Individual monosaccharide
units are linked to the undecaprenyl diphosphate (C55-UPP) on the cytosol side of the inner membrane
and are assembled by the GT group. Then they are moved through the cytoplasmic membrane
utilizing the so-called flippase Wzx protein. In the next stage, their polymerization takes place in
the periplasm catalyzed by the Wzy protein, and then they are exported to the cell surface [100–102].
This transport depends on polysaccharide copolymerase (PCP) and extra-membrane polysaccharides
(OPX) [101,102]. Other complexes of proteins involved in the described mechanism are Wza-Wzc,
and most likely Wzz and Wzb proteins. They are probably involved in EPS export, the polymerization
process, or the control of chain length and number of monomer copies. An example of a polymer
synthesized by this pathway is lipopolysaccharide (LPS), which has an unusual structure due to lack of
heptose and 3-deoxy-d-manno-octulosonic acid, while lipid A is phosphate-free and contains odd-chain
hydroxylated fatty acids. Marine cyanobacterial LPS particles in marine strains Synechococcus WH8102
and CC9311 LPS lack heptose and 3-deoxy-d-manno-octulosonic acid while it contains 4-linked glucose
as well as glucosamine and galacturonic acid [103]. The lipid A region is phosphate-free in these
strains, but has a single galacturonic acid and odd-chain hydroxylated fatty acids [103]. The number of
gene copies associated with this pathway can vary widely, even among related species. In the work of
Pereira and co-workers from 2019 [104], mutants of the model S. sp. PCC 6803 cyanobacterium was
created to observe the effect of deletion of selected genes involved in the wzy-dependent pathway.
Phenotypic changes were not observed for the ∆wzy (∆sll0737) and ∆wzx (∆sll5049) mutants. On this
basis, their functional redundancy was suggested. On the other hand, for mutants ∆wzc (∆sll0923) and
∆wzb (∆slr0328) a change in the amount and composition of EPS was demonstrated. It was found that
Wzc is involved in the production of capsular polysaccharides (CPS) and RPS, while the Wzb protein
influences the production of RPS only [104]. The Wzc protein was also shown to have ATPase and
autokinase activities which is typical for bacterial tyrosine kinases [104]. It has been shown that Wzc
phosphorylation is controlled by Wzb phosphatase, which shows that the tyrosine phosphorylation
status is crucial in the production of EPS by S. sp. PCC 6803 [89,95,97,104,105].

Another mechanism for the EPS synthesis is the ABC transporter-dependent pathway, used
e.g., for the capsular polysaccharides (CPS) production [106]. An example of such a polymer is CPS
with poly-2-keto-3-deoxyoctulosonic and glycolipid phosphatidyl glycerol acid at the reducing end
(produced by thermophilic cyanobacteria Mastigocladus laminosus) [95,106], which has anti-cancer
properties. Typically CPS is formed with a single operon containing GT, but heteropolymers can
also be obtained using ABC-dependent mechanism if multiple GTs are engaged in the assembly
process [95,106,107]. The EPS in this pathway is fully polymerized on the inner lamina of the plasma
membrane before further transport. The transfer of amplified units in the case of CPS takes place
through the ABC transporter, which contains the KpsM and KpsT proteins. It includes the inner
membrane and the PCP KpsE and the OPX KpsD proteins [89,107]. CPS formed in this way has a
phosphatidylglycerol at the reducing end of the glycolipid phosphatidylglycerol and a linker which is a
Kdo (poly-3-deoxy-d-manno-oct-2-ulosonic acid). This linker is synthesized with the KpsC, KpsF, KpsS
and KpsU proteins [89]. Transport across the inner membrane and translocation to the cell surface,
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however, may differ for different polymers [89,101,102]. This feature distinguishes a polymer produced
by the Wza dependent pathway from that produced by the ABC transporter dependent pathway.
The mechanisms of action of ABC transporters may be distinguished by the presence (or absence)
of the characteristic non-reducing terminal modifications of the exported substrates. They serve as
chain termination and/or export signals, and the presence (or absence) of a discrete substrate-binding
domain at the nucleotide-binding polypeptide of the ABC transporter domain. In the study by Pereira
and co-workers from 2019 [104], no phenotypic differences were found for S. sp. PCC 6803 ∆kpsM
(∆slr2107) mutants and ∆kpsM ∆wzy (∆slr2107 ∆sll0737) mutants. The PCP and OPX proteins involved
in the export of EPS through the Vasa and ABC-dependent pathways as well as OPX and PCP homologs
were identified by Pereira and co-workers for most of the studied cyanobacteria [89,95,97,98,104].

The final pathway discussed here is the synthase dependent pathway, which is a process that is
flippase-independent [97]. In this process, EPS is synthesized and also transported across the plasma
membrane with the help of a specific synthase. For this synthetase, a cyclic-di-GMP signaling molecule
is required [89]. Often homopolymers, requiring only one type of sugar precursor, are formed in this
pathway [95,97]. Initially, alginate is synthesized as polymannuronic acid, which is processed by
epimerases and further processed to glucuronic or mannuronic acid. The proteins participating in the
process of alginate modification in the periplasm are AlgF, AlgG, and AlgL. The last mentioned protein
degrades accumulated alginate. Its transport is dependent on the AlgK scaffold protein and the AlgE
porin [89,95,97,98].

Another example of an exopolysaccharide synthesized in a synthase-dependent pathway is
cellulose, which is a long-chain polymer of β-1,4-d-glucan molecules. One of the most important
steps in cellulose synthesis is the activation of the PilZ domain of the cellulose synthase catalytic
subunit by cyclic di-GMP [108]. Some cyanobacteria have a single CesA gene encoding cellulose
synthase, and the effect of its activity have been observed in vivo. Under conditions of limited salinity,
S. sp. 7002 mutants lacking this gene grew slower than the WT and were deformed. Cyanobacteria
can produce a cellulose-containing layer between the outer and cytoplasmic membranes [108–110].
Cellulose is also responsible for cell aggregation, especially when its production is induced by light and
low temperature [111]. Maeda et al. have shown that in Thermosynechococcus vulcanus, cell aggregation
through cellulose occurs via two light-induced receptors SesA, SesB, and SesC. They are responsible
for the regulation of the cyclic di-GMP cellular level. In the same study, mutant strain with increased
expression of the gene encoding Tlr1210, a diguanylate cyclase grew normally only after blue light-and
temperature (31 ◦C) induction [112]. Also, overexpression of tll0007 gene, encoding the cellulose
synthase catalytic subunit (XcsA) did not increase cellulose production. However, deletion of this gene
blocked cell aggregation [112]. Surprisingly two genes located apart from xcsA gene in T. vulcanus
genome were identified as essential for cellulose-mediated cell aggregation. These genes are: hlyD-like
protein tlr0903 (xcsB) and endoglucanase-like tlr1902 (xcsC). Furthermore, a Tol-C like protein encoded
by tlr1605 was also essential for successful cellulose production. The authors propose tripartite
secretion system for cellulose production mechanism in this cyanobacterium [112,113]. The level of
cellulose production in cyanobacteria is relatively low and not sufficient for commercial use [110].
For this reason, studies have been carried out to increase the expression of native genes or to introduce
all genes forming cellulose synthase operon from other genera. Particularly noteworthy is the study in
which the genes of the cmc, ccp, cesAB, cesC, cesD, bgl operon were introduced from Komagataeibacter
xylinus (formerly Gluconacetobacter xylinus) into S. sp. PCC 7002 [110]. High cellulose production
was observed for the mutant with above mentioned operon but lacking the native cesA gene. It was
also recognized that the cultivation of cyanobacteria in low salinity is important, possibly because
cyanobacteria under such conditions produce more cyclic di-GMP [108,109].

Many environmental factors affect the efficiency of EPS production. Optimum growing conditions,
however, are often species-specific, and strain-specific differences can even be observed. One of the
most important factors is access to light. Constant and high light intensities increased EPS production
in Arthrospira platensis or Nostoc sp. [114,115]. Illumination intensity and the temperature usually
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have a synergistic effect on biosynthesis. Temperature affects photosynthesis because of its effect
on nutrient uptake and oxygen secretion by PSII [116,117]. There are, however, also contradictory
studies that show a negative or no effect of temperature increase. Elevated EPS production may
also be caused by phosphate starvation or its low level [118,119]. However, as with temperature,
some studies show the opposite results [120]. Interestingly, it has been shown by metagenomic
analysis for flagellar Nostoc cyanobacteria that the spectra of the light used during culturing has an
effect on the amount of EPS produced. The red light increased the production of polysaccharides by
inducing photoprotection [121]. Carbohydrates accumulate due to the need to use excess electrons
from PSII and activate the carboxylic acid cycle. It has been shown that the deficiency of potassium
and manganese promotes EPS synthesis. The increase in carbon dioxide concentration negatively
affects the accumulation of EPS due to the carbon concentration mechanism (CCM). EPS can be
synthesized as a cell’s stress response. This correlates with the information on the protective role of
EPS in cell [95,99,122].

Polysaccharides synthesis pathways are at the present level of their understanding the least
probable to be successfully engineered in new cyanobacterial strains because enzymatic machineries
involved in polysaccharides synthesis and secretion are very complex. Moreover, these pathways
are very diverse when cyanobacterial strains are compared. It is a great challenge to obtain
polysaccharide-based biomaterial of desired properties, composed of an exactly designed pattern of
monomers. From the other point of view, polysaccharide precursors may be used in other biosynthetic
pathways. Therefore, limited EPS production, not invading their natural protective role in cellular
homeostasis, may be an intriguing prospect.

7. Conclusions

Cyanobacteria, photosynthetic microorganisms that utilize light as an energy source and carbon
dioxide as a primary carbon source are promising microbial cell factories for sustainable production of
many biochemicals including biopolymers. These properties give a promise of sustainable production
of essential biopolymers directly from CO2, bypassing the need for an intermediate carbohydrate
platform and resultant carbon losses associated with respiratory metabolism of heterotrophic
microbial cell factories. Three groups of bioproducts are particularly interesting, the primary storage
molecule of cyanobacteria, glycogen; extracellular polymeric substances, primarily β-1-4 linked
glycans, including cellulose; and polyhydroxyalkanoates, mainly represented by another storage
molecule polyhydroxybutyrate. The developments in genetic engineering and synthetic biology of
cyanobacteria enable a deeper understanding of their metabolic processes responsible for biopolymer
synthesis, dissection of biosynthetic mechanisms and ultimately optimization of their production so
they could match the needs of growing biopolymer industry. The advances in understanding the
cyanobacterial metabolism revealed that two central metabolic pathways of cyanobacteria, carbon
fixing Calvin-Benson-Bassham cycle and tricarboxylic acid cycle are fundamentally connected to the
biosynthesis of these molecules. It was revealed that there are important differences between the
biosynthesis of these biopolymers in cyanobacteria and heterotrophic organisms. Since light-harvesting
and CBB are responsible for energy and carbon supply in cyanobacteria the relationships between
biosynthesis of essential polymers is also altered. Photosynthetic production of the primary
photosynthetate, glyceraldehyde-3P, is closely connected to central carbon metabolism (EMP, ED,
OPP) it has knock-on effects in storage compound metabolism and in the TCA cycle. Glycogen
synthesis and breakdown is closely connected with the circadian clock in response to the photoperiod.
Simultaneously the carbon flux from the glycogen breakdown is directed towards the OPP and
regeneration of RuBP when cells prepare for initiation of photosynthesis in light photoperiod. The close
association between the reserve storage material and carbon fixation is arguably the main reason why
several approaches that aimed at channeling glycogen carbon flux towards other products were not
successful. Future attempts should take into consideration the close relationship between glycogen
biosynthesis, circadian clock, and product formation with intermittent carbon rechanneling likely to be
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more successful than permanent impairment of glycogen metabolism. When it comes to the synthesis
of other complex carbohydrates, including EPS, there is still much progress to be made, but their close
metabolic proximity to the primary photosynthetates and reserve material supply is promising from
a flux balancing point of view. On the other hand, a relatively complex enzymatic biosynthesis and
secretion machinery make it challenging to obtain biomaterials of desired properties. Because of the
importance of the CBB in cyanobacteria, TCA acts as a secondary energy source. The implications of this
are found both in the enzymatic machinery of the TCA cycle, which is both more diverse and different
to standard cycle found in heterotrophic organisms. The TCA cycle in cyanobacteria acts primarily as a
source of chemical intermediates for amino acid biosynthesis, nitrogen fixation, and secondary reserve
material (polyhydroxyalkanoates) biosynthesis. When attempting to engineer the production of these
biopolymers, it should be noted that there is a link between glycogen metabolism and biosynthesis
of PHAs, and links to the circadian clock are expected since they affect the supply of the precursor
molecules. To summarize, although recent findings revealed more detailed information about the
relationships between the major cyanobacterial metabolic pathways resulting in biopolymer synthesis,
there is still plenty of interesting questions to answer both in the areas of basic and applied research.
The combination of traditional genetic engineering efforts with novel methods of genome editing,
systems, and synthetic biology, machine and deep learning and real time biopolymer characterization
methods could all be leveraged to obtain a better understanding and ultimately better control and
quality of synthesized biopolymers. Whilst not economically competitive with heterotrophic microbes
yet, the development of new strains; such as fast-growing cyanobacteria or, extremophilic strains
capable of industrial CO2 utilization; combined with the development of new tools and thorough
understanding of cyanobacterial metabolism can result in quicker industrialization and sustainable
production of essential biopolymers directly from CO2 in the near future.
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Abbreviations

ATP Adenosine 5′-triphosphate
CBB Calvin-Benson-Bassham cycle
CCM Carbon concentration mechanism
Chl Chlorophyll
CPS Capsular polysaccharides
Cyclic di-GMP Cyclic diguanylate
DCW Dry cell weight
EPS Extracellular polymeric substances
GABA γ-aminobutyric acid
GT Glycosyltransferases
LPS Lipopolysaccharide
NAD+/NADH Nicotinamide adenine dinucleotide
NADP+/NADPH Nicotinamide adenine dinucleotide phosphate
NPQ Non-photochemical quenching
OGDH 2-oxogluterate dehydrogenase
OPP Oxidative pentose phosphate
OPX Extra-membrane polysaccharides
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PCC Pasteur Collection of Cyanobacteria
PCP Polysaccharide copolymerase
PHA Polyhydroxyalkanoate
PHB Polyhydroxybutyrate
PSI Photosystem I
PSII Photosystem II
RPS Released polymer substances
TCA Tricarboxylic acid cycle
WT Wild type
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