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Abstract

Suspended particles in rivers can act as carriers of potentially bioavailable metal species

and are thus an emerging area of interest in river system monitoring. The delineation of bulk

metals concentrations in river water into dissolved and particulate components is also

important for risk assessment. Linear relationships between bulk metal concentrations in

water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dis-

solved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot =

CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Ger-

many (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemis-

try, land use and hydrological characteristics. For each catchment, particle-bound and

dissolved concentrations for a suite of metals in water were calculated based on linear

regressions of total suspended solids and total metal concentrations. Results were replica-

ble across sampling campaigns in different years and seasons (between 2013 and 2016)

and could be reproduced in a laboratory sedimentation experiment. CSUS values generally

showed little variability in different catchments and agree well with soil background values

for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropo-

genic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavail-

ability and potential human and ecological health concerns (where higher values of

CSUS/CW are considered as a risk indicator).

Introduction

River bed sediment pollution is a long-standing area of environmental concern [1,2]. Toxic

metals/metalloids are readily transported by carriers (e.g. suspended solids) towards lakes,

estuaries, or oceans. In contrast to many other frequently studied pollutants (e.g. organic com-

pounds) they are non-degradable [3,4]. Although environmental quality standards for many

metals (e.g., nickel, lead) are based on dissolved or bioavailable concentrations [5], suspended

sediments may contribute to mass flux and relocation of metals. Therefore, suspended
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particles as vectors of potentially bioavailable metal species have been extensively studied in

recent years [6–9]. Monitoring of suspended and dissolved metal fluxes is time-consuming,

expensive and labor-intensive, as it generally includes multi-stage multi-sample processing

schemes and speciation analysis [10]. Easy-to-measure proxies like Total Suspended Solids

(TSS) and turbidity have been used recently for concentration and/or flux estimations of a

wide range of pollutants, including persistent organic pollutants [11,12], pesticides [13], and

phosphorus [14]. Schwientek et al. [11] and Ruegner et al. [15] reported very robust correla-

tions between total concentrations of polycyclic aromatic hydrocarbons (PAH) with TSS or

turbidity in tributaries of the River Neckar in southwest Germany. Such correlations were

observed for polycyclic aromatic hydrocarbons in several catchments in Germany [11,16] and

found to be constant over several years and seasons [17]. This allowed freely dissolved and par-

ticle-bound PAH concentrations and assessment of total PAH fluxes to be calculated.

In comparison with organic pollutants, metals have not been widely included in such

proxy-aided estimations. Recently, Beltaos and Burrell [8] showed correlations between total

concentrations of 17 metals and TSS in the Saint John River, Canada, during the ice melting

period, when extremely high loads of suspended solids are transported. Nasrabadi et al. [18]

reported robust linear correlations between TSS/turbidity and total concentrations of metals

(Ni, Pb, Cd, Cu, Zn, Co, As, and Sr) in a single monitoring campaign in the Haraz River in

the southern Caspian Sea Basin, an area affected by intensive sand and gravel mining activi-

ties. In their study, pollutant transport (dissolved plus particle-bound concentrations) could

be easily monitored over time using regular TSS measurements once calibrated against

CW,tot for a given catchment. Continuous monitoring of pollutant fluxes using online turbid-

ity sensors resulted in robust relationships between TSS and turbidity in the catchments of

interest.

A broader investigation of these proxy (TSS/turbidity)-based methods across catchments

differing in land-use, geology and climate has not yet been conducted. In addition, detailed

investigations on the variability of metal concentrations on suspended solids over time in

catchments have not been performed. The specific goals of this study were to i) establish

relationships between total metal concentrations and total suspended sediments, ii) compare

different catchments/land use/geology (Germany and Iran), and iii) check stability and repro-

ducibility of metal-TSS relationships over time (e.g. different events/seasons/laboratory meth-

ods). This work follows earlier studies which showed time invariant but catchment specific

behavior for polycyclic aromatic hydrocarbons [11,15].

Materials and methods

Suspended sediment sampling: Concept and theory

Suspended sediments represent a mixture of particles present in a river system coming from

different sources in upstream areas [19]. These sediments are typically mobilized during high

discharge events or anthropogenic disturbances such as dredging or mining. Rivers are inte-

grators of catchment processes and suspended sediments are much less affected by local het-

erogeneity commonly associated with grab sediment samples. Furthermore, bulk water

samples may be easily analyzed for total metal concentrations (water plus suspended sedi-

ment). The total concentration of metals and other particle-associated pollutants in bulk water

samples consists of both the dissolved and particle-bound fraction:

CW;tot ¼ CW þ CSUS TSS ð1Þ

CW,tot, CW, CSUS and TSS denote the total and dissolved concentrations of the analyte in river

water, its concentration on suspended particles and the suspended particle concentration in

Dissolved and particle-bound metal concentrations in river water
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river water, respectively. Thus, in a plot of CW,tot versus TSS, CSUS corresponds to the slope of a

linear regression while CW corresponds to its intercept. These assumptions are valid if the dis-

solved and particle-bound concentrations of pollutants remain generally constant (e.g. during

an event or depending on sampling location).

Sites and sampling campaigns

In order to investigate the applicability of linear TSS-total metal concentrations relationships

four study catchments were selected: The relatively small Ammer, Goldersbach, and Steinlach

catchments in SW-Germany, which were already well investigated in terms of PAH concentra-

tions in suspended sediments, and the larger Haraz catchment in Iran, where metal concentra-

tions in river bed sediments have already been studied at several locations [18]. Ammer,

Steinlach and Goldersbach catchments differ mainly in terms of land-use [20] The Haraz

catchment, on the other hand, is distinct with regard to geology, climate, and land-use. None

of sampling locations in the selected catchments were within a protected area or private land

and no specific permission was required for river water sampling in the framework of this

study. It is also confirmed that the field investigations did not interfere with endangered or

protected species. Sampling campaigns were conducted, which included the measurement of

total, dissolved and particle-bound metal concentrations; results were compared to earlier data

and geochemical background concentrations.

The Haraz River, with a total drainage area of around 4,060 km2 and an approximate main

channel length of 185 km, stretches from the Alborz mountain range about 3500 m above sea

level (asl) in northern Iran towards the southern coastline of the Caspian Sea. The river slope

changes from 13% in the mountainous headwaters to less than 0.1% in the lower areas which

have been considered for analysis in this study (Fig 1). The mean annual flow is estimated to

be 30 m3 s-1 [21]. However, recent local droughts have led to decreasing discharges. The geol-

ogy of the catchment is described by Davidson et al. [22]. In brief, major formations are the

sandstone-shale-type Shemshak Formation, the Lar and Delichi carbonates, and the Eocene

Karadj formation that largely comprises submarine tuffs [23]. Hydrothermal springs related to

former and ongoing volcanic activities are present in central parts of the basin. Coal-rich out-

crops in the southern and central parts of the catchment have been exploited for decades. Sand

and gravel mining activities to provide construction materials have profoundly affected down-

stream water quality. With more than forty active mining sites (coal, limestone, sand and

gravel, etc.), the basin is considered to be heavily affected by anthropogenic activities which

may have led to a release of dissolved and particle-bound metals either from anthropogenic

or/and geogenic sources. Due to these ongoing upstream activities, water is often turbid even

during low flow conditions. The catchment is mainly covered by grasslands, dense forests, rice

paddies and urban settlements (Fig 1). The intensity of urban, rural, industrial and agricultural

land use increases downstream and, consequently, the load of discharged wastewaters and

run-off also increases.

To assess several potential metal pollution sources, six sampling locations were selected in

the lower part of the Haraz catchment. The sampling campaign was performed in March 2016.

In order to account for variability in time at given locations, similar sampling sites to those

described in Nasrabadi et al. [18] were chosen for the present study. Water samples were taken

from the main channels at a minimum distance of 1 m from the river banks and 15 cm below

the water surface to avoid any disturbance by floating debris or local bank erosion. Water

movement was fast enough to allow for well mixed and turbid samples [24]. Samples were col-

lected in pre-washed and rinsed 500 ml HDPE bottles. To cover a larger range of TSS values,

additional high-turbidity samples were produced in the laboratory by mixing and re-

Dissolved and particle-bound metal concentrations in river water
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suspending fine-grained river bed sediments in river water (grab samples taken from the

respective location) in 10 liter HDPE containers. A schedule was designed to sample the super-

natant water after distinct time periods as described by Ruegner et al. [16]. Using this

approach, six composite samples covering a broad TSS range were generated. These artificial

samples were treated in the same way as the natural samples.

The Ammer River is a 5th-order tributary of the Neckar River in southwestern Germany

and one of the principal tributaries of the Rhine (Fig 2). The length of the main stem is 22 km

and it drains a total area of 238 km2. The geology is dominated by Triassic limestones and gyp-

sum-bearing layers that are partly karstified, as well as mudstones and, along the valleys floors,

alluvial clays. The relief of the sampled catchment ranges from 346 to 600 m asl. Land use is

mostly agriculture (71%) while >17% of the catchment is covered by urban areas (Fig 2) and

12% by forest. The mean discharge at the gauging station at Pfäffingen is 1 m3/s. Event-related

high discharge samples were taken at a gauging station which monitors the upper 134 km2 of

the catchment in July 2013 and May 2014 using an automated sampler. Samples were collected

in high density polyethylene (HDPE) bottles.

The Goldersbach River is a 4th-order tributary of the Ammer River, draining an area of 73

km2 with altitudes varying between 320 and 580 m asl. The main stem has a length of 18.7 km

and is fed by a stream network of 130 km total length. The catchment is dominated by a pla-

teau of Middle and Upper Triassic sandstones with valleys cutting into the underlying

Fig 1. Map of the lower Haraz Basin with major land use as well as the sampling locations; numbers indicate

sampling sites. Reprinted from [18] under a CC BY license, with permission from Elsevier, original copyright 2016.

https://doi.org/10.1371/journal.pone.0191314.g001
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marlstones and, only locally, into gypsum-bearing mudstones. The gauged part of the catch-

ment has an area of 37.6 km2, is completely forested and part of a nature reserve; thus, human

impacts are low. The mean discharge at the gauge is 0.25 m3 s-1. Flood-event samples were

taken by automated sampling at this gauging station in July 2013 and transferred to HDPE

bottles.

The Steinlach River, a 4th-order tributary of the Neckar River, has a total length of 25 km,

whereas the length of its stream network is about 190 km. The Steinlach drains a total catch-

ment area of 140 km2 with a mean discharge of 1.7 m3/s. Elevation ranges between 320 and

880 m asl. The catchment geology comprises three principle sedimentary rock formations:

Upper Jurassic (mainly limestones), covering the upstream parts of the catchment; Middle

Jurassic (dominated by mudstones, marls and sandstones), covering the central portion of the

catchment and Lower Jurassic (made up by black shales, mudstones and carbonates), covering

the lower parts of the catchment. Upper Triassic rocks (sandstones and marls/mudstones) are

only present near the confluence with the Neckar River. These formations dip approximately

1–2˚ in the direction ESE [20]. Land use within the study catchment comprises 49% agricul-

tural areas, 39% forests and semi-natural areas and 12% artificial surfaces. Event-related high

discharge samples with intermediate to high turbidities (i.e. suspended particle concentra-

tions) were collected in May as well as early and late July 2014 at a monitoring station approxi-

mately 4 km upstream of the Steinlach River confluence with the Neckar River (Fig 2) and

transferred in HDPE bottles.

Fig 2. Map of the Ammer, Goldersbach, and Steinlach catchments in Southwest Germany with major types of land-use as well as the sampling locations.

Reprinted from [11] under a CC BY license, with permission from Elsevier, original copyright 2013.

https://doi.org/10.1371/journal.pone.0191314.g002

Dissolved and particle-bound metal concentrations in river water

PLOS ONE | https://doi.org/10.1371/journal.pone.0191314 January 17, 2018 5 / 15

https://doi.org/10.1371/journal.pone.0191314.g002
https://doi.org/10.1371/journal.pone.0191314


Laboratory treatment

The samples from the Haraz catchment were analyzed using the US EPA method 200.2 [25]

for the determination of total element concentrations. In brief, a mixture of concentrated

(70%) nitric acid and concentrated (40%) hydrochloric acid (1.0 ± 0.1 ml conc. HNO3 and

0.50 ± 0.05 ml conc. HCl) was used as the extracting agent. Well-homogenized 50 mL sub-

samples were then digested for 2 to 2.5 hours at 95˚ ± 5˚C. Quality assurance/quality control

procedures were applied according to the standards cited. Filtered digested samples were then

measured using inductively coupled plasma atomic emission spectrometry (ICP-AES) accord-

ing to the EPA-3005 method [26]. Accuracy was also cross-checked by the determination of

standards and random duplicates concentrations. Deviation from target values was less than

±5% for each element. For determination of TSS values EPA method 160.2 was used [27].

Total element concentrations (bulk water samples) in the Steinlach, Ammer and Golders-

bach samples were analyzed according to the German standard DIN EN ISO 11885 [28]. In

brief, 20 ml of the water sample, including suspended sediments, is digested using 2 ml HNO3

plus 0.5 ml H2O2 and a microwave extraction. Metals were analyzed using ICP-MS/ICP OES

equipment. TSS was determined by filtration (Whatman 934-AH Glass Microfiber filters,

1.5 μm), with subsequent drying at 105˚C for 24 h and recording of the mass of the dried filter

cakes (according to the standard procedure DIN 38402 A 24 [29].

Results and discussion

The dissolved (CW, intercepts) and particle-bound (CSUS, slopes) concentrations of single met-

als were calculated for each event/sampling campaign using linear regressions between total

concentrations of metals and the respective TSS values in river water/artificial suspensions

(according to Eq 1).

Lower Haraz Basin

These data cover a TSS range of 481–1161 mg L-1 (March 2016) and are corroborated with a

laboratory test containing suspended sediments in the range of 66–1860 mg L-1. Robust linear

correlations of CW,tot and TSS are observed (see Fig 3) for all elements displaying distinct val-

ues for CSUS and pronounced intercepts (CW). The additional laboratory tests–although span-

ning a larger TSS range–show very good agreement with the natural bulk river water samples.

Both data sets were also in close agreement with data reported by Nasrabadi et al. [18] for sam-

ples taken from ten locations distributed over the whole Haraz Catchment in May and Decem-

ber 2012 (also displayed in S1 Table). This indicates that the variability of CSUS and CW is low

in the river water despite the relatively large catchment area and diverse geology. One reason

for the low variability may be widespread sand and gravel mining activities taking place in the

Haraz River [18]. The influence of such a homogenization was also observed by Ji et al. in the

Baihe and Chaohe Rivers in China, which are heavily exposed to gold and iron mining activi-

ties [30]. They also reported relatively low coefficients of variation (CV) for particle-bound

concentrations of different metals within the frame of a spatially and temporally variable data-

set. Overall, correlations (all data) thus show only little variability between different campaigns

except for arsenic–this could be due to the influence of hydrothermal springs in the catchment

[31].

A comparison between CSUS values obtained in the present study and concentrations in the

bed sediment measured at the same locations of the Haraz basin in August 2007 [23] (for a

grain size fraction < 63 μm) shows good agreement for elements Cu, Co, Pb and Ni (less than

20% of difference). For As, Sr and Zn, however, differences are observed which may be due to

heterogeneities in the river bed sediment or different grain size distributions of suspended

Dissolved and particle-bound metal concentrations in river water

PLOS ONE | https://doi.org/10.1371/journal.pone.0191314 January 17, 2018 6 / 15

https://doi.org/10.1371/journal.pone.0191314


particles and river bed sediments [18]. In particular, fine particles (< 63 mm) in water usually

tend to additionally adsorb metals [3,32]. Grain size distributions in suspended sediments

depend on flow velocity and thus the magnitude of the discharge event. However, in the south-

western German catchments, mean grain diameters of suspended sediments sampled during

high flow events with suspended particle concentrations between 70 and 2500 mg L-1 were

determined to range from 15–35 μm and thus are very close to the grain size distribution

observed in river sediments for the fraction < 63 μm [16].

Ammer catchment

Here, a TSS range of 112–1590 mg L-1 (July 2013) and 55–1891 mg L-1 (May 2014) was covered

by a sampling campaign at a single measurement location. Robust linear correlations of CW,tot

and TSS are observed for all selected elements (see Fig 4) during two independent high dis-

charge events (separated by almost one year). The concentrations of Pb, Cu, Ni, and Zn on sus-

pended solids are in the geogenic background ranges for soils/subsoils in the State of Baden-

Württemberg, according to the data reported by LABO [33] and Lotze [34]. Only Cu and Zn

are slightly above and Cr below the average background values. Except for lead, clear intercepts

Fig 3. Linear regressions of total element concentrations and TSS during different sampling campaigns in the

lower Haraz catchment (March 2016 plus lab tests), 2012 data adapted from Nasrabadi et al. [18].

https://doi.org/10.1371/journal.pone.0191314.g003

Dissolved and particle-bound metal concentrations in river water
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(CW) are detected. Both data sets were in close agreement which suggests only little temporal

variability of CSUS and CW between the sampled events.

Goldersbach catchment

A TSS range of 68–2562 mg L-1 was covered during the sampling campaign in July 2013.

Mostly good correlations are observed for Cr and V. The slopes and intercepts are strikingly

similar to the Ammer results with two exceptions: Dissolved and particulate concentrations of

Ba are generally higher in the Goldersbach catchment, which is probably is due to a feldspar

bearing sandstone formation occurring there. At the same time, Cu concentrations that are

clearly below those in the other three catchments might be related to missing anthropogenic

inputs into the forested Goldersbach catchment (see Fig 4).

Steinlach catchment

A TSS range of 85–703 mg L-1 (May 2014), 46–4016 mg L-1 (mid-July 2014) and 129–3615 mg

L-1 (Late-July 2014) was covered. Water samples taken at a single location at three independent

events show reasonable good linear correlations of CW,tot and TSS for most elements (see Fig

5). For some data sets (Sr, Cu, and Zn) correlations were slightly weaker. For some metals (e.g.

Co), intercepts (CW) are uncertain (close or below zero) which could be due to the limited

number of data in the low concentration range, but could also indicate that dissolved concen-

trations are indeed very low. Despite this, all data sets–and here in particular data for CSUS—

show only little variability and differ only slightly from overall linear correlations. Particle-

bound concentrations of As, Pb, Cr, Cu, Ni and Zn may be attributed to the catchment geology

[33,34]. However, as in the Ammer catchment, Cu and Zn are slightly above the average. The

slightly higher Cr concentrations in suspended sediments in comparison to the neighboring

Ammer and Goldersbach catchments might be explained by contributions from widespread

Jurassic limestones [33].

Fig 4. Linear regressions of total element concentrations and TSS during the 2013 and 2014 sampling campaigns

in the Ammer and Goldersbach catchments, Germany.

https://doi.org/10.1371/journal.pone.0191314.g004
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By comparing results across all four study areas it can be concluded that in the Haraz catch-

ment dissolved concentrations tend to be higher (e.g., Co, Ni, Pb). A possible explanation is

the active volcanism in the Haraz catchment and the associated hydrothermal springs. Unlike

in the southwest German catchments in the present study, the suspended particle concentra-

tions are high also during low flow conditions due to the mining activities along the river

channel. Consequently, the fraction of highly mineralized water from hydrothermal springs is

always relatively high and therefore even turbid water shows relatively high dissolved metal

concentrations (large intercepts, Fig 3). In contrast, the particle-bound concentrations are sur-

prisingly close to the Ammer-, Steinlach- and Goldersbach catchments (e.g., Ni, Pb). This

Fig 5. Linear regressions of total element concentrations and TSS during the 2014 sampling campaigns in the

Steinlach catchment, Germany.

https://doi.org/10.1371/journal.pone.0191314.g005
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could be due to the similar geology, e.g. the occurrence of sedimentary rocks such as lime-

stones and mudstones. Particle-bound and dissolved concentrations as well as statistical details

of linear regressions for all rivers are displayed in S1 Table.

Metals distribution in the solid and liquid phase

The scatter plot of CSUS vs. CW (Fig 6) for all elements in different catchments generally shows

a good correlation between dissolved and particulate concentrations for metals across most

catchments with the exception of the Haraz values. Generally, calculated CSUS/CW values may

be interpreted as distribution coefficients (Kd) between water and sediment, and for most met-

als in all four study catchments these values indicate a strong affinity to suspended particles.

Kd values in this study are typically between 1000 and 10 000 L kg-1. Low Kd values may, in a

first instance, be considered as an indication towards elevated bioavailability and higher risk

level. In the Haraz Basin, for example, remarkably low log Kd values (average log CSUS/CW =

2.6 L kg-1) are observed for arsenic in comparison with other studies, such as 3.4 L kg-1 in the

Taehwa River, South Korea [35], 4.6 L kg-1 in East-Hainan estuaries, China [36], 3.8 L kg-1 in

the Seine estuary, France [37], and 3.8 L kg-1 in the Paranagua estuary, Brazil [38]. In the

Haraz Basin, hot springs as well as coal-rich formations may be the source of high concentra-

tions of dissolved arsenic in the river. Higher arsenic concentrations in the dissolved fraction,

and the accumulation of arsenic in biota (e.g. rainbow trout) have been thoroughly discussed

in the literature [39,40]. A relatively weak affinity to solid phases was also observed for Sr in

both the Haraz and the Steinlach catchment (average log CSUS/CW = 2.5 to 2.6 L kg-1). This was

reported also by Ji et al. [30] for Sr as an indicator element of soil and rock weathering, and by

Beltaos and Burrel [8] with similarly low log CSUS/CW values (2.7 L kg-1) in comparison to

other metals. The Haraz basin also shows lower Kd for Cu, Ni, Pb and Zn in comparison with

the German (Ammer and Steinlach) study catchments.

Comparison to background values and data from literature

In Table 1 we compare the average concentrations of metals on suspended solids within the

investigated catchments with data from background soils/regional sediments. In general, a

good agreement for Pb, Ni, Cr, Co, and also Cu and Zn is observed which indicates the pre-

dominance of geogenic influence. However, Cu and Zn–often associated with anthropogenic

pollution from urban areas [41]–are elevated in particular in the Ammer and Steinlach

Fig 6. Comparison of particulate (CSUS) and dissolved (CW) concentrations of metals in all four catchments

[Ammer (_A, in black), Haraz (_H, in red), Steinlach (_S, in green) and Goldersbach (_G, in purple)].

https://doi.org/10.1371/journal.pone.0191314.g006

Dissolved and particle-bound metal concentrations in river water
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catchments. Polycyclic aromatic hydrocarbons (PAHs) are also particularly elevated in these

catchments, indicating distinct urban influences [16,17]. Nevertheless, heavy metals in the

Ammer catchment are surprisingly low compared to significant pollution by polychlorinated

biphenyls (in fish) and PAH in (suspended) sediments [11]. This indicates that metal fluxes

from urban areas are much less pronounced compared to the geogenic background; this con-

trasts to fluxes of persistent organic pollutants for which cities are hot spots.

The role of anthropogenic sources with respect to increased metal concentrations in natural

soils/sediments is delineated by many researchers: Relatively high concentrations of metals

were detected in the Buyak Menderes, Turkey [42] and in the St. Lawrence River harbor, Can-

ada [6]. In Turkey these were attributed to intensive discharge of industrial wastewater and in

Canada to heavy waterway traffic as well as urban loads.

Dissolved concentrations of metals investigated in the present study are higher than the

world average and also higher than in other well-known large rivers [43]. A better agreement

is observed when dissolved concentrations in this study are compared to those from urban

runoff [44,45]. Generally, dissolved concentrations of metals in basins fed by intensified

urban/agricultural land use [46–48] are higher (sometimes up to three orders of magnitude)

than those in natural areas [44,49].

Implications

Our study demonstrates that robust linear relationships between TSS and total metal concen-

trations exist in rivers of four contrasting catchments and which are stable over time (e.g.

independent on season and events). Rivers are thus “integrators” in catchments and give a rep-

resentative measure of pollutant fluxes coming from upstream areas. The method imple-

mented in this study not only offers a robust way to measure pollutants fluxes but it also allows

particle-bound and dissolved metal fluxes to be distinguished. For instance, a mean annual

TSS of more than 100 mg l-1 at Kd (= CSUS/CW) values of 10000 l kg-1 (which is typical for the

study catchments) indicates the shift from dissolved- to particle- dominated metal fluxes. As

Table 1. A comparison among particle-bound concentration of metals (mg/kg) in Ammer, Steinlach, Goldersbach and Haraz River (calculated in this study) with

similar studies/ background values.

Region Cu Pb Ni Cr Zn Sr Co

Haraz River� 33 24 34 - 37 172 14

Ammer River� 45 23 15 8.2 160�� - 4.9��

Steinlach River� 28 19 23 16 104 122 9.4

Goldersbach River�� 15 22 17 7.3 - - 5.8

Data from literature / background values

Haraz River Estuary, Iran [23] 32 26 44 28 74 603 10

Average soils on arable land in Baden-Württemberg [33] 19 27 27 36 60 - -

Average soils on arable land in alluvial floodplains in Germany 14 29 15 15 50 - -

Upper continental crust [50] 28 17 47 92 67 320 17

Yellow River delta, China [51] 21 21 27 62 61 - -

Yangtze River Estuary, China [52] 25 24 - 72 83 - -

Brisbane River estuary, Australia [53] 29 26 15 15 107 64 15

Buyak Menderes River, Turkey [42] 137 54 315 165 120 - 29

St. Lawrence River harbor, Canada [6] 108 58 43 69 306 - -

� Data from this study

��Extracted from single datasets

https://doi.org/10.1371/journal.pone.0191314.t001
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the method is based on suspended sediments, it is less affected by local heterogeneities in com-

parison to conventional sediment sampling schemes that are based on grab samples from the

local river bed. The method also proved to be cost-efficient in comparison to standard metal

analyses, which generally include both bulk and speciation procedures. The regression-based

method also allows the risk level of freely dissolved metals concentrations to be evaluated by

utilizing the intercept (CW) values: the higher CW, the higher the potential risk level assigned to

biota, as demonstrated for arsenic in the Haraz, where concentrations in river water were

reported to be up to ten times higher than WHO guidelines [39]. The results of the present

study show that relationships between bulk metal concentrations and total suspended solids in

rivers are catchment-specific and time-invariant–and that such methods can be extended to

other field sites. In principle, the methods used in this study could also be applied to other

compounds such as polychlorinated biphenyls, brominated flame retardants[12] or elements

including radionuclides (210Pb, 137Cs, 7Be), potentially allowing the origin and age of sus-

pended sediments in rivers to be traced [54,55].
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