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The interactions between non-coding RNAs (ncRNAs) and
proteins play an important role in many biological processes,
and their biological functions are primarily achieved by bind-
ing with a variety of proteins. High-throughput biological
techniques are used to identify protein molecules bound
with specific ncRNA, but they are usually expensive and
time consuming. Deep learning provides a powerful solution
to computationally predict RNA-protein interactions. In this
work, we propose the RPI-SAN model by using the deep-
learning stacked auto-encoder network to mine the hidden
high-level features from RNA and protein sequences and
feed them into a random forest (RF) model to predict ncRNA
binding proteins. Stacked assembling is further used to
improve the accuracy of the proposed method. Four bench-
mark datasets, including RPI2241, RPI488, RPI1807, and
NPInter v2.0, were employed for the unbiased evaluation
of five established prediction tools: RPI-Pred, IPMiner,
RPISeq-RF, lncPro, and RPI-SAN. The experimental results
show that our RPI-SAN model achieves much better perfor-
mance than other methods, with accuracies of 90.77%,
89.7%, 96.1%, and 99.33%, respectively. It is anticipated
that RPI-SAN can be used as an effective computational
tool for future biomedical researches and can accurately
predict the potential ncRNA-protein interacted pairs, which
provides reliable guidance for biological research.
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INTRODUCTION
In theHuman genome, 74.7% of the sequence can be transcribed into
RNA, but the total exon sequence of the mRNA is only 2.94%.1–3 The
remaining sequence information is output in the form of non-coding
RNA (ncRNA), which can be divided into two types: constitutive and
regulatory types.4 The proportion of small molecule ncRNA in consti-
tutive ncRNA and regulatory ncRNA is very small in non-coding
sequences, and most of the non-coding sequences are transcribed
into long ncRNA (lncRNA). Compared with mRNA, lncRNA is
shorter in length, less in exon and two in focus, with an average abun-
dance of about 1/10 of mRNA and a lower sequence conservation.5–7

It has been found that lncRNA can participate in all aspects of gene
expression regulation by interacting with proteins such as chromatin
modification complexes and transcription factors, thus playing a
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fundamental role in a variety of important biological processes such
as X chromosome inactivation (Xist8 and Tsix9), gene imprinting
(H1910 and Air11), and developmental differentiation (HOTAIR12

and TINCR13). Although the role of ncRNA-protein interactions
(ncRPIs) in the regulation of gene expression has been doubtless,
only a small number of ncRNA functions and mechanisms of action
have been studied. Since ncRNA functions require the coordination
of protein molecules, the identification of protein molecules bound
with specific ncRNA has become the main approach to revealing
the function and mechanism of ncRNA.

Large-scale RNA-binding proteins (RBPs) detection experiments
based on biological methods have made many important ad-
vances,14–16 such as RNAcompete,17 HITS-CLIP,18 and RNA-protein
complex structure, which provide valuable information about the
RNA-protein interactions (RPIs), while experimental methods are
still time-consuming and overpriced (for example, it’s high-cost to
determine complex structure by way of experiment). These high-
throughput technologies need much time for the abortive hand-tun-
ing of putative binding sequences.19 A lot of studies suggest that the
sequences have enough information for predicting RPIs. The
sequence-homology-based methods help to detect the binding do-
mains of proteins and their possible functions,20–24 but lack the ability
to determine whether a given pair of RNA and protein can form the
interaction well. There is an urgent need for an accurately computa-
tional approach to predicting RPIs.

In recent years, computational prediction of the interaction partner
between proteins and RNAs has attracted a lot of research
works.15,25–35 Pancaldi et al.36,37 trained a random forest (RF) and a
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Figure 1. Prediction Performance Comparison Between SA-FT-RF, SA-RF,

RPISeq-RF, Average Assembling, and Stacked Assembling on ncRNA-

Protein Dataset RPI2241
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support vector machine to classify whether the RNA-protein pair
interact or not and used >100 different sources of features, which
were extracted from genomic context,38 structure, or localization.
The RPISeq21 was introduced by Muppirala et al.39 They also applied
RF and SVM classifiers by using simple 4-mer features of RNA and
3-mer features of proteins, respectively. Thereafter, lncPro25 trained
three types of physiochemical properties using Fisher linear discrim-
inant. Zhou et al.20 presented a new SVM based approach RPI-Pred
by taking into consideration both sequences and structures informa-
tion to predict ncRPIs. In the studies above, hand-crafted features of
RNA-protein pairs are used in some methods,38 which may change
the real distribution back of the data and need strong domain knowl-
edge. Other researchers extracted lowly discriminated features from
noisy sequences, though they mainly got information from extracted
sequences.21,25,26 General machine learning methods might not mine
the hidden regular pattern from these noises well. Thus, efficient fea-
tures and advanced models play an important role in RPI’s computa-
tional prediction.40–43

In this study, we propose a powerful solution for these challenges.
It’s a sequence-based approach to predict ncRPIs by using deep
learning conjoint with RF classifier.44 More specifically, RNA se-
quences are first converted into k-mers sparse matrix,40 which re-
tains almost all amino acid compositions and order information.
Then the singular value decomposition (SVD) is used to extract
the feature vector for each sequence.45 For protein sequences, a
pseudo-Zernike moment (PZM) descriptor is used to extract the
evolutionary information from the position-specific scoring matrix
(PSSM).42,46 Then, the stacked auto-encoder is further employed to
automatically learn hidden high-level features from above
mentioned features.47 Finally, these reprehensive features are fed
into RF classifiers to predict RPIs. To further improve the robust-
ness and accuracy of our method, extra layers are employed to
integrate different predictors. In the experimental, the proposed
method was evaluated on three benchmark datasets including
RPI488,48 RPI1807,20 and RPI224121 and compared with other
state-of-the-art methods, such as lncPro,25 RPISeq-RF,21 RPI-
Pred,20 and IPMiner.48 The experimental results showed that our
method can achieve much better prediction performance on above
datasets.
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RESULTS AND DISCUSSION
In this study, we propose a deep learning method named RPI-SAN,
which conjoins the stacked auto-encoder network (SAN) with RF
classifiers and used PSSM with the Zernike moment and k-mers
sparse matrix with SVD to predict the interactions of ncRNA-protein.
First, we evaluate its predictive ability of RPIs on the RPI2241 dataset.
Furthermore, we compare RPI-SAN with other state-of-the-art
methods on different datasets to demonstrate the effectiveness and
robustness of our approach. Then we predict ncRPIs on different da-
tasets by using the trained model. Furthermore, we made a case study
that shows, with specific examples, how RPI-SAN advanced studies
regarding potential RPIs. Finally, we summarize, analyze, and discuss
our method.
Evaluation of RPI-SAN’s Capability to Predict RPIs

We first test our RPI-SAN approach to evaluate its capability to pre-
dict RPIs on the RPI2241 dataset. The details listed in the Tables S2
and S3 are as follows.

The mean accuracy of 5-fold cross-validation is 90.77%, the mean
sensitivity is 86.17%, the mean specificity is 97.37%, the mean preci-
sion is 84.05%, and the Matthews correlation coefficient (MCC) is
82.27%. Their respective SDs are 0.52%, 0.81%, 1.71%, 1.26%, and
1.25%. Table S2 shows the 5-fold cross-validation details performed
by RPI-SAN on the RPI2241 dataset, with the area under the receiver
operating characteristic curve (AUC) achieving 0.962 as shown in
Figure 1. Our method has achieved the best performance on the
RPI2241 dataset in all methods.

Our method is manifested by three stacked separate predictors, a
stacked auto-encoder with fine-tuning (SA-FT-RF), a stacked auto-
encoder with RF (SA-RF), and RPISeq with RF (RPISeq-RF), with
each individual predictor performing different effects on different
data. The stacked auto-encoder performs well in accuracy and speci-
ficity, while RPISeq-RF specializes in precision and sensitivity. It is ex-
plained that individual predictors have weaker adaptability. It is
necessary to integrate them together to give play to each other’s
strengths.

On the RPI2241 dataset, our RPI-SAN method performs much better
than other predictors. Shown in Table S3, RPI-SAN performs at an
accuracy of 90.77%, sensitivity of 86.17%, specificity of 97.37%, preci-
sion of 84.05%,MCC of 82.17%, and AUC of 0.962. It’s the best model
in these four contrasting predictors. SA-RF performs at an accuracy of
63.71%, sensitivity of 64.75%, specificity of 61.72%, precision of
65.74%, and MCC of only 27.49%. The accuracy, sensitivity, speci-
ficity, precision, and MCC of RPISeq-RF are 63.96%, 64.83%,
62.59%, 65.37%, and 27.98%, and those of SA-FT-RF are 90.52%,
87.71%, 94.78%, 86.18%, and 81.56%. lncPro performs at an accuracy
of 65.4%, sensitivity of 65.9%, specificity of 64.0%, precision of 66.9%,
and MCC of 31.0%, respectively. lncPro performs a little worse than
RPI-SAN. It has some disadvantages; it can only predict protein se-
quences longer than 30, which fails in predicting shorter protein



Table 1. Comparing RPI-SAN with Other Methods on RPI4888, RPI1807 and RPI2241 Datasets

Datasets Methods Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) MCC (%) AUC

RPI488

IPMiner 89.1 93.9 83.1 94.5 78.4 0.914

RPISeq-RF 88.0 92.6 82.2 93.2 76.2 0.903

lncPro 87.0 90.0 82.7 91.0 74.0 0.901

RPI-SAN 89.7a 94.3a 83.7 95.2a 79.3a 0.920a

RPI1807

RPI-Pred 93.0 95.0 N/A 94.0 N/A 0.97

IPMiner 98.6a 98.2a 99.3 97.8a 97.2a 0.998

RPISeq-RF 97.3 96.8 98.4 96.0 94.6 0.0996

lncPro 96.9 96.5 98.1 95.5 93.8 0.994

RPI-SAN 96.1 93.6 99.9 91.4 92.4 0.999a

RPI2241

RPI-Pred 84.0 78.0 N/A 88.0a N/A 0.89

IPMiner 82.4 83.3 81.2 83.6 65.0 0.906

RPISeq-RF 63.96 64.83 62.59 65.37 27.98 0.690

lncPro 65.4 65.9 64.0 66.9 31.0 0.722

RPI-SAN 90.77a 86.17a 97.37a 84.05 82.27a 0.962a

aThis measure of performance is the best among the compared methods for the individual dataset.
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sequences. Since using RNAsubopt to predict RNA structure takes a
long time, especially for long sequences, it only processes the first
4,095 nucleotides if the RNA sequence is longer than 4,095. These
are the reasons why our method does not include lncPro in our
stacked predictors.

Comparison between Different Assembling Strategies

In our RPI-SAN method, we use stacked assembling to integrate
different classifiers. This time, we compare it with other general
methods, such as majority voting and averaging. As the results
show in Figure 1, stacked assembling attains an AUC of 0.962 on
the RPI2241 dataset, which is better than the average method and
each individual classifier. Logistic regression gets different weights
for the stacked auto-encoder, stacked auto-encoder with fine-tuning,
and RPISeq-RF by using the raw sequence feature, which is more
robust and flexible than the average stacked auto-encoder.

Different predictors play different roles in the production of the final
result. Stacked assembling improves the final prediction effect at
different ranges. On the RPI488 and RPI1807 datasets, the three pre-
dictors have outputs similar to the RPI2241 dataset, which means a
stronger correlation. So stacked assembling improves the AUC on
RPI488 and RPI1807, but smaller than the improvement on
RPI2241, which has a lower correlation. As a result, the stacked
assembling is really effective for improving the final performance.
So it is more significant on datasets with lower correlation.

Comparison with Other Methods

In order to verify the effectiveness and robustness of RPI-SAN, we
compare it with other state-of-the-art methods in the same datasets.
Here we have selected the RPI-Pred from the study by Suresh et al.20

and the RPISeq-RF from the study by Muppirala et al.21 because the
RPISeq-RF performs better than RPISeq-SVM in this study. We have
also selected the IPMiner from the study by Pan et al.48 and the lncPro
from the study by Lu et al.25 Since these methods are not evaluated on
the same criteria, we only compare the results of the same evaluation
methods on the same datasets.

As shown in Table 1 and Figure S1, on the RPI488 dataset, our method
performs a little better than any other method, with an accuracy of
89.7%, sensitivity of 94.3%, specificity of 83.7%, precision of 95.2%,
MCC of 79.3%, and AUC of 0.92. The performance of each parameter
is optimal. For the RPI1807 dataset, all methods except RPI-Pred give
great performances with the accuracy and AUC greater than 95%
(shown in Figure S2). Our method also gives a great performance.
Although the accuracy is not best, it still attains a high accuracy of
96%. In terms of specificity and the important parameter AUC, our
method is outstanding, achieving an AUC of 0.999. For the RPI2241
dataset, before our proposed method RPI-SAN, most methods did
not work very well, especially in terms of accuracy, MCC, and AUC.
Compared with the best methods already published, RPI-SAN
improved the accuracy by almost 7%, specificity by more than 16%,
MCC by over 17%, and AUC by more than 6%, respectively.

Predicting ncRPIs Using RPI-SAN

To further validate the ability of RPI-SAN to predict the interactions
between ncRNA and protein, we use the RPI488 dataset to train the
deep learning model and verify it on the NPInter v2.0 dataset.49 There
is no overlap between the two datasets. There are 10,412 interaction
pairs in the NPInter v2.0, which can be divided into six organisms,
andwe conduct experiments on them separately. The results are shown
in Table 2. RPI-SAN predicts the correct number of pairs of interac-
tions on Homo sapiens, Caenorhabditis elegans, Drosophila mela-
nogaster, Saccharomyces cerevisiae, Mus musculus, and Escherichia
Molecular Therapy: Nucleic Acids Vol. 11 June 2018 339
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Table 2. Predicted Performance of the RPI488 Trained Model on NPInter

v2.0 Dataset

Organism
Number of
Interaction Pairs

Predicted Number of
Interaction Pairs

Accuracy
(%)

Homo sapiens 6,975 6,928 99.33

Caenorhabditis
elegans

36 29 80.56

Drosophila
melanogaster

91 90 98.90

Saccharomyces
cerevisiae

910 897 98.56

Mus musculus 2,198 2,153 97.95

Escherichia coli 202 177 87.62

Total 10,412 10,274 98.67

Table 3. Confirmed RNA-Protein Interactions with High Ranks in the

Dataset of Homo sapiens

Protein ID RNA ID Probability

HNRNPA1 EPB41 0.867

TARDBP CFTR 0.866

MBNL1 DMPK 0.863

PTBP1 CD40LG 0.859

SRP19 RN7SL1 0.857

SRSF1 TNNT2 0.856

ELAVL4 MYCN 0.853

ELAVL2 ID1 0.851

HNRNPC CSF2 0.848

HNRNPD ADRB1 0.847

EIF5A RNU6-1 0.845

HNRNPD AGTR1 0.842

ELAVL3 VEGFA 0.838

YBX1 CSF2 0.833

ZBP1 ACTB 0.831
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coli for 6,928, 29, 90, 897, 2,153, and 177, with an accuracy of 99.33%,
80.56%, 98.90%, 98.56%, 97.95%, and 87.62%, respectively. We finally
predict that the correct number of ncRNA-protein pairs is 10,274, with
a total accuracy of 98.67% on the independent dataset NPInter v2.0.

Case Study: Potential RPIs of the Top-15 Ranks Verified from

Database

After evaluating the effectiveness and robustness of the proposed
model, we calculate the possibility of interaction for potential RNA-
protein pairs in the dataset of Homo sapiens. The training data do
not overlap with the testing data. The predicted RNA-protein pairs
with high probability are considered as potential interacted pairs
and further verified byGeneOntology.50 As a result, shown in Table 3,
15 interacted RNA-protein pairs are finally confirmed. Note that the
high-ranked interactions that are not reported yet may also exist in
reality. Based on these results, we anticipate that the proposed model
is feasible to predict new RPIs.

Conclusions

In this study, we have proposed the computational method RPI-SAN
based on deep learning with efficient features and stacked assembling
to predict RPIs. We use PSSM and k-mers sparse matrix to extract
efficient features from proteins and RNAs, respectively. Then such
features will be fed into the SAN with RF predictors. The presented
method gives a high performance with an accuracy of 90.77%,
MCC of 82.27%, and an excellent AUC of 96.2% on the RPI2241 data-
set. RPI-SAN also performs well on other previous popular datasets.
Experimental results prove that the stacked auto-encoder can learn
high-level features automatically from raw information, which is
important for designing machine learning models. RPI-SAN gives a
great performance on both RNA-protein and ncRPI prediction,
which can prove that RPI-SAN is better than other state-of-the-art
methods in some aspects. Through experiments, we also find that
RPI-SAN has a better effect on large-scale datasets than small data-
sets, which we will keep studying in further work. We researched
the computational techniques for predicting the interaction of
ncRNA-proteins because it is more convenient and rapid than
340 Molecular Therapy: Nucleic Acids Vol. 11 June 2018
traditional hand-tuning experiments and can accurately predict the
potential ncRNA-protein interacted pairs, which provides reliable
guidance for the further biological researches.

MATERIALS AND METHODS
Construction of Datasets

To evaluate the effectiveness and robustness of our approach, we con-
ducted experiments on four different benchmark datasets, including
RPI488, RPI1807, RPI2241, and NPInter v2.0.49 The RPI488 is a non-
redundant lncRPIdataset basedon structure complexes,51,52which con-
tains 488 lncRNA-protein pairs, including 245 non-interacting pairs
and 243 interacting pairs. Here it is smaller than other RNA-protein da-
tasets, with only 243 lncRPIs. The reason is that there are much fewer
lncRNA-protein complexes in the ProteinData Bank (PDB)53 database,
where thencRNA-protein complexes are downloaded from.54Thedata-
set RPI1807 contains 1,807 positive ncRPI pairs, including 1,078 RNA
chains and 1,807 protein chains. The number of negative ncRPI pairs is
1,436, which contain 493 RNA chains and 1,436 protein chains. It is
established by parsing the Nucleic Acid Database (NAD), which pro-
vides the RNA-protein complex data and protein-RNA interface data.
The RPI2241 dataset is constructed in a similar way and contains
2,241 interacting RNA-protein pairs. The NPInter v2.0 is an ncRPI
from a non-structure-based source, containing 10,412 ncRNA-protein
pairs and 449 chains of protein and 4,636 chains of ncRNA. Table 4
shows the details of the datasets used in this study.

Representation of the ncRNA and Protein Sequences

To obtain high effective features for deep learning models, each
ncRNA-protein pair is represented as 486-feature vectors, in which
256 features are used to encode the RNA sequence, and 240 features
are used to encode the protein sequence. RNAs are encoded by using
the k-mers sparse matrix previously proposed in Zhu-Hong et al.40 In



Table 4. The Details of the ncRNA-Protein Interaction Datasets

Dataset Interaction Pairs Number of Proteins Number of RNAs

RPI488 243 25 247

RPI1807 1,807 1,807 1,078

RPI2241 2,241 2,043 332

NPInter v2.0 10,412 449 4,636

RPI488 is lncRNA-protein interactions based on structure complexes. PI369, RPI2241,
and RPI1807 are RNA-protein interactions. NPInter2.0 and RPI13254 are ncRNA-pro-
tein interactions from non-structure-based source.
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this method, we scan each RNA sequence (A, C, G, U) from left to
right, stepping one nucleotide at a time, which is considered the char-
acteristic of each nucleotide. Its k-1 consecutive nucleotides and k
consecutive nucleotides are regarded as a unit. For any above-
mentioned RNA sequences of length L, there would be 4k different
possible k-mers and L� k+ 1 k-mers appearing in the RNA
sequence.

Each input of the RNA sequence is processed into a 4k � ðL� k+ 1Þ
k-mers sparse matrix R. When RjRj+ 1Rj+ 2Rj+ 3 are just equal to the
ith k-mers among 4k different k-mers, set the element aij = 1. The
rest can be dealt with in the same way. Then an input RNA sequence
is converted into a 4k � ðL� k+ 1Þ matrix R. In this study, the value
of k is set to 4 to process the RNA sequence, which can be obtained
from Table S1.

M=
�
aij
�
4k
� ðL� k + 1Þ (1)

aij =

�
1; if RjRj+ 1Rj+ 2Rj+ 3 = k�merðiÞ

0; else
(2)

The 4-mer sparse matrix R is a low-rank matrix, while almost all of
the information is retained, including sequence (AAAA, AAAC
.UUUU) frequency, position, and order-hidden information in a
protein sequence. Then, we use SVD to process a matrix R into a
1� 256 vector feature.

Considering that RNA and protein sequences have different struc-
tures for protein amino acids sequences, we use a more biological
method, the PSSM, to transform it. The PSSM algorithm containing
biological evolution information was first used to detect distantly
related protein, achieving great success in the prediction of the pro-
tein secondary structure and the protein binding site and the disor-
dered regions prediction. The structure of PSSM is a L� 20 matrix,
while L rests with the length of the input protein sequence and 20
represents the number of naive amino acids. Supposing p = fbði;jÞ;
i = 1; 2;.N and j = 1; 2;.20g, PSSM is represented as follows

P =

2
4 b1;1 / b1;20

« 1 «
bN;1 / bN;20

3
5; (3)
where bi;j in the i row of PSSM represents the probability of the ith
residue being mutated into type j of 20 native amino acids during
the procession of evolutionary in the protein from multiple sequence
alignments. In experiments, we used the position-specific iterated
BLAST (PSI-BLAST) tool to convert protein raw sequence into
PSSM. We set the PSI-BLAST tool against the database of SwissProt,
the number of iteration as 3, and err-value to 0.001, to get the best re-
sults. Both PSI-BLAST applications and the SwissProt database can be
freely downloaded from http://blast.ncbi.nlm.nih.gov/Blast.cgi.

Then we extracted the PZM41 features from the PSSM. PZM is widely
used in the field of image processing and has achieved good results,
which can extract features from the matrix more robustly and has
less information redundancy. We set the PZM required parameter n,
m = 30. Finally, a feature vector is obtained for each protein sequence.

SAN

Deep learning as a powerful vehicle has been widely used in different
areas19,22,23,43,55,56 and has received great attention in the field of ncRPI
prediction.57 Among these several deep-learning architectures, the
SAN is more appropriate to our demand. The stacked auto-encoder
has almost all the advantages of the deep neural network (DNN)
and has an outstanding expressive ability. It is usually able to obtain
the “hierarchical grouping” and “partial-global decomposition” fea-
tures of the raw data. Since the stacked auto-encoder tends to be
able to effectively represent the original input data, we use auto-
encoder as a component element of a DNNwith multiple layers.44,55,58

The SAN is composed of a multilayer neural network sparse auto-
encoder and the output from the previous layer as input of the next
layer as shown in Figure 2. With hyper parameter optimization, we
get the best parameters of the stacked auto-encoder neural network.
The sparse auto-encoder network is constructed like Figure 3. Error
represents the error between the reconstructed data and the input,
while the sparsity penalty stands for regularity limit for L1, which
constrains the majority of each layer’s node, which is 0, with only a
few that are not 0.

Where the input x is in the form of d-dimension and the auto-encoder
network maps X into the output h(X):

hðw;bÞðxÞ= f
�
WTX

�
= f

�Xn

i= 1
wixi + b

�
; (4)

where the f is activation function. When we select Sigmoid as the acti-
vation function,

f ðzÞ= 1
1+ e�z

; (5)

then the loss function is as follows:

LðX;WÞ= kWh� X k 2 + l
X
j

��hj �� : (6)
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Figure 2. The Construction of Stacked Auto-Encoder Network

Figure 3. The Construction of Sparse Auto-Encoder
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Usually, each layer of neural network includes a certain number of
neurons. Then, the multilayer neural network makes up a stacked
network of sequential connected layers, while the output of the previ-
ous layers is the input of the next layers:

aðlÞ = f
�
zðlÞ

�
(7)

zðl + 1Þ =Wðl;1ÞaðlÞ + bðl;1Þ: (8)

Among them, aðnÞ is the activation value of the deepest hidden unit,
which is a higher order representation of the input value. By using
aðnÞ as the input feature of the softmax classifier, the features learned
in the deep auto-encoder network can be used for classification prob-
lems. We use the stochastic gradient descent (SGD)59 to optimize the
reconstruction error between X and z, which can be measured by us-
ing the squared error.

Stackingmultiple auto-encoders47 consists of a stacked auto-encoder, a
DNN that can learn high-level features automatically.60,61 To get a bet-
ter performance, we use greedy layer-wise learning, which can train
each layer individually to optimize objective functions when learning
the stacked auto-encoder parameters. In our network, we use two types
of layers: full-connected and dropout layers.62 For the dropout layer, it
set some node activations to 0 with a certain probability to avoid over-
fitting for model training. We also add an extra soft-max layer for fine
tuning, with the ReLu function as activation for the outputs from the
conjoined multiple- layer network of RNA and protein as the last hid-
den layer, which is trained by using real label information to update
weights and bias parameters for SAN.63,64 Then we use SGD (with
different learn rates and momentums for different datasets) to mini-
mize cross entropy loss function and Adam tominimize mean squared
error for each de-noising auto-encoder layer, and the dropout probabil-
ity is set to 0.5 during the model training.65,66 In this study, we use the
keras library to implement the stacked auto-encoder and set the param-
eters batch_size and nb_epoch to 100, respectively. The details about
keras can be found at http://github.com/fchollet/keras.
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Stacked Assembling

Ordinarily, different classifiers have different performances in
different datasets. In fact, there is no single classifier that can be adapt-
ed to all kinds of datasets. An extra-stacked assembling layer is used in
our deep learning network to integrate the individual multiple classi-
fier outputs to gain the approximate optimal target function. Previous
works have proposed majority voting36 and average individual classi-
fiers outputs.67

In our study, using multiple layer neural networks following the deep
learning intuition,wedefine theoperatingmechanismas the level 0 clas-
sifiers’ outputs that will be fed into the level 1 classifier as training data.
Where level 0 is the original layer and level 1 the next sequential layer,
how to obtain the outputs from separate classifiers will be worked out.
In our network, the outputs of the level 0 layer classifiers are the pre-
dicted probability score, while the successive level 1 classifier is logistic
regression. When the weight of logistic regression for each individual
classifier is the same, it degenerates to average treatment. When only
one weight is not zero, it is more like a majority voting method:

Pwð± 1jpÞ= 1

1+ e�wTpð± 1jpÞ; (9)

where p is the probability score vector outputs of the individual clas-
sifiers and w is the weight vector for every single different classifier.
The logistic regression is from Scikit-learn.68
Performance Evaluation

In this study, we trained the deep learning model to classify whether
ncRNA and protein interact with each other or not. The 5-fold cross-
validation method is used to evaluate the performance of our study,
which randomly divides all the datasets into five equal parts. In
each validation, one of them is taken as the testing set, and the other
four parts are taken as the training set. The testing and training data

http://github.com/fchollet/keras
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do not overlap with each other to guarantee the unprejudiced com-
parison. We take the average and SDs of these results as the final vali-
dation result. We follow the widely used evaluation measure to eval-
uate our method, including accuracy (Acc.), sensitivity (Sen.),
specificity (Spec.), precision (Prec.), and MCC defined as:

Acc:=
TN +TP

TN +TP + FN + FP
(10)

Sen:=
TP

TP + FN
(11)

Spec: =
TN

TN + FP
(12)

Prec:=
TP

TP + FP
(13)

MCC=
TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP + FNÞðTN + FPÞðTN + FNÞp ; (14)

where TN indicates the correctly predicted negative number, TP de-
notes the correctly predicted positive number, FN represents the
wrongly predicted negative number, and FP stands for the wrongly
predicted positive number. Certainly, the receiver operating charac-
teristic (ROC) curve and the area under ROC curve (AUC) are also
exploited to evaluate the performance of classifiers.
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