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Abstract
Sodium is an integral part of water, and its excessive amount in drinking water causes high

blood pressure and hypertension. In the present paper, spatial distribution of sodium concen-

tration in drinking water is modeled and optimized sampling designs for selecting sampling

locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian

universal kriging are used to predict the sodium concentrations. Spatial simulated annealing

is used to generate optimized sampling designs. Different estimation methods (i.e., maximum

likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares)

are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian,

spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal

kriging. It is also observed that the universal kriging predictor provides minimum mean univer-

sal kriging variance for both adding and deleting locations during sampling design.

Introduction

Sodium is a mineral which is always present in drinking water through natural occurrences.
The human body needs sodium to maintain the blood pressure and to control fluid levels. If it
exceeds a threshold value (i.e., 200 mg/l), then it may change the taste of water. Moreover, it
also creates severe medical problems for those who have high blood pressure. In most of the
countries the level of sodium in water is less than 20 mg/l, however, in some countries it
exceeds 250 mg/l.

About 1.1 billion people in the whole world are unable to access safe drinkingwater, and it
causes a lot of deaths. Gadgil [1] provides some guidelines and highlights the presence of

PLOS ONE | DOI:10.1371/journal.pone.0161810 September 28, 2016 1 / 16

a11111

OPENACCESS

Citation: Zahid E, Hussain I, Spöck G, Faisal M,
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required parameters in drinking water. Ferreccio et al. [2] evaluates the concentration of arse-
nic in drinking water which was about 860 mg/l during 1958 to 1970 in northern cities of
Chile, however, later on it has been reduced to 40mg/l. They cross-examine two types of
patients, smokers and non-smokers, and conclude that consumption of arsenic through water
is the major cause of lung cancer. Gundogdu and Guney [3] use various kriging techniques to
study the water levels by using spherical, tetraspherical, pentaspherical, exponential, Gaussian,
rational quadratic, hole effect, K-bessel, J-bessel and stable variogram models. They conclude
that universal kriging is better than ordinary kriging for interpolating water levels. Neuman
et al. [4] described and implemented Bayesian model averaging, and maximum likelihood ver-
sion of Bayesian model averaging which does not require any prior knowledge about parame-
ters. It updates posterior probabilities as well as model parameters on the basis of new data,
and is consistent with modern statistical methods of hydrologic model calibration. Mehrjardi
et al. [5] show that co-kriging and kriging methods are better than inverse distance weighting
techniques for predicting the spatial distribution of some characteristics of groundwater qual-
ity. Nas [6] concludes that ordinary kriging provides accurate patterns of groundwater quality
parameters in Konya, Turkey. Sarukkalige [7] also uses kriging techniques for the analysis of
the quality of groundwater in Western Australia. Andrade and Stigter [8] model the spatio-
temporal variation of arsenic concentration in groundwater by using geostatistical and multi-
variate methods. They show that the concentration of arsenic has strong correlation with rice
culture and that indicator kriging provides appropriate maps of arsenic concentrations.

Dhar and Datta [9] developedmethodologybased on inverse distance weighting method to
reduce redundancy in monitoring network. Siri et al. [10] establish a sampling scheme for gen-
erating samples simultaneously. They prove that GPS units and a pseudo-sampling frame are
more effective than old sampling methods. Brus and Heuvelink [11] validate that universal kri-
ging performs better than ordinary kriging in terms of smaller mean universal kriging variance
(MUKV) for spatial sampling design. Optimal spatial sampling design is a core issue in envi-
ronmental studies when exploring low cost and greater efficiency samples. The sampling
scheme can be optimized through prior knowledge and sampling constraints. Van Groenigen
and Stein [12] conclude that Spatial Simulated Annealing (SSA) is better than classical methods
for optimizing sampling designs. SSA is useful for those studies that have several sampling con-
straints. Zhu and Stein [13] study spatial sampling design for the estimation of covariance
parameters by the maximum likelihoodmethod.

In present paper, spatial behavior of sodium in drinking water is determined and optimized
sampling patterns by both, the optimal deletion and subsequent addition of locations is gener-
ated for three divisions of Punjab, Pakistan. Several variogram models are used for modeling
the spatial dependence existing in the data. Maximum likelihood (ML), restricted maximum
likelihood (REML), ordinary least square (OLS), and weighted least square (WLS) are used to
estimate the parameters of the variogram. Universal kriging and Bayesian kriging with varying
trend are used for the prediction of sodium concentration at unobserved locations. Moreover,
spatial simulated annealing optimized sampling patterns are generated.

Materials and Methods

Study Area

Three divisions of Punjab (Bahawalpur, Dera Ghazi Khan and Multan) are investigated for
study purpose. The Bahawalpur division is a second-order administrative division that includes
the districts Bahawalnagar, Bahawalpur and Rahimyar Khan. It is located at an elevation of 92
meters above sea level. Its latitude is 28°3000” North and longitude is 71°3000” East in Degrees,
Minutes and Seconds (DMS) or 28.5 and 71.5 in decimal degrees. The Dera Ghazi Khan
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division has four districts (Dera Ghazi Khan, Layyah, Muzaffargarh and Rajanpur). Geographi-
cal coordinates of Dera Ghazi Khan are 30°3022” North, 70°3804” East. Multan division has also
four districts (Khanewal, Lodhran,Multan and Vehari). Multan district is spread over an area
of 3721 square km. Its latitude is 30°12054” North and longitude is 71°35027” East.

The Pakistan Council of Research in Water Resources (PCRWR) collected and analyzed
two samples from each union council (sub-sub-sub district). The water samples were collected
from easily and frequently available sources such as, hand pump, tab-water, tube-well, and
water supply because it depends on inhabitants of the region. According to the PCRWR survey
(2008) the samples of 370 selected sites are shown in left panel of Fig 1 and the gridded
unsampled locations are presented in right panel of Fig 1. The samples of water were collected
in 500 ml polystyrene bottles from the two selected sites of each union council according to a
standardized method. The details about selection of samples laboratory analysis is provided in
[14]. Various properties of the selected samples were analyzed according to the 2540C APHA
(1992) standard.

Spatial Interpolation Methods

Kriging is extensively used in spatial analysis and its main objective is to predict the value at an
unobserved location by calculating the weighted average of samples at observed locations, see
Matheron [15].

Universal kriging. Ordinary kriging assumes that the mean is constant in the study region,
however, in universal kriging the mean is a function of the coordinates (trend). The trend can be
modeled through linear or polynomial functions. Let Y = (Y1,. . .. . .,Yn)T be a vector of response
variables measured at observed locations x1, x2, . . .,xn, and let its distribution be as follows:

Y � N m;SYð Þ; ð1Þ

where μ = (μ(x1), μ(x2), . . .,μ(xn))T, and

m xið Þ ¼
Xp

k¼1

bkfkðxiÞ; for i ¼ 1; 2; :::; n: ð2Þ

Here βk, k = 1, 2, . . ., p, are unknown regression coefficients and the fk(x) are known func-
tions of the spatial coordinates x to <1; p is the number of functions that are used to model the

Fig 1. Level of sodium concentration (mg/L) at observed locations in threedivisions of Punjab, Pakistan (left), and

observed locations and gridded locations (right).

doi:10.1371/journal.pone.0161810.g001
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trend component. The covariance matrix SY is defined as

SY ¼ s2ðð1 � t2ÞRa þ t2IÞ; ð3Þ

where Rα is a correlation matrix generated from one of the well known positive definite correla-
tion function models, i.e. Gaussian, exponential or spheric. SY depends on a vector-valued
parameter θ = (σ2 = total sill, α = range, τ2 = relative nugget). Equivalently one may define also
the matrix of semivariogramvalues

GY ¼ s21 � SY ;

where 1 is the nxn-matrix of ones. The covariance or semivariogramparameters θ are esti-
mated using estimation methods like ML, restricted-MLor empirical semivariogram estima-
tion and weighted-least-squares-fitting. The universal kriging predictor at an unsampled
location x0 is a linear predictor Ŷ ðx0Þ ¼

Pn
i¼1

liYi. Minimizing the mean squared error of pre-
diction subject to the condition of unbiasedness results in the following system of simultaneous
equations for the weighting vector λ = (λ1, λ2, . . .λn)T:
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where lk, k = 1, 2, . . ., p are the Lagrange multipliers for the conditions of unbiasedness, γij are the
semivariogramvalues between locations xi and xj, i, j = 0, 1, 2,. . ., n and f i

k ¼ fkðxiÞ, i = 0, 1, 2,. . .,
n, k = 1, 2, . . ., p. The weights vector λ and Lagrange multiplier l are calculated by solving the
above system of equations and are utilized also for calculating the universal kriging variance:

s2

uk ¼
Xn

i¼1

ligi0

( )

þ
Xp

k¼1

lkfkðx0Þ

( )

: ð5Þ

Bayesian Kriging. Bayesian kriging makes use of the Bayes theorem which involves the
likelihood function l (θ;Y) and the prior distribution π (θ) of the respective parameters θ =
(total sill = σ2,range = α,relative nugget = τ2,trend = β), see Omre [16]. The posterior distribu-
tion of the parameter vector θ can be expressed as:

p yjYð Þ ¼
l y; Yð Þ:p yð Þ

R
l y; Yð Þ:p yð Þdy

ð6Þ

All model parameters are considered uncertain, and the prior distribution of parameters is
given as follows:

pðb; s2; t2; aÞ ¼ pðbj; s2; t2; aÞpðs2jt2; aÞpðt2; aÞ; ð7Þ

whereas noninformative prior for β is used i.e π(β|, σ2, τ2, α)/ 1. Now, using the above prior
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distribution of parameters, the posterior distribution is obtained as

½b; s2; t2; ajY� ¼ ½bjs2; t2; a;Y�½s2jt2; a;Y�½t2; ajY �; ð8Þ

where [β|σ2, τ2, α, Y] is Gaussian with mean the generalized least squares estimate of β and
covariance matrix the corresponding generalized least squares covariance matrix. The posterior
density for τ2 and α is given as

pðt2; ajYÞ / pðt2; aÞjFTR� 1

t2 ;a
Fj

1
2jRt2 ;aj

� 1
2S2

n� p
2 ; ð9Þ

where F is the design matrix of regression functions,Rτ2,α is the correlation matrix between the
data and

S2 ¼
1

n � p
ðY � Fb̂Þ

T
R� 1

t2 ;a
ðY � Fb̂Þ; ð10Þ

with b̂ the generalized least squares estimate of β. For the case that a noninformative prior
π(σ2|τ2, α)/ 1/σ2 is used, the posterior of σ2 is given as scaled inverse chi-square distribution:

s2jt2; a;Y � w� 2ðn � p; S2Þ; ð11Þ

which is equivalent to

ðn � pÞS2

s2
jt2; a;Y � w2ðn � pÞ; ð12Þ

To predict values at unsampled locations the predictive distribution is used. Proposed by
Diggle and Lophaven [17] and described in Diggle and Ribeiro [18] the predictive distribution
for the unobserved signal process Y0 = Y(x0) at location x0 is specified as:

Y0jY½ � ¼

Z Z Z

Y0js
2; a; t2;Y½ � s2; a; t2jY½ �ds2dadt2 ð13Þ

Diggle and Ribeiro [18] use a discrete prior for the covariance parameters. This way the posterior
becomes also discrete and parameters can be simulated easily from the posterior by means of
multinomial sampling. Sampling from the predictive distribution is performedby first sampling
a parameter vector from the discrete posterior and then with the parameter vector fixed sam-
pling from [Y0|σ2, α, τ2, Y], which is a Gaussian distribution with mean, the universal kriging
predictor, and variance, the universal kriging variance. If no discrete prior π(τ2, α) is used but a
continuous one then one has to use MCMC methods to sample from the posterior π(τ2, α|Y).

Spatial Sampling Design

Spatial sampling is a process in which a number of samples are used to evaluate the content of
a larger geographical region. Every point in a sample exhibits information about the variable of
interest at an unsampled spatial location. The sampling process has many advantages over the
complete enumeration; for example, low cost, greater speed and higher scope, see Cochran
[19]. The major objective of spatial sampling is to get the desired results with high precision at
low cost. This can be achieved by allocating samples to locations based on minimizing an
objective function, i.e., the mean universal kriging variance, see Wang et al. [20].

Spatial Simulated Annealing. Here, SSA is used for the optimization of the sampling
design, see Van Groenigen and Stein [12]. In SSA locations are candidate measurements that
are either removed or added iteratively and are optimized by minimizing the Mean Universal
Kriging Variance (MUKV). The MUKV is an average of all kriging variances over a fine square
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grid of locations in the study region i.e.

MUKV ¼
P

s2
i

n

where s2
i is the variance of universal kriging. If the trend is constant, the algorithm uses the

ordinary kriging variance. As the trend varies, it uses the universal kriging variance. The SSA-
algorithm used here is just standard simulated annealing algorithm as described i.e. in Kirkpat-
rick [21] but adapted to the spatial context by following Brus and Heuvelink [11]. In SSA two
different design tasks can be accomplished by: i.) Adding n new sample locations to an existing
monitoring-network of m locations. ii.) Selecting n < m samples from an existing network of
m locations.

SSA can be described as; i): The algorithm is initialized by randomly selecting n design-loca-
tions from the spatial region and by calculating the MUKV based on these random locations
and maybe other available m given locations. Let’s denote this MUKV as MUKV0. As the next
step these n previously selected locations are randomly perturbed.Again the MUKV is calcu-
lated for n new locations i.e MUKV1. If MUKV1 is smaller than MUKV0 then it can be assumed
that there is an improvement with last design and is stored for memorizing. If ΔMUKV =
MUKV1−MUKV0 > 0 then the previous design is accepted only with a certain probability i.e.

p ¼ exp �
DMUKV

T

� �

ð14Þ

T is called temperature and at the beginning of the algorithm can be large. The larger T the
higher is the probability that a worsening design will be accepted. The algorithm now starts to
iterate: Every current design is randomly perturbed as described above; its MUKV is calculated
and compared to the MUKV of the so far best design. Improvements are always accepted and
stored and worsenings are accepted with the above probability, where MUKV0 takes over the
role of the MUKV of the so far best design. Actually, the probable acceptance of worsenings
prevents the algorithm from being trapped in local minima of the MUKV. Further accuracy
can be achieved by accounting uncertainty of variogram parameters and kriging predictors.

Cross Validation

Cross validation statistics are used to compare the performance of different fitted models. In
the present study leave-one-out cross-validation is used for selecting appropriate variogram
models, parameter estimation methods and kriging predictors. The Root Mean Squared Pre-
diction Error(RMSPE) is used as performance measure:

RMSPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðŶ ðxiÞ � YðxiÞÞ

2

n

s

In the above statistic Ŷ ðxiÞ are the cross-validated, predicted values from a specific model
and Y(xi) are the observedvalues of the data. Finally, the method with minimum RMSPE is
used for predicting the response variable at unobserved locations.

Results and Discussion

Exploratory Spatial Data Analysis

Exploratory spatial data analysis is performed on the sodium concentration data by using the
geoR package of Ribeiro and Diggle [22] and R software Team [23]. This analysis is carried out
to explore the spatial auto-correlation and the assumption of normality which is necessary for
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most of the kriging methods. It is observed that the sodium concentration data violate the
assumption of normality. The Box-Cox transformation with parameter λ = −0.028 is used to
normalize the data, see Fig 2. The transformed data are used for modeling the spatial distribu-
tion of sodium concentrations and for selecting optimal sampling designs.

Results for Universal Kriging

From exploratory analysis it is observed that there exists spatial dependence between sodium
concentrations and coordinates, see left panel of Fig 1. Universal kriging with linear trend can
take into account this spatial dependence. Since modeling the variogram is essential for predic-
tion by kriging, various variogram models are fitted through different estimation methods
(results of RMSPE given in Table 1). Table 1 shows that REML provides minimum RMSPE for
covariance (see column 2-5 of Table 1). REML and universal kriging provide minimum
RMSPE as REML has the advantage of removing the trend during variogram estimation. From
the RMSPE presented in Table 1 it can be concluded that universal kriging with a spherical

Fig 2. Distributions of non-transformed and transformed response variable withtheir respective quantile plots.

doi:10.1371/journal.pone.0161810.g002
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variogram model fits well under REML. The estimated parameters of the best fitting model are
given in Table 2. Thus, the spherical model is used for the prediction of sodium concentrations
in drinking water. The contour plots of predicted values and prediction variances are given in
left panels of Figs 3 and 4, respectively. Left panel of Fig 3 shows that the concentration of
sodium is highly exceeding the limit, which is 200mg/l in the region between (28.3° − 28.5° lati-
tude and 70° − 70.5° longitude), (30.2° − 30.4° latitude and 70.2° − 70.4° longitude) and (30.1°
− 31.1° latitude and 70.9° − 71.5° longitude). Left panel of Fig 4 shows that in most of the area
the variance of prediction is small except in the region between (30.2° − 30.7° latitude and 70.9°
− 71.2° longitude).

Results for Bayesian Kriging

Bayesian kriging with linear trend is used with spherical and exponential variogram models.
The prior distributions are specified as follows: for the mean parameter β a uniform prior is
used, i.e p(β)/ 1; for the range parameter α a uniform prior is used, too, i.e p(α)/ 1; the prior
for σ2 (total sill) is scaled inverse chi-square with 367 degrees of freedom; and for the relative
nugget parameter τ2 a uniform prior is used, too. The exponential and spherical covariance
models are investigated. Leave-one-out cross-validation is used to estimate the RMSPE for
each model. The RMSPE presented in Table 3 shows that the spherical model fits well (mini-
mum RMSPE) for Bayesian kriging with linear trend. For predicting the sodium concentration
at unsampled locations the posterior predictive distribution is used to draw contour maps.
Right panel of Fig 3, showing the posterior predictive means, indicates that sodium concentra-
tions are high in the regions (28.3° − 28.6° latitude and 69.9° − 70.5° longitude), (29° − 29.7° lat-
itude and 70.1° − 70.7° longitude), and concentration of sodium is a serious issue in the regions
(30.1° − 31.1° latitude and 70.9° − 71.5° longitude) and (30.3° − 30.5° latitude and 70.2° −70.4°
longitude). From right panel of Fig 4 it can be observed that in most of the area the posterior
predictive variance is similar except in the region (30.5° − 31.0° latitude and 71.4° − 71.6° longi-
tude), where it is extremely high.

Comparison of Spatial Interpolation Methods

Root mean squared errors of prediction of the spatial interpolation methods are given in
Table 4. The RMSPE of Bayesian universal kriging is less than the RMSPE of universal kriging.
It can be conclude that Bayesian universal kriging performs better than universal kriging. This

Table 1. RMSPE of spatial covariance models subject to different methods of estimation (ML, REML, OLS, and WLS) and universal kriging.

Models ML REML OLS WLS

Universal kriging

Expon. 178.227 177.208 179.242 187.428

Gaussian 179.244 178.612 180.022 182.425

Spherical 177.998 176.603 181.518 181.578

Cubic 178.731 178.142 179.551 179.993

doi:10.1371/journal.pone.0161810.t001

Table 2. Parameters of the variogram model subject to REML estimation and universal kriging.

Spherical Model

Methods Sill Range Nugget

Universal kriging 0.7078 1.1709 0.43

doi:10.1371/journal.pone.0161810.t002
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is due to the use of additional information, data information as well as prior information, and
more statistical modeling flexibility of Bayesian universal kriging.

Optimized Sampling Design

One of the objectives of the present paper is to obtain an optimum allocation of sampling loca-
tions to minimize cost and prediction error. Since the kriging prediction variance depends on
both the sample size, the variance and covariance of the sample. Optimum allocation can be
obtained only by considering all of these factors. Different variogram models are fitted as it is a
pre-requisite for prediction by kriging. The variogram model providing minimum RMSPE is

Fig 3. Maps of predicted sodium concentrations (mg/L) by using universal kriging(left) and Bayesian universal

kriging (right), here X-coord = Latitude and Y-coord = Longitude.

doi:10.1371/journal.pone.0161810.g003

Fig 4. Maps of prediction variance by using universal kriging (left) and Bayesianuniversal kriging (right),here X-

coord = Latitude and Y-coord = Longitude.

doi:10.1371/journal.pone.0161810.g004
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considered as appropriate for prediction and sampling design. For selecting the optimal sam-
pling design optimal deletion and subsequent addition of locations are performed. The diameter
was fixed by k-means i.e k = 6 and temperature was fixed by following Brus and Heuvelink [11].

Table 5 shows the MUKV using the observed370 data locations for both, ordinary and uni-
versal kriging, and a spherical variogram model which comes out to be the appropriate model.

Deleting Locations using Spatial Simulated Annealing

To minimize sampling cost one possible option is to reduce the number of sampling locations.
Spatial simulated annealing (SSA) is used to optimize the effect of deleting sampling locations
upon MUKV. The MUKV is calculated using ordinary and universal kriging. The MUKV
increases in both kriging techniques as the number of data locations goes down, see Table 6
and Fig 5. Subsequently deleting 20 and 40 locations from the 370 locations. When deleting 50
locations from the 370 locations the MUKV using ordinary kriging is 24560 and the MUKV
for universal kriging is 24480, see Tables 5 and 6. According to the MUKV criterion it can be
inferred that universal kriging theoretically seems to perform better than ordinary kriging. The
sampling patterns for deleting locations using ordinary kriging and universal kriging are

Table 3. RMSPE of spatial covariance models subject to Bayesian universal kriging.

RMSPE

Methods Exponential Spherical

Bayesian univ. kriging 177.195 175.601

doi:10.1371/journal.pone.0161810.t003

Table 4. Comparison of the interpolation methods.

Methods RMSPE

Universal kriging 176.603

Bayesian universal kriging 175.601

doi:10.1371/journal.pone.0161810.t004

Table 5. MUKV vs. sample size using spherical variogram model.

Method Sample Size MUKV

Ordinary kriging 370 24018

Universal kriging 370 23930

doi:10.1371/journal.pone.0161810.t005

Table 6. MUKV vs. sample size using spherical variogram model for deleting locations.

Method Sample Size MUKV

Ordinary Kriging 370-10 24538

370-20 24539

370-30 24542

370-40 24549

370-50 24560

Universal Kriging 370-10 24456

370-20 24457

370-30 24461

370-40 24467

370-50 24480

doi:10.1371/journal.pone.0161810.t006
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shown in Figs 6 and 7. Algorithm stops on getting the optimum criterion i.e., MUKV. It can be
observed that number of iterations performedby the algorithm are different in every sub figure.
Obviously, only redundant locations in densely sampled areas are deleted, resulting in only a
slight increase of the MUKV.

Adding Locations using Spatial Simulated Annealing

Like before the objective here is to find the sampling pattern by adding locations that has mini-
mum MUKV. If the number of locations to be added are increased in the SSA-algorithm then
the MUKV decreases for both, ordinary and universal kriging, see Fig 8 and Table 7. However,
the mean universal kriging variance is smaller than the ordinary kriging one. The sampling

Fig 5. MUKV vs. sample size using ordinary and universal kriging.

doi:10.1371/journal.pone.0161810.g005

Fig 6. Optimal sampling design for ordinary kriging when locations are deleted,(Red).

doi:10.1371/journal.pone.0161810.g006
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patterns after adding locations using ordinary kriging and universal kriging are shown in Figs 9
and 10. Both sampling designs look quite similar and space-filling.

Conclusion

The present paper is focused on two objectives: (i) to model the spatial distribution of sodium
concentration, and (ii) to generate optimized spatial sampling designs for three divisions of
Punjab, Pakistan. Universal kriging and Bayesian kriging with varying linear trend are used for
modelling the spatial distribution of sodium concentrations in drinking water. To take account
of the spatial dependence in the response variable Gaussian, exponential, spherical and cubic

Fig 7. Optimal sampling design for universal kriging when locations are deleted (Red).

doi:10.1371/journal.pone.0161810.g007

Fig 8. MUKV vs. sample size using ordinary and universal Kriging.

doi:10.1371/journal.pone.0161810.g008
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variogram models are used. It is concluded that the spherical variogram model provides
smaller mean squared error of prediction than other variogram models. Since Bayesian univer-
sal kriging has the advantage of utilizing prior information about model parameters and is sta-
tistically more flexible, it performs better than universal kriging.

A comparison of the used kriging methods can also be based on credible intervals. The 95%
credible intervals are estimated from the simulated values of sodium concentration. Plots of
credible intervals as presented in Fig 11 show that Bayesian universal kriging has shorter inter-
vals than universal kriging. In Bayesian universal kriging most of the actual data values lie
within the 95% predictive intervals. Thus, Bayesian universal kriging gives more reliable pre-
dictions than universal kriging. This is also due to the fact that Bayesian universal kriging does
take into account the uncertainty of the covariance model. Universal kriging does not; once the
covariance model is estimated it is fixed and its uncertainty is discarded during prediction. Pre-
diction maps of sodium concentrations are generated based on Bayesian universal and univer-
sal kriging; locations having sodium concentration above the threshold value of 200mg are

Table 7. MUKV by varying the sample size using a spherical model for adding locations.

Method Sample Size MUKV

Ordinary Kriging 370+10 23849

370+20 23450

370+30 23173

370+40 22860

370+50 22692

Universal Kriging 370+10 23737

370+20 23227

370+30 22952

370+40 22757

370+50 22570

doi:10.1371/journal.pone.0161810.t007

Fig 9. Sub-optimal 370+40 point design, ordinary kriging. Green: added locations.

doi:10.1371/journal.pone.0161810.g009
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identified. Prediction maps show that sodium concentrations in drinking water are increasing
to the southern side of the study area.

Spatial simulated annealing is used to generate optimized spatial designs for adding and
deleting locations. For optimization the MUKV is used as objective function subject to ordi-
nary kriging or universal kriging.When deleting locations the MUKV increases; however, the
increase is not much because redundant locations are deleted. If locations are added the
MUKV decreases; the designs themselves have a space-filling character, when adding locations
by means of SSA. Spatial simulated annealing optimize the patterns, which are generated by
deleting and adding locations. Time and cost may be saved by deleting the redundant locations,
and the variation can be minimized by adding locations that was unfilled. Recently, Junez-Fer-
reira and Herrera [24] used Kalman filter to sequentially optimize space-time monitoring
points. Their suggested method can minimize the prediction error in better way as compared

Fig 10. Suboptimal 370+40 point design, universal kriging. Green: added (20 &40) locations.

doi:10.1371/journal.pone.0161810.g010

Fig 11. The 95% predictive interval plots and actual values of data for universalkriging (left) and Bayesian

Universal Kriging (right), the dots represent to actual interval and bars represent to 95% credible intervals.

doi:10.1371/journal.pone.0161810.g011
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with simulated annealing algorithm. For further improvement in optimizing sampling design
in present paper the method suggested in [24] can be used.
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